SlideShare ist ein Scribd-Unternehmen logo
1 von 11
Downloaden Sie, um offline zu lesen
Alsulami, Falcone, Filippenko 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
Project 1: Forced Vibrations  
 
 
Mark Falcone, Raed Alsulami, Simon Filippenko  
 
 
March 4, 2016 
 
 
Professor Henriksen  
 
 
 
 
 
 
 
 
 
 
 
 
 
Alsulami, Falcone, Filippenko 2 
 
1) Problem 1 is a mass­spring system much like we have  
encountered in class. The challenge in this problem  
lies in dealing with the   and   in the equation, inω ω0  
addition to solving this problem entirely in terms of  
variables. 
y cos(ωt)y′′ + ω0
2 = m
F0
 
  d = 0  
No damping effect is given, meaning that d=0, and in  
terms of writing this as a differential equation, b  
also becomes 0.  
b2
= 0  
a and c are both positive and real  
ac se complex number equationb2
− 4 < 0 → U  
   −α = b
2a = 0  
e cos(βt) e sin(βt)yg = c1
0 + c2
0 + yp  
Next, beta must be found, as in the quadratic formula.  
β = 2a
√b −4ac2
= 2
√0−4ω0
2
= 2
2ω0
= ω0  
cos(ω t) sin(ω t)yg = c1 0 + c2 0 + yp  
Next, the constants  and   must be found using thec1 c2  
given information and the particular solution.   
cos(ωt) sin(ωt)yp = A + B  
− ωsin(ωt) ωcos(ωt)yp′ = A + B  
− ω cos(ωt) ω sin(ωt)yp′′ = A 2 − B 2  
Y and its respective derivatives can be applied to the  
original equation stated.   
ω cos(ωt) ω sin(ωt) [Acos(ωt) sin(ωt)] cos(ωt)− A 2 − B 2 + ω0
2 2
+ B = m
F0
 
There are no sine terms on the right side of the  
equation, therefore the sine terms can be eliminated.  
ω cos(ωt) ω cos(ωt) cos(ωt)− A 2 + A 2 = m
F0
 
Alsulami, Falcone, Filippenko 3 
can be factored out, and the equation can beos(ωt) c  
simplified algebraically.   
Aω ω ][ 0
2 − A 2 = m
F0
 
A =
F0
m(ω −ω )0
2 2  
Now that A is a known value, it can be plugged into  
the particular solution  .yp  
   cos(ωt)yp =
F0
m(ω −ω )0
2 2  
This particular solution can be used in the previously  
used equation for the general solution to give a final  
result of:  
cos(ω t) sin(ω t) cos(ωt)yg = c1 0 + c2 0 +
F0
m(ω −ω )0
2 2  
 
2)While Problem 2 is separate from 1, no new equations  
are introduced. This problem takes the final result  
from Problem 1 and applies new conditions to it to  
explore the mathematical implications that altering  
and applying initial conditions can have on such  
equations. First to see what happens with an initial  
velocity and displacement of 0 (y(0)=y’(0)=0), then to  
explore the possibility of  .ω0 ≈ ω  
2­A) 
y(t)=  cos(w t) sin(w t) cos(ωt)C1  0 + C2 0 +
F0
m(ω −ω )0
2 2  
y(0)=y’(0)=0 
y(0)= cos(0) sin(0) cos(0)C1  + C2 +
F0
m(ω −ω )0
2 2  
    =  , so  C1 + 0 +
F0
m(ω −ω )0
2 2 = 0 −C1 =
F0
m(ω −ω )0
2 2  
y’(0)=­ w sin(w t) w cos(w t) sin(ωt)C1 0 0 + C2 0 0 −
F0
m(ω −ω )0
2 2  
     = ­ w sin(0) w cos(0) sin(0)C1 0 + C2 0 −
F0
m(ω −ω )0
2 2  
     = 0+  , so wC2 0 − 0 = 0 C2 = 0  
y(t)=   cos(ω t)−
F0
m(ω −ω )0
2 2 0 + sin(ω t)
F0
m(ω −ω )0
2 2    
    = (cos(ω t) os(ω t))
F0
m(ω −ω )0
2 2   − c  0  
Alsulami, Falcone, Filippenko 4 
 
 
2­B) 
Here is the solution using the trigonometric identity:  
 
y(t)=  (cos(ω t) os(ω t))
F0
m(ω −ω )0
2 2   − c  0  
by applying the trigonometric identity we get:  
 
cos𝛼­cos𝛽=­2sin 𝛼+𝛽/2 * sin 𝛼­𝛽/2 
y(t)= *(  
F0
m(ω −ω )0
2 2 sin wt t/2  in wt t/2)− 2 + w0 * s − w0  
 
 
(t) cos(ω t) sin(ω t) cos(ωt)y = c1 0 + c2 0 +
F0
m(ω −ω )0
2 2  
(0) (0)y = y′ = 0  
(0) cos(0) sin(0) cos(0)y = c1 + c2 +
F0
m(ω −ω )0
2 2  
cos(0)= c1 + 0 +
F0
m(ω −ω )0
2 2 = 0  
−c1 =
F0
m(ω −ω )0
2 2  
(0) − ω sin(ω t)y′ = c1 0 0 + c2 cos(ω t) sin(ωt)ω0 0 −
F0
m(ω −ω )0
2 2  
− ω sin(0) ω cos(0) sin(0)= c1 0 + c2 0 −
F0
m(ω −ω )0
2 2  
ω= 0 + c2 0 − 0 = 0  
c2 = 0  
(t) − cos(ω t) cos(ωt)y =
F0
(ω −ω )0
2 2 0 +
F0
m(ω −ω )0
2 2  
(cos(ωt) os(ω t))=
F0
m(ω −ω )0
2 2 − c 0  
(t) (cos(ωt) os(ω t))y =
F0
m(ω −ω )0
2 2 − c 0  
Apply trigonometric identity  
os(α) os(β) − sin inc − c = 2 2
α+β
* s 2
α−β
 
(t) (− sin( )sin( ))y =
F0
m(ω −ω )0
2 2 2 2
ωt+ω t0
2
ωt−ω t0
 
(sin( )sin( ))=
2F0
m(ω −ω )0
2 2 2
ω t+ωt0
2
ω t−ωt0
 
 
Alsulami, Falcone, Filippenko 5 
2­C)The graph below displays the equation solved in  
2­B aswell as the graph of  (t)  ±  sin  y =  
2F0
m(ω 2−ω )0
2 2
(ω −ω)t0
 
For this graph   
 ω = 1  
.1ω0 = 1  
.5F0 = 0  
  0.3m =    
 
 
3)Problem 3 discusses pure resonance. The objective is  
to derive and graph a particular equation that  
resonates, and whose amplitude grows linearly. This  
means that as the t value approaches infinity, as will  
the amplitude.  
y cos(ω t)y′′ + ω0
2 = m
F0
0  
Solve for alpha and beta as they are in the quadratic  
equation.  
Alsulami, Falcone, Filippenko 6 
−α = b
2a = 0  
β = 2a
√b −4ac2
= 2
√0−4ω0
2
= ω0  
Apply those to the complementary equation:  
, which then becomese cos(yc = c1
αt t) e sin(βt)β + c2
αt  
cos(yc = c1 t) sin(ω t)ω0 + c2 0  
This complementary solution is not linearly  
independent from all parts of the particular solution,  
so it must be multiplied by t to get:  
Atcos(ω t) tsin(ω )yp= 0 + B 0  
Next, the first and second derivatives must be taken,  
and applied to the original equation.  
cos(ω t) tω sin(ω t) sin(ω t) tω cos(ω t)yp′ = A 0 − A 0 0 + B 0 + B 0 0  
− Aω sin(ω t) tω cos(ω t) Bω cos(ω t) tω sin(ω t)yp′′ = 2 0 0 − A 0
2
0 + 2 0 0 − B 0
2
0  
y cos(ω t)yp′′ + ω0
2 = m
F0
0  
Aω sin(ω t) tω cos(ω t) Bω cos(ω t) tω sin(ω t) (Atcos(ω t) tsin(ω t) cos(ω t)− 2 0 0 − A 0
2
0 + 2 0 0 − B 0
2
0 + ω0
2
0 + B 0 = m
F0
0  
This equation can be solved for A and B.   
B =
F0
2mω0
 
Now that B is known, it can be applied to the  
particular solution.   
in(ω t)yp =
F0
2mω0
+ s 0  
Now that the particular solution has been found, it  
can be applied to the general solution to get a final  
answer of: 
cos(ω t) sin(ω t) tsin(ω t)yg = c1 0 + c2 0 +
F0
2mω0 0  
 
3­B)The graph below displays the equation solved in  
3­A aswell as the graph of  (t) tsin(ω t)yss =
F0
2mω0 0  
For this graph   
 ω = 1  
.1ω0 = 1  
.5F0 = 0  
Alsulami, Falcone, Filippenko 7 
  0.3m =    
 
4)This problem once again explores pure resonance, but  
focuses on the amplification factor M( ). In theω  
equations and calculations portion, M( ) is maximizedω  
by taking the derivative, setting it equal to 0, and  
solving for  . The graphical portion of this problemω  
explores the relationship between the amplification  
factor and the frequency.   
(ω)M = 1
√m (ω −ω ) +d ω2
0
2 2 2 2 2
 
is the given equation, where  .  ω0 =
√k
m
 
Then use chain rule to differentiate:  
(ω
dω 1
√d ω +m ( −ω )2 2 2 k
m
2 2  
( )d
du
1
√u
du
dω  
where  ω ( ) and  −u = d2 2 + m2 k
m − ω2 d
du
1
√u
= 1
2u2
3  
Alsulami, Falcone, Filippenko 8 
d ω +m ( −ω )d
dω
2 2 2 k
m
2 2
2(d ω +m ( −ω ) )2 2 2 k
m
2 2
2
3  
Then differentiate the sum and factor out constants:  
2(d ω +m ( −ω ) )2 2 2 k
m
2 2
2
3
d ( (ω ))+m ( (( −ω ) ))2 d
dω
2 2 d
dx
k
m
2 2
 
Use the power rule to reduce   to 2 :ωd
dω
2 ω  
m ( ( −ω ))+2ωd2 d
dω
k
m
2 2
2(d ω +m ( −ω ) )2 2 2 k
m
2 2
2
3  
Then, using chain rule:  
( )d
dω
k
m − ω2 2
= du
du2 du
dw  
u = k
m − ω2  
(u ) ud
du
2 = 2  
2(d ω +m ( −ω ) )2 2 2 k
m
2 2
2
3
−2d ω+2( −ω )( ( −ω ))m2 k
m
2 d
dω
k
m
2 2
 
Next, differentiate the sum one term at a time and  
factor out the constants to yield:  
−
2(d ω +m ( −ω ) )2 2 2 k
m
2 2
2
3
2d ω+ ( )− (ω )2m ( −ω )2 d
dω
k
m
d
dω
2 2 k
m
2
 
The derivative of  .k
m = 0  
−
2(d ω +m ( −ω ) )2 2 2 k
m
2 2
2
3
2d ω+2m ( −ω )(− (ω )2 2 k
m
2 d
dω
2
 
Then use the power rule:  
(ω ) ω (ω ) ωd
dw
n = n n−1 → d
dω
2 = 2  
This yields: 
−
2(d ω +m ( −ω ) )2 2 2 k
m
2 2
2
3
2d ω−2ω 2m ( −ω )2
* 2 k
m
2
 
This can be simplified to get:  
(ω) −M′ =
2d ω−4ωm ( −ω )2 2 k
m
2
2(d ω +m ( −ω ) )2 2 2 k
m
2 2
2
3  
Then this must be set equal to 0 to find the maximum.  
0 = −
2d ω−4ωm ( −ω )2 2 k
m
2
2(d ω +m ( −ω ) )2 2 2 k
m
2 2
2
3  
The denominator cannot equal 0, so the denominator can  
be ignored, and the numerator can be set equal to 0.  
− d ω ωm ( )0 = 2 2
− 4 2 k
m − ω2  
Alsulami, Falcone, Filippenko 9 
− d m ω( )0 = 2 2
+ 4 2
ω
−ωk
m
2
 
d m ω( )2 2
= 4 2
ω
−ωk
m
2
 
( )d2
2m2 = ω ω
−ωk
m
2
 
− d2
2m2 + k
m = ω2  
 ωd = √k
m − d2
2m2  
The graph below displays   for the damping values(ω)M  
of d=0.25,0.5,1,1.5, and 2. The other values used are  
given as  , to fit in a [0,2] x [0,4] window.m = k = ω0 = 1  
For part c, the point   on each line is plottedM(ω ), )( d ωd  
to show how this value changes with d.  
 
 
5) ​Applications of Forced Vibrations: 
Forced vibrations have many applications in the real world. 
From suspension systems in bikes and cars to the less widely 
observed guitar strings. When guitar strings are “plucked” the 
vibrations create sound,obviously the force they are plucked 
Alsulami, Falcone, Filippenko 10 
with determine factors such as length of the note, but other 
factors like the tightness and thickness of the strings play a 
heavy role in the notes being played. In addition, when a guitar 
player, holds down a string at various locations the forced 
vibrations are affected because the string is as free to move as 
it was previously.  
 
 
 
 
 
 
Appendix: Matlab Codes  
 
function Diff1() 
w=1; 
w0=1.1; 
F0=0.5; 
m=0.3; 
t=0:0.01:2*pi/((1.1­1)/2); 
y=((2*F0)/(m.*(w0.^(2)­w.^(2)))).*sin(((w0­w).*t)/2).*sin(((w0+w).*t)/2); 
plot(t,y);hold on; 
y=((2*F0)/(m.*(w0.^(2)­w.^(2)))).*sin(((w0­w).*t)/2); 
plot(t,y,'red') 
y=­((2*F0)/(m.*(w0.^(2)­w.^(2)))).*sin(((w0­w).*t)/2); 
plot(t,y,'red') 
title('Problem 2c: Equation 5') 
xlabel('t values') 
ylabel('y(t) values') 
  
  
  
function Diff2() 
w0=1.1; 
F0=0.5; 
m=0.3; 
t=0:0.01:2*pi/((1.1­1)/2); 
y=(F0/(2.*m.*w0)).*t.*sin(w0.*t); 
plot(t,y);hold on; 
y=(F0/(2.*m.*w0)).*t; 
plot(t,y); 
y=­(F0/(2.*m.*w0)).*t; 
Alsulami, Falcone, Filippenko 11 
plot(t,y) 
title('Problem 3b: Steady State') 
xlabel('t values') 
ylabel('y(t) values’) 
  
  
  
 
 
 
 
 
 
 
 
 
function Diff3() 
w0=1; 
m=1; 
k=1; 
d=1/4; 
t=0:0.001:2*pi/((1.1­1)/2); 
y=1./(sqrt((m.^2).*(((w0.^2)­(t.^2)).^2)+(d.^2).*(t.^2))); 
plot(t,y);hold on; 
axis([0 2 0 4.5]); 
d=1/2; 
y=1./(sqrt((m.^2).*(((w0.^2)­(t.^2)).^2)+(d.^2).*(t.^2))); 
plot(t,y) 
d=1; 
y=1./(sqrt((m.^2).*(((w0.^2)­(t.^2)).^2)+(d.^2).*(t.^2))); 
plot(t,y) 
d=3/2; 
y=1./(sqrt((m.^2).*(((w0.^2)­(t.^2)).^2)+(d.^2).*(t.^2))); 
plot(t,y) 
d=3; 
y=1./(sqrt((m.^2).*(((w0.^2)­(t.^2)).^2)+(d.^2).*(t.^2))); 
plot(t,y) 
d=[1/4,1/2,1,3/2,3]; 
wd=sqrt((k/m)­(d.^2)/(2*m.^2)); 
y=1./(sqrt((m.^2).*(((w0.^2)­(wd.^2)).^2)+(d.^2).*(wd.^2))); 
plot(wd,y,'*') 
title('Problem 4a+c: Equation 11 and 12') 
xlabel('w values') 
ylabel('M(w) values') 
 

Weitere ähnliche Inhalte

Was ist angesagt?

Overview of Direct Analysis Method of Design for
Overview of Direct Analysis Method of Design forOverview of Direct Analysis Method of Design for
Overview of Direct Analysis Method of Design for
Ryan Brotherson
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - III
tushardatta
 
Equilibrium & equation of equilibrium in 3D
Equilibrium & equation of equilibrium in 3DEquilibrium & equation of equilibrium in 3D
Equilibrium & equation of equilibrium in 3D
imoinul007
 

Was ist angesagt? (20)

Steel strucure lec # (18)
Steel strucure lec #  (18)Steel strucure lec #  (18)
Steel strucure lec # (18)
 
Multiple Degree of Freedom (MDOF) Systems
Multiple Degree of Freedom (MDOF) SystemsMultiple Degree of Freedom (MDOF) Systems
Multiple Degree of Freedom (MDOF) Systems
 
magistarski rad
magistarski radmagistarski rad
magistarski rad
 
Overview of Direct Analysis Method of Design for
Overview of Direct Analysis Method of Design forOverview of Direct Analysis Method of Design for
Overview of Direct Analysis Method of Design for
 
Steel strucure lec # (20)
Steel strucure lec #  (20)Steel strucure lec #  (20)
Steel strucure lec # (20)
 
Design of rectangular &amp; t beam using usd
Design of rectangular &amp; t beam using usdDesign of rectangular &amp; t beam using usd
Design of rectangular &amp; t beam using usd
 
Theory of Elasticity
Theory of ElasticityTheory of Elasticity
Theory of Elasticity
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)
 
Lecture 8 raft foundation
Lecture 8 raft foundationLecture 8 raft foundation
Lecture 8 raft foundation
 
Steel strucure lec # (6)
Steel strucure lec #  (6)Steel strucure lec #  (6)
Steel strucure lec # (6)
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Bolted connections
Bolted connectionsBolted connections
Bolted connections
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - III
 
Centroid
CentroidCentroid
Centroid
 
Seismic Design Basics - Superstructure
Seismic Design Basics - SuperstructureSeismic Design Basics - Superstructure
Seismic Design Basics - Superstructure
 
Equilibrium & equation of equilibrium in 3D
Equilibrium & equation of equilibrium in 3DEquilibrium & equation of equilibrium in 3D
Equilibrium & equation of equilibrium in 3D
 
Resultant of forces
Resultant of forcesResultant of forces
Resultant of forces
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
 
SAP 2000 PROJEKTI
SAP 2000 PROJEKTISAP 2000 PROJEKTI
SAP 2000 PROJEKTI
 
Precomprimare.ppt
Precomprimare.pptPrecomprimare.ppt
Precomprimare.ppt
 

Ähnlich wie Forced Vibrations Project

Ähnlich wie Forced Vibrations Project (20)

IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
Simple harmonic motion1
Simple harmonic motion1Simple harmonic motion1
Simple harmonic motion1
 
Solution 3 i ph o 35
Solution 3 i ph o 35Solution 3 i ph o 35
Solution 3 i ph o 35
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdf
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arrays
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan group
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Admission in India
Admission in IndiaAdmission in India
Admission in India
 
Calculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualCalculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manual
 
Antwoorden fourier and laplace transforms, manual solutions
Antwoorden   fourier and laplace transforms, manual solutionsAntwoorden   fourier and laplace transforms, manual solutions
Antwoorden fourier and laplace transforms, manual solutions
 
Ch03 9
Ch03 9Ch03 9
Ch03 9
 
T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1
 
Sub1567
Sub1567Sub1567
Sub1567
 
Dynamic response to harmonic excitation
Dynamic response to harmonic excitationDynamic response to harmonic excitation
Dynamic response to harmonic excitation
 
2º mat emática
2º mat emática2º mat emática
2º mat emática
 
Ch03 3
Ch03 3Ch03 3
Ch03 3
 
Dynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manualDynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manual
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 

Forced Vibrations Project