SlideShare ist ein Scribd-Unternehmen logo
1 von 26
EnergíaEnergía
EnergíaEnergía es cualquier cosa que se puedees cualquier cosa que se puede
convertir en trabajo; es decir: cualquier cosaconvertir en trabajo; es decir: cualquier cosa
que puede ejercer fuerza a través de unaque puede ejercer fuerza a través de una
distanciadistancia.
Energía es la capacidad para realizar trabajo.Energía es la capacidad para realizar trabajo.
Energía potencialEnergía potencial
Energía potencial:Energía potencial: Habilidad paraHabilidad para
efectuar trabajo en virtud de la posiciónefectuar trabajo en virtud de la posición
o condicióno condición.
Un arco estiradoUn arco estiradoUn peso suspendidoUn peso suspendido
Problema ejemplo:Problema ejemplo: ¿Cuál es la energía¿Cuál es la energía
potencial de una persona de 50 kg en unpotencial de una persona de 50 kg en un
rascacielos si está a 480 m sobre la calle?rascacielos si está a 480 m sobre la calle?
Energía potencial gravitacionalEnergía potencial gravitacional
¿Cuál es la E.P. de una persona
de 50 kg a una altura de 480 m?
U = mgh = (50 kg)(9.8 m/s2
)(480 m)
U = 235 kJU = 235 kJ
Energía cinéticaEnergía cinética
Energía cinética:Energía cinética: Habilidad para realizarHabilidad para realizar
trabajo en virtud del movimiento. (Masatrabajo en virtud del movimiento. (Masa
con velocidad)con velocidad)
Un auto queUn auto que
acelera o unacelera o un
cohete espacialcohete espacial
Ejemplos de energía cinéticaEjemplos de energía cinética
2 21 1
2 2 (1000 kg)(14.1 m/s)K mv= =
¿Cuál es la energía cinética de una bala¿Cuál es la energía cinética de una bala
de 5 g que viaja a 200 m/s?de 5 g que viaja a 200 m/s?
¿Cuál es la energía cinética de un auto¿Cuál es la energía cinética de un auto
de 1000 kg que viaja a 14.1 m/s?de 1000 kg que viaja a 14.1 m/s?
5 g5 g
200 m/s200 m/s K = 100 JK = 100 J
K = 99.4 JK = 99.4 J
2 21 1
2 2 (0.005 kg)(200 m/s)K mv= =
Trabajo y energía cinéticaTrabajo y energía cinética
Una fuerza resultante cambia la velocidad deUna fuerza resultante cambia la velocidad de
un objeto y realiza trabajo sobre dicho objeto.un objeto y realiza trabajo sobre dicho objeto.
m
vo
m
vfx
F F
2 2
0
2
fv v
a
x
−
=Trabajo = Fx = (ma)x;
2
02
12
2
1
mvmvTrabajo f −=
El teorema trabajo-energíaEl teorema trabajo-energía
El trabajo esEl trabajo es
igual al cambioigual al cambio
enen½mv½mv22
Si se define laSi se define la energía cinéticaenergía cinética comocomo ½mv½mv22
entonces se puede establecer un principioentonces se puede establecer un principio
físico muy importante:físico muy importante:
El teorema trabajo-energía:El teorema trabajo-energía: El trabajoEl trabajo
realizado por una fuerza resultante es igual alrealizado por una fuerza resultante es igual al
cambio en energía cinética que produce.cambio en energía cinética que produce.
2
02
12
2
1
mvmvTrabajo f −=
Ejemplo 1:Ejemplo 1: Un proyectil deUn proyectil de 20 g20 g golpea un bancogolpea un banco
de lodo y penetra una distancia dede lodo y penetra una distancia de 6 cm6 cm antes deantes de
detenerse. Encuentre la fuerza de frenadodetenerse. Encuentre la fuerza de frenado FF si lasi la
velocidad de entrada esvelocidad de entrada es 80 m/s80 m/s..
x
F = ?F = ?
80 m/s80 m/s 6 cm6 cm
Trabajo = ½Trabajo = ½ mvmvff
22
- ½- ½ mvmvoo
22
0
F x = -F x = - ½½ mvmvoo
22
FF (0.06 m) cos 180(0.06 m) cos 18000
= -= - ½½ (0.02 kg)(80 m/s)(0.02 kg)(80 m/s)22
FF (0.06 m)(-1) = -64 J(0.06 m)(-1) = -64 J F = 1067 NF = 1067 N
Trabajo par detener la bala = cambio en E.C. para la balaTrabajo par detener la bala = cambio en E.C. para la bala
PotenciaPotencia
La potencia se define como la tasa a la
que se realiza trabajo: (P = dW/dt )
10 kg
20 m
h
m
mg
t
4 s
F
La potencia de 1 W es trabajo realizado a
una tasa de 1 J/s
La potencia de 1 W es trabajo realizado a
una tasa de 1 J/s
2
(10kg)(9.8m/s )(20m)
4 s
mgr
P
t
= =
490J/s or 490 watts (W)P =
t
Fx
tiempo
Trabajo
Potencia ==
Unidades de potenciaUnidades de potencia
1 W = 1 J/s y 1 kW = 1000 W
Un watt (W) es trabajo realizado a la tasa
de un joule por segundo.
Un ft lb/s es una unidad (SUEU) más vieja.
Un caballo de fuerza es trabajo realizado a
la tasa de 550 ft lb/s. (1 hp = 550 ft lb/s)
Ejemplo de potenciaEjemplo de potencia
Potencia consumida: P = 2220 WPotencia consumida: P = 2220 W
¿Qué potencia se consume al levantar
1.6 m a un ladrón de 70 kg en 0.50 s?
Fh mgh
P
t t
= =
2
(70 kg)(9.8 m/s )(1.6 m)
0.50 s
P =
Ejemplo 4:Ejemplo 4: Un cheetah de 100 kg seUn cheetah de 100 kg se
mueve desde el reposo a 30 m/s en 4mueve desde el reposo a 30 m/s en 4
s. ¿Cuál es la potencia?s. ¿Cuál es la potencia?
2
02
12
2
1
mvmvTrabajo f −=
Reconozca que el trabajo es igualReconozca que el trabajo es igual
al cambio en energía cinética:al cambio en energía cinética:
2 21 1
2 2 (100 kg)(30 m/s)
4 s
fmv
P
t
= =
m = 100 kg
Potencia consumida: P = 1.22 kWPotencia consumida: P = 1.22 kW
t
Trabajo
P =
Potencia y velocidadPotencia y velocidad
Recuerde que la velocidad promedio o
constante es la distancia cubierta por
unidad de tiempo v = x/t.
P = = F
x
t
F x
t
Si la potencia varía con el tiempo, entonces
se necesita cálculo para integrar sobre el
tiempo. (Opcional)
Dado que P = dW/dt:
P Fv=
∫= dttPTrabajo )(
Ejemplo 5:Ejemplo 5: ¿Qué¿Qué
potencia se requiere parapotencia se requiere para
elevar un elevador de 900elevar un elevador de 900
kg con una rapidezkg con una rapidez
constante de 4 m/s?constante de 4 m/s?
v = 4 m/s
P = (900 kg)(9.8 m/s2
)(4 m/s)
P = F v = mg v
P = 35.3 kWP = 35.3 kW
Ejemplo 6:Ejemplo 6: ¿Que potencia realiza una¿Que potencia realiza una
podadora depodadora de 4 hp4 hp enen una horauna hora? El factor? El factor
de conversión es:de conversión es: 1 hp = 550 ft lb/s1 hp = 550 ft lb/s..
PtTrabajo
t
Trabajo
P == ;
Trabajo = 132,000 ft lbTrabajo = 132,000 ft lb
550ft lb/s
4hp 2200ft lb/s
1hp
 ⋅
= ⋅ 
 
Trabajo = (2200ft.
lb/s)(60 s)
El teorema trabajo-energía:El teorema trabajo-energía: El trabajoEl trabajo
realizado por una fuerza resultante es igual alrealizado por una fuerza resultante es igual al
cambio en energía cinética que produce.cambio en energía cinética que produce.
El teorema trabajo-energía:El teorema trabajo-energía: El trabajoEl trabajo
realizado por una fuerza resultante es igual alrealizado por una fuerza resultante es igual al
cambio en energía cinética que produce.cambio en energía cinética que produce.
ResumenResumen
Energía potencial:Energía potencial: Habilidad para realizarHabilidad para realizar
trabajo en virtud de la posición o condicióntrabajo en virtud de la posición o condición. U mgh=
Energía cinética:Energía cinética: Habilidad para realizarHabilidad para realizar
trabajo en virtud del movimiento. (Masa contrabajo en virtud del movimiento. (Masa con
velocidad)velocidad)
21
2K mv=
Trabajo = ½ mvf
2
- ½ mvo
2Trabajo = ½ mvf
2 - ½ mvo
2
Resumen (Cont.)Resumen (Cont.)
La potencia de 1 W es trabajo realizado a
una tasa de 1 J/s
La potencia de 1 W es trabajo realizado a
una tasa de 1 J/s
P= F v
La potencia se define como la tasa a
la que se realiza trabajo: P = dW/dt t
Trabajo
P =
t
rF
tiempo
Trabajo
Potencia
⋅
==
Tipos de energíaTipos de energía
• Mecánica:Mecánica:
– Cinética.Cinética.
– Potencial.Potencial.
• Térmica.Térmica.
• Eléctrica.Eléctrica.
• Nuclear.Nuclear.
• Química.Química.
• Luminosa.Luminosa.
Conservación de la energía yConservación de la energía y
rendimiento muscularrendimiento muscular
• Cuando un músculo es excitado porCuando un músculo es excitado por
algún estímulo, como bien lo podría seralgún estímulo, como bien lo podría ser
una corriente eléctrica, se contrae y poruna corriente eléctrica, se contrae y por
ende realiza un trabajo y libera energía.ende realiza un trabajo y libera energía.
Parte de esta energía es transformadaParte de esta energía es transformada
en trabajo mecánico, el cual se utilizaen trabajo mecánico, el cual se utiliza
para mover objetos o movernos, el restopara mover objetos o movernos, el resto
de la energía por lo general se disipa ende la energía por lo general se disipa en
forma de calor.forma de calor.
Según series de estudios muy
detalladas se ha evidenciado que
el calor liberado por los músculos
consta de varias fases de emisión.
Es de resaltar que existen fases en
las que el músculo libera una
cantidad de calor constante,
independientemente del trabajo
que se haya o se vaya a realizar.
Estas se dividen de la siguiente
manera:
1.En estado de reposo un músculo libera una cantidad constante
de calor debido a su metabolismo normal. Según los estudios, para
los humanos este valor es de alrededor 2 cal/kg de músculo.
2.Cuando un músculo es estimulado se produce una alta cantidad
de calor inicial, esta puede alcanzar valores de 3 cal/kg y se puede
separar en dos fracciones.
1.La primera fracción es emitida justo después de que se recibe
el estímulo e inmediatamente antes de que suceda alguna
contracción visible. Esta fracción tiene el nombre de calor de
activación y se denotará “A”. Surge del cambio de un estado a
otro del músculo (no-excitado a excitado) y es un valor
constante, independiente del trabajo o el acortamiento que hag
el tejido.
2.La segunda fracción, llamada calor de contracción, depende
del acortamiento del músculo mas no de la carga (a excepción
de cuando la carga causa que el músculo se alargue). Esa
relación se da por:
Donde a es una constante equivalente a 0.035
vatio-segundo/cm³ según los datos
experimentales.
x = contracción
De esta manera calor inicial total es:
Calor Inicial}= A + ax
3. Por último luego de la contracción, se libera
calor. Se le da el nombre de calor de
restitución. Proviene de la restauración de la
energía química al músculo.
Todos los músculos presentan estas tres fases
y por consiguiente las mismas reacciones
moleculares. Es gracias a estas fases que
podemos mantener nuestra temperatura
corporal en gran parte.
Los músculos al contraerse realizan una cantidad
de trabajo que es cuantitativamente igual a la
energía liberada. Se debe entonces tener en cuenta
la energía calorífica para así establecer la siguiente
ecuación:
E = A + ax + W!
W representa el trabajo efectuado, el trabajo
necesario para arrastrar un peso (P) una distancia
X1. Se tiene entonces:
W = Px1
Reemplazando en la fórmula anterior se obtiene:
E = A + ax + Px1
Según la definición de rendimiento η es la razón
entre el trabajo mecánico y la energía total. Se
deduce:
Por medio de observaciones se ha determinado que
el rendimiento de los músculos se encuentra entre
0.20 y 0.25 en condiciones normales. Lo que quiere
decir que hay una pérdida energética del 75% al
80%, debida a la disipación en calor. Esto hace a los
músculos comparables con un motor de combustión.
Esta comparación por supuesto sólo hace referencia
a la eficiencia. Mientras los motores de combustión
funcionan entre un diferencial de temperatura, la
naturaleza ha hallado en los músculos la manera de
transformar energía química directamente en
energía mecánica.

Weitere ähnliche Inhalte

Was ist angesagt?

Tippens fisica 7e_diapositivas_10
Tippens fisica 7e_diapositivas_10Tippens fisica 7e_diapositivas_10
Tippens fisica 7e_diapositivas_10
Robert
 
Tippens fisica 7e_diapositivas_09a
Tippens fisica 7e_diapositivas_09aTippens fisica 7e_diapositivas_09a
Tippens fisica 7e_diapositivas_09a
Robert
 
Tippens fisica 7e_diapositivas_15a
Tippens fisica 7e_diapositivas_15aTippens fisica 7e_diapositivas_15a
Tippens fisica 7e_diapositivas_15a
Robert
 
Tippens fisica 7e_diapositivas_09b
Tippens fisica 7e_diapositivas_09bTippens fisica 7e_diapositivas_09b
Tippens fisica 7e_diapositivas_09b
Robert
 
Campo+Electrico23
Campo+Electrico23Campo+Electrico23
Campo+Electrico23
efren1985
 
Tippens fisica 7e_diapositivas_07
Tippens fisica 7e_diapositivas_07Tippens fisica 7e_diapositivas_07
Tippens fisica 7e_diapositivas_07
Robert
 

Was ist angesagt? (20)

Trabajo, potencia y energia
Trabajo, potencia  y   energiaTrabajo, potencia  y   energia
Trabajo, potencia y energia
 
Conservacion de la cantidad de movimiento
Conservacion de la cantidad de movimientoConservacion de la cantidad de movimiento
Conservacion de la cantidad de movimiento
 
Tippens fisica 7e_diapositivas_10
Tippens fisica 7e_diapositivas_10Tippens fisica 7e_diapositivas_10
Tippens fisica 7e_diapositivas_10
 
Tippens fisica 7e_diapositivas_09a
Tippens fisica 7e_diapositivas_09aTippens fisica 7e_diapositivas_09a
Tippens fisica 7e_diapositivas_09a
 
Tippens fisica 7e_diapositivas_15a
Tippens fisica 7e_diapositivas_15aTippens fisica 7e_diapositivas_15a
Tippens fisica 7e_diapositivas_15a
 
Tippens fisica 7e_diapositivas_09b
Tippens fisica 7e_diapositivas_09bTippens fisica 7e_diapositivas_09b
Tippens fisica 7e_diapositivas_09b
 
Trabajo realizado por una fuerza
Trabajo realizado por una fuerzaTrabajo realizado por una fuerza
Trabajo realizado por una fuerza
 
Fisica trabajo y_energia
Fisica trabajo y_energiaFisica trabajo y_energia
Fisica trabajo y_energia
 
Campo electrico
Campo electricoCampo electrico
Campo electrico
 
Presentacion de trabajo, energia y potencia
Presentacion de trabajo, energia y potenciaPresentacion de trabajo, energia y potencia
Presentacion de trabajo, energia y potencia
 
Campo+Electrico23
Campo+Electrico23Campo+Electrico23
Campo+Electrico23
 
Fuerza centripeta
Fuerza centripetaFuerza centripeta
Fuerza centripeta
 
Tippens potencial eléctrico
Tippens potencial eléctricoTippens potencial eléctrico
Tippens potencial eléctrico
 
Energía rotacional y momentum angular
Energía rotacional y momentum angularEnergía rotacional y momentum angular
Energía rotacional y momentum angular
 
Tippens fisica 7e_diapositivas_07
Tippens fisica 7e_diapositivas_07Tippens fisica 7e_diapositivas_07
Tippens fisica 7e_diapositivas_07
 
Dinámica Rotacional
Dinámica RotacionalDinámica Rotacional
Dinámica Rotacional
 
Bermeo 5 b 3
Bermeo 5 b 3Bermeo 5 b 3
Bermeo 5 b 3
 
Fisica Trabajo
Fisica TrabajoFisica Trabajo
Fisica Trabajo
 
Movimiento circular uniforme
Movimiento circular uniformeMovimiento circular uniforme
Movimiento circular uniforme
 
Listado de problemas para solucion
Listado de problemas para solucionListado de problemas para solucion
Listado de problemas para solucion
 

Ähnlich wie Energia trabajo y potencia huguet

Trabajo, potencia y energia
Trabajo, potencia y energiaTrabajo, potencia y energia
Trabajo, potencia y energia
karolina Lema
 
Tippens_fisica_7e_diapositivas_08b.ppt
Tippens_fisica_7e_diapositivas_08b.pptTippens_fisica_7e_diapositivas_08b.ppt
Tippens_fisica_7e_diapositivas_08b.ppt
Cristian Carrasco
 
Trabajo potencia
Trabajo  potenciaTrabajo  potencia
Trabajo potencia
maria jose
 
12 ENERGÍA Y POTENCIA.pdf
12 ENERGÍA Y POTENCIA.pdf12 ENERGÍA Y POTENCIA.pdf
12 ENERGÍA Y POTENCIA.pdf
HanssEspino
 

Ähnlich wie Energia trabajo y potencia huguet (20)

6 velocidad metabolica
6 velocidad metabolica6 velocidad metabolica
6 velocidad metabolica
 
Trabajo y energia
Trabajo y energiaTrabajo y energia
Trabajo y energia
 
1. trabajo, potencia y energia
1. trabajo, potencia y energia1. trabajo, potencia y energia
1. trabajo, potencia y energia
 
Trabajo, potencia y energia
Trabajo, potencia y energiaTrabajo, potencia y energia
Trabajo, potencia y energia
 
Tippens_fisica_7e_diapositivas_08b.ppt
Tippens_fisica_7e_diapositivas_08b.pptTippens_fisica_7e_diapositivas_08b.ppt
Tippens_fisica_7e_diapositivas_08b.ppt
 
Trabajo y Energia.pdf
Trabajo y Energia.pdfTrabajo y Energia.pdf
Trabajo y Energia.pdf
 
ENERGÍA-TRABAJO-POTENCIA
ENERGÍA-TRABAJO-POTENCIAENERGÍA-TRABAJO-POTENCIA
ENERGÍA-TRABAJO-POTENCIA
 
Electrónica
ElectrónicaElectrónica
Electrónica
 
Trabajo mecanic1
Trabajo mecanic1Trabajo mecanic1
Trabajo mecanic1
 
Trabajo energia y potencia
Trabajo energia y potenciaTrabajo energia y potencia
Trabajo energia y potencia
 
Trabajo Potencia y Energía
Trabajo Potencia y EnergíaTrabajo Potencia y Energía
Trabajo Potencia y Energía
 
Trabajo potencia
Trabajo  potenciaTrabajo  potencia
Trabajo potencia
 
Energia
EnergiaEnergia
Energia
 
Fuerza y energia
Fuerza y energiaFuerza y energia
Fuerza y energia
 
Fuerza y energia
Fuerza y energiaFuerza y energia
Fuerza y energia
 
Fuerza y energia
Fuerza y energiaFuerza y energia
Fuerza y energia
 
Tema 5
Tema 5Tema 5
Tema 5
 
Energia (fisca)
Energia (fisca)Energia (fisca)
Energia (fisca)
 
POTENCIA Y ENERGÍA POTENCIAL ELASTICA
POTENCIA Y ENERGÍA POTENCIAL ELASTICAPOTENCIA Y ENERGÍA POTENCIAL ELASTICA
POTENCIA Y ENERGÍA POTENCIAL ELASTICA
 
12 ENERGÍA Y POTENCIA.pdf
12 ENERGÍA Y POTENCIA.pdf12 ENERGÍA Y POTENCIA.pdf
12 ENERGÍA Y POTENCIA.pdf
 

Mehr von María Isabel Arellano

Mehr von María Isabel Arellano (20)

Clase 6 abdomen parietal 1
Clase 6 abdomen parietal 1Clase 6 abdomen parietal 1
Clase 6 abdomen parietal 1
 
Clase 1 tórax parietal 2 da parte
Clase 1 tórax parietal 2 da parteClase 1 tórax parietal 2 da parte
Clase 1 tórax parietal 2 da parte
 
Clase 4 cardiovascular 2
Clase 4 cardiovascular 2Clase 4 cardiovascular 2
Clase 4 cardiovascular 2
 
Clase 5 mediastino
Clase 5 mediastinoClase 5 mediastino
Clase 5 mediastino
 
Clase 3. cardiovascular
Clase 3. cardiovascularClase 3. cardiovascular
Clase 3. cardiovascular
 
Hinari infosheet spanish 2014
Hinari infosheet spanish 2014Hinari infosheet spanish 2014
Hinari infosheet spanish 2014
 
Globalizacion y salud
Globalizacion y saludGlobalizacion y salud
Globalizacion y salud
 
Como citar fuentes
Como citar fuentesComo citar fuentes
Como citar fuentes
 
Analisis de Variables
Analisis de VariablesAnalisis de Variables
Analisis de Variables
 
2. ecología y biodiversidad (1)
2. ecología y biodiversidad (1)2. ecología y biodiversidad (1)
2. ecología y biodiversidad (1)
 
9 10. primer y segundo ciclo económico
9   10. primer y segundo ciclo económico9   10. primer y segundo ciclo económico
9 10. primer y segundo ciclo económico
 
7. gobernabilidad
7. gobernabilidad7. gobernabilidad
7. gobernabilidad
 
Fecundacion
FecundacionFecundacion
Fecundacion
 
Calentamiento Global
Calentamiento GlobalCalentamiento Global
Calentamiento Global
 
Clase 03 mesh (1)
Clase 03 mesh (1)Clase 03 mesh (1)
Clase 03 mesh (1)
 
Bcm 15-li-07-trafico-heli
Bcm 15-li-07-trafico-heliBcm 15-li-07-trafico-heli
Bcm 15-li-07-trafico-heli
 
Motilidad no-muscular
Motilidad no-muscularMotilidad no-muscular
Motilidad no-muscular
 
Clase 6 enfoque ecológico de la salud enfermedad por el ambiente
Clase 6 enfoque ecológico de la salud enfermedad por el ambienteClase 6 enfoque ecológico de la salud enfermedad por el ambiente
Clase 6 enfoque ecológico de la salud enfermedad por el ambiente
 
Gases i2
Gases i2Gases i2
Gases i2
 
Bcm 15-li-03-citoesqueleto-heli
Bcm 15-li-03-citoesqueleto-heliBcm 15-li-03-citoesqueleto-heli
Bcm 15-li-03-citoesqueleto-heli
 

Kürzlich hochgeladen

6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
jlorentemartos
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
amelia poma
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 

Kürzlich hochgeladen (20)

Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
PP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomasPP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomas
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
Desarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por ValoresDesarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por Valores
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
Linea del tiempo - Filosofos Cristianos.docx
Linea del tiempo - Filosofos Cristianos.docxLinea del tiempo - Filosofos Cristianos.docx
Linea del tiempo - Filosofos Cristianos.docx
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADOTIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
 

Energia trabajo y potencia huguet

  • 1. EnergíaEnergía EnergíaEnergía es cualquier cosa que se puedees cualquier cosa que se puede convertir en trabajo; es decir: cualquier cosaconvertir en trabajo; es decir: cualquier cosa que puede ejercer fuerza a través de unaque puede ejercer fuerza a través de una distanciadistancia. Energía es la capacidad para realizar trabajo.Energía es la capacidad para realizar trabajo.
  • 2. Energía potencialEnergía potencial Energía potencial:Energía potencial: Habilidad paraHabilidad para efectuar trabajo en virtud de la posiciónefectuar trabajo en virtud de la posición o condicióno condición. Un arco estiradoUn arco estiradoUn peso suspendidoUn peso suspendido
  • 3. Problema ejemplo:Problema ejemplo: ¿Cuál es la energía¿Cuál es la energía potencial de una persona de 50 kg en unpotencial de una persona de 50 kg en un rascacielos si está a 480 m sobre la calle?rascacielos si está a 480 m sobre la calle? Energía potencial gravitacionalEnergía potencial gravitacional ¿Cuál es la E.P. de una persona de 50 kg a una altura de 480 m? U = mgh = (50 kg)(9.8 m/s2 )(480 m) U = 235 kJU = 235 kJ
  • 4. Energía cinéticaEnergía cinética Energía cinética:Energía cinética: Habilidad para realizarHabilidad para realizar trabajo en virtud del movimiento. (Masatrabajo en virtud del movimiento. (Masa con velocidad)con velocidad) Un auto queUn auto que acelera o unacelera o un cohete espacialcohete espacial
  • 5. Ejemplos de energía cinéticaEjemplos de energía cinética 2 21 1 2 2 (1000 kg)(14.1 m/s)K mv= = ¿Cuál es la energía cinética de una bala¿Cuál es la energía cinética de una bala de 5 g que viaja a 200 m/s?de 5 g que viaja a 200 m/s? ¿Cuál es la energía cinética de un auto¿Cuál es la energía cinética de un auto de 1000 kg que viaja a 14.1 m/s?de 1000 kg que viaja a 14.1 m/s? 5 g5 g 200 m/s200 m/s K = 100 JK = 100 J K = 99.4 JK = 99.4 J 2 21 1 2 2 (0.005 kg)(200 m/s)K mv= =
  • 6. Trabajo y energía cinéticaTrabajo y energía cinética Una fuerza resultante cambia la velocidad deUna fuerza resultante cambia la velocidad de un objeto y realiza trabajo sobre dicho objeto.un objeto y realiza trabajo sobre dicho objeto. m vo m vfx F F 2 2 0 2 fv v a x − =Trabajo = Fx = (ma)x; 2 02 12 2 1 mvmvTrabajo f −=
  • 7. El teorema trabajo-energíaEl teorema trabajo-energía El trabajo esEl trabajo es igual al cambioigual al cambio enen½mv½mv22 Si se define laSi se define la energía cinéticaenergía cinética comocomo ½mv½mv22 entonces se puede establecer un principioentonces se puede establecer un principio físico muy importante:físico muy importante: El teorema trabajo-energía:El teorema trabajo-energía: El trabajoEl trabajo realizado por una fuerza resultante es igual alrealizado por una fuerza resultante es igual al cambio en energía cinética que produce.cambio en energía cinética que produce. 2 02 12 2 1 mvmvTrabajo f −=
  • 8. Ejemplo 1:Ejemplo 1: Un proyectil deUn proyectil de 20 g20 g golpea un bancogolpea un banco de lodo y penetra una distancia dede lodo y penetra una distancia de 6 cm6 cm antes deantes de detenerse. Encuentre la fuerza de frenadodetenerse. Encuentre la fuerza de frenado FF si lasi la velocidad de entrada esvelocidad de entrada es 80 m/s80 m/s.. x F = ?F = ? 80 m/s80 m/s 6 cm6 cm Trabajo = ½Trabajo = ½ mvmvff 22 - ½- ½ mvmvoo 22 0 F x = -F x = - ½½ mvmvoo 22 FF (0.06 m) cos 180(0.06 m) cos 18000 = -= - ½½ (0.02 kg)(80 m/s)(0.02 kg)(80 m/s)22 FF (0.06 m)(-1) = -64 J(0.06 m)(-1) = -64 J F = 1067 NF = 1067 N Trabajo par detener la bala = cambio en E.C. para la balaTrabajo par detener la bala = cambio en E.C. para la bala
  • 9. PotenciaPotencia La potencia se define como la tasa a la que se realiza trabajo: (P = dW/dt ) 10 kg 20 m h m mg t 4 s F La potencia de 1 W es trabajo realizado a una tasa de 1 J/s La potencia de 1 W es trabajo realizado a una tasa de 1 J/s 2 (10kg)(9.8m/s )(20m) 4 s mgr P t = = 490J/s or 490 watts (W)P = t Fx tiempo Trabajo Potencia ==
  • 10. Unidades de potenciaUnidades de potencia 1 W = 1 J/s y 1 kW = 1000 W Un watt (W) es trabajo realizado a la tasa de un joule por segundo. Un ft lb/s es una unidad (SUEU) más vieja. Un caballo de fuerza es trabajo realizado a la tasa de 550 ft lb/s. (1 hp = 550 ft lb/s)
  • 11. Ejemplo de potenciaEjemplo de potencia Potencia consumida: P = 2220 WPotencia consumida: P = 2220 W ¿Qué potencia se consume al levantar 1.6 m a un ladrón de 70 kg en 0.50 s? Fh mgh P t t = = 2 (70 kg)(9.8 m/s )(1.6 m) 0.50 s P =
  • 12. Ejemplo 4:Ejemplo 4: Un cheetah de 100 kg seUn cheetah de 100 kg se mueve desde el reposo a 30 m/s en 4mueve desde el reposo a 30 m/s en 4 s. ¿Cuál es la potencia?s. ¿Cuál es la potencia? 2 02 12 2 1 mvmvTrabajo f −= Reconozca que el trabajo es igualReconozca que el trabajo es igual al cambio en energía cinética:al cambio en energía cinética: 2 21 1 2 2 (100 kg)(30 m/s) 4 s fmv P t = = m = 100 kg Potencia consumida: P = 1.22 kWPotencia consumida: P = 1.22 kW t Trabajo P =
  • 13. Potencia y velocidadPotencia y velocidad Recuerde que la velocidad promedio o constante es la distancia cubierta por unidad de tiempo v = x/t. P = = F x t F x t Si la potencia varía con el tiempo, entonces se necesita cálculo para integrar sobre el tiempo. (Opcional) Dado que P = dW/dt: P Fv= ∫= dttPTrabajo )(
  • 14. Ejemplo 5:Ejemplo 5: ¿Qué¿Qué potencia se requiere parapotencia se requiere para elevar un elevador de 900elevar un elevador de 900 kg con una rapidezkg con una rapidez constante de 4 m/s?constante de 4 m/s? v = 4 m/s P = (900 kg)(9.8 m/s2 )(4 m/s) P = F v = mg v P = 35.3 kWP = 35.3 kW
  • 15. Ejemplo 6:Ejemplo 6: ¿Que potencia realiza una¿Que potencia realiza una podadora depodadora de 4 hp4 hp enen una horauna hora? El factor? El factor de conversión es:de conversión es: 1 hp = 550 ft lb/s1 hp = 550 ft lb/s.. PtTrabajo t Trabajo P == ; Trabajo = 132,000 ft lbTrabajo = 132,000 ft lb 550ft lb/s 4hp 2200ft lb/s 1hp  ⋅ = ⋅    Trabajo = (2200ft. lb/s)(60 s)
  • 16. El teorema trabajo-energía:El teorema trabajo-energía: El trabajoEl trabajo realizado por una fuerza resultante es igual alrealizado por una fuerza resultante es igual al cambio en energía cinética que produce.cambio en energía cinética que produce. El teorema trabajo-energía:El teorema trabajo-energía: El trabajoEl trabajo realizado por una fuerza resultante es igual alrealizado por una fuerza resultante es igual al cambio en energía cinética que produce.cambio en energía cinética que produce. ResumenResumen Energía potencial:Energía potencial: Habilidad para realizarHabilidad para realizar trabajo en virtud de la posición o condicióntrabajo en virtud de la posición o condición. U mgh= Energía cinética:Energía cinética: Habilidad para realizarHabilidad para realizar trabajo en virtud del movimiento. (Masa contrabajo en virtud del movimiento. (Masa con velocidad)velocidad) 21 2K mv= Trabajo = ½ mvf 2 - ½ mvo 2Trabajo = ½ mvf 2 - ½ mvo 2
  • 17. Resumen (Cont.)Resumen (Cont.) La potencia de 1 W es trabajo realizado a una tasa de 1 J/s La potencia de 1 W es trabajo realizado a una tasa de 1 J/s P= F v La potencia se define como la tasa a la que se realiza trabajo: P = dW/dt t Trabajo P = t rF tiempo Trabajo Potencia ⋅ ==
  • 18. Tipos de energíaTipos de energía • Mecánica:Mecánica: – Cinética.Cinética. – Potencial.Potencial. • Térmica.Térmica. • Eléctrica.Eléctrica. • Nuclear.Nuclear. • Química.Química. • Luminosa.Luminosa.
  • 19. Conservación de la energía yConservación de la energía y rendimiento muscularrendimiento muscular • Cuando un músculo es excitado porCuando un músculo es excitado por algún estímulo, como bien lo podría seralgún estímulo, como bien lo podría ser una corriente eléctrica, se contrae y poruna corriente eléctrica, se contrae y por ende realiza un trabajo y libera energía.ende realiza un trabajo y libera energía. Parte de esta energía es transformadaParte de esta energía es transformada en trabajo mecánico, el cual se utilizaen trabajo mecánico, el cual se utiliza para mover objetos o movernos, el restopara mover objetos o movernos, el resto de la energía por lo general se disipa ende la energía por lo general se disipa en forma de calor.forma de calor.
  • 20. Según series de estudios muy detalladas se ha evidenciado que el calor liberado por los músculos consta de varias fases de emisión. Es de resaltar que existen fases en las que el músculo libera una cantidad de calor constante, independientemente del trabajo que se haya o se vaya a realizar. Estas se dividen de la siguiente manera:
  • 21. 1.En estado de reposo un músculo libera una cantidad constante de calor debido a su metabolismo normal. Según los estudios, para los humanos este valor es de alrededor 2 cal/kg de músculo. 2.Cuando un músculo es estimulado se produce una alta cantidad de calor inicial, esta puede alcanzar valores de 3 cal/kg y se puede separar en dos fracciones. 1.La primera fracción es emitida justo después de que se recibe el estímulo e inmediatamente antes de que suceda alguna contracción visible. Esta fracción tiene el nombre de calor de activación y se denotará “A”. Surge del cambio de un estado a otro del músculo (no-excitado a excitado) y es un valor constante, independiente del trabajo o el acortamiento que hag el tejido. 2.La segunda fracción, llamada calor de contracción, depende del acortamiento del músculo mas no de la carga (a excepción de cuando la carga causa que el músculo se alargue). Esa relación se da por:
  • 22. Donde a es una constante equivalente a 0.035 vatio-segundo/cm³ según los datos experimentales. x = contracción De esta manera calor inicial total es: Calor Inicial}= A + ax
  • 23. 3. Por último luego de la contracción, se libera calor. Se le da el nombre de calor de restitución. Proviene de la restauración de la energía química al músculo. Todos los músculos presentan estas tres fases y por consiguiente las mismas reacciones moleculares. Es gracias a estas fases que podemos mantener nuestra temperatura corporal en gran parte.
  • 24. Los músculos al contraerse realizan una cantidad de trabajo que es cuantitativamente igual a la energía liberada. Se debe entonces tener en cuenta la energía calorífica para así establecer la siguiente ecuación: E = A + ax + W! W representa el trabajo efectuado, el trabajo necesario para arrastrar un peso (P) una distancia X1. Se tiene entonces: W = Px1
  • 25. Reemplazando en la fórmula anterior se obtiene: E = A + ax + Px1 Según la definición de rendimiento η es la razón entre el trabajo mecánico y la energía total. Se deduce:
  • 26. Por medio de observaciones se ha determinado que el rendimiento de los músculos se encuentra entre 0.20 y 0.25 en condiciones normales. Lo que quiere decir que hay una pérdida energética del 75% al 80%, debida a la disipación en calor. Esto hace a los músculos comparables con un motor de combustión. Esta comparación por supuesto sólo hace referencia a la eficiencia. Mientras los motores de combustión funcionan entre un diferencial de temperatura, la naturaleza ha hallado en los músculos la manera de transformar energía química directamente en energía mecánica.