SlideShare ist ein Scribd-Unternehmen logo
1 von 39
10 DE SETIEMBRE DEL 2018 ENVASES Y
EMBALAJE
COLORACIÓN DEL VIDRIO
Manuel Gustavo Melgarejo Valladares
UNIVERSIDAD FEDERICO VILLARREAL
CONTROL DE CALIODAD 1
TENDENCIAS DE CONTROL DE CALIDAD
Melgarejo Valladares Gustavo
Septiembre 2018
Universidad Nacional Federico Villarreal
Facultad de Ingeniería Industrial y Sistemas
Escuela Profesional de Ingeniería Agroindustrial
CONTROL DE CALIODAD 2
INDICE
INDICE ...................................................................................................................................... 2
INTRODUCCIÓN ..................................................................................................................... 4
CAPLITULO 1........................................................................................................................... 7
1.1 OBJETIVO....................................................................................................................... 7
CAPITULO 2............................................................................................................................. 8
FUNDAMENTO TEORICO.................................................................................................. 8
2.1 PARAMETROS DE CALIDAD Y TEST ................................................................... 8
2.2 ESPECIFICASIONES TÉCNICAS DE LOS ENVASES ......................................... 14
CAPITULO 3........................................................................................................................... 19
TENDENCIAS DE CONTROL DE CALIDAD ................................................................. 19
3.1. DIMENSIONES Y FORMAS .................................................................................. 19
3.2 ESPESORES .............................................................................................................. 20
3.3 PESOS........................................................................................................................ 21
3.4 CAPACIDAD............................................................................................................. 23
3.5 TENSIONES PERMANENTES ................................................................................ 25
3.6 DEFECTOS ESTETICOS.......................................................................................... 27
3.7 ALTURA INTERNA ................................................................................................. 28
3.8 DECORACIÓN.......................................................................................................... 29
3.9 RESISTENCIA AL CHOQUE TÉRMICO ............................................................... 29
3.10 RESISTENCIA A LA COMPRESIÓN AXIAL...................................................... 30
3.11 RESISTENCIA AL IMPACTO ............................................................................... 31
CONTROL DE CALIODAD 3
3.12 TRANSMISIÓN DE LUZ ....................................................................................... 32
3.13 RESISTENCIA HIDROLÍTICA.............................................................................. 33
3.14 COLOR .................................................................................................................... 36
CAPITULO 4........................................................................................................................... 37
CONCLUSIONES Y RECOMENDACIONES................................................................... 37
4.1 CONCLUSIONES ..................................................................................................... 37
4.2 RECOMENDACIONES ............................................................................................ 37
CAPITULO 5........................................................................................................................... 38
Bibliografía............................................................................................................................... 38
CONTROL DE CALIODAD 4
INTRODUCCIÓN
Hasta los años setenta, la calidad de los envases de vidrio se garantizaba a través de una
selección exhaustiva de los artículos realizada por equipos humanos. El autocontrol y el control
del proceso estaban poco desarrollados. Todos los lotes eran sometidos a un control estadístico
de recepción según las normas Military Standard 105 D.
En la década de los 70 se implantan la selección y acondicionamiento automático de los
envases, desarrollándose máquinas cada vez más sofisticadas. Ello supuso una reducción muy
importante de efectivos.
En la década de los años ochenta se implanta en los centros de producción planes específicos
de autocontrol, dirigidos a aumentar la eficacia de los sistemas de fabricación y selección de los
artículos. Durante este largo período los sistemas de calidad estaban dirigidos al aseguramiento
de las especificaciones del producto.
En 1991 la Dirección General de la empresa decide implantar la gestión total de la calidad
debido a las siguientes causas:
-Fuerte competitividad del sector en una situación de sobrecapacidad.
-Las posibilidades de una fuerte reducción de costes y plantilla se agotarían en un período
corto de años.
-Nueva cultura de gestión de la empresa.
-Primacía del sector en obtener la certificación según normas ISO
-Aumento de la participación de las personas en las tareas de calidad.
Desde el punto de vista de la empresa se considera que el cliente es prioritario porque es la
base del negocio y sin él no hay continuidad de la empresa. Los servicios y productos de calidad
CONTROL DE CALIODAD 5
deben lograr la satisfacción del cliente porque cumplan los requisitos esperados. El beneficio se
obtiene a través de la mejora continua de los procesos, lo que lleva implícito una reducción de
costos. La mejora continua se consigue mediante el liderazgo del equipo directivo y la
participación de todos los empleados, y requiere una formación constante. (vidrio, 1995)
En este documento se han trabajado fichas de especificaciones técnicas de distintos tipos de
envases, de forma que permita a las empresas del sector adquirir y disponer de conocimientos
sobre los aspectos más relevantes de un envase a lo largo de su vida, así como los parámetros de
calidad y test que se utilizan para controlarlos. Las especificaciones técnicas de un envase son el
conjunto de parámetros representados en unidades físicas controlables y medibles, las cuales
permiten validar una calidad y seguridad, así cómo hacer un uso del material en las correctas
condiciones y/o poder comparar entre los distintos materiales. Como ejemplo de estos
parámetros se podrían nombrar la resistencia a tracción de un film plástico, la transparencia, sus
propiedades barreras a gases, la resistencia a compresión de un envase de cartón, entre otros. La
empresa envasadora deberá conocer las propiedades físico-químicas de su producto y sus
requerimientos de conservación, así como las condiciones a las que se Resumen Ejecutivo Con
esta guía se pretende ofrecer un documento de ayuda a todas las empresas relacionadas con el
sector del envasado, de manera que sirva como elemento de conexión entre los fabricantes de
envases y/o las empresas envasadoras. 1 expondrá el envase durante el envasado,
almacenamiento, transporte y condiciones de uso, obteniendo de esta forma el conjunto de
requerimientos totales del envase. Dichos requerimientos deberán ser consultados con su
proveedor de envase para obtener aquel envase que los satisfaga. Para facilitar la comprensión se
ha añadido casos específicos en los que se coordina la información del fabricante de envases con
las empresas usuarias y los requerimientos del envase. La colaboración entre los distintos agentes
CONTROL DE CALIODAD 6
involucrados debe resultar en una mejor coordinación de esfuerzos y adaptación de los
requerimientos en todas las etapas que afronta un envase. De esta manera, se consiguen
soluciones más eficientes y respetuosas con el medio ambiente. Este texto responde a la
experiencia de AINIA Centro Tecnológico y AIMPLAS Instituto Tecnológico del Plástico, con
el objeto de presentar una guía lo más completa posible. Su experiencia les ha permitido dar
soluciones adecuadas del envasado al sector de alimentación y afines. (Plástico, 2016)
CONTROL DE CALIODAD 7
CAPLITULO 1
1.1 OBJETIVO
El objetivo del proyecto, es el estudio de la fabricación de envases de utilización en la
industria alimentaria, centrándonos en la obtención de films complejos mediante el proceso de
coextrusion. Analizaremos los distintos tipos de complejos presentes en el mercado y su
clasificación, en función de las características requeridas para el envase de determinados
alimentos. Se realizará un estudio minucioso del proceso de fabricación de dichos films teniendo
en cuenta los distintos factores que afectan a dicha producción, como su impacto ambiental, su
coste económico, y su precio de mercado.
CONTROL DE CALIODAD 8
CAPITULO 2
FUNDAMENTO TEORICO
2.1 PARAMETROS DE CALIDAD Y TEST
2.1.1 QUÉ PARAMETROS SE SUELEN MEDIR
A continuación se enumeran, de manera genérica, los principales parámetros de calidad y tests
con los que se suelen medir los envases, sin considerar el tipo de envase o material.
Todas las propiedades relacionadas en este apartado pueden analizarse sobre una probeta de
material con el objeto de conocer las características del material, o bien, sobre un envase o una
muestra de un envase ya fabricado, de manera que permite conocer cómo influye el diseño o la
condiciones de procesado del envase sobre estas propiedades. (Plástico, 2016)
2.1.1.1 PROPIEDADES MECÁNICAS
Determinan el comportamiento de la muestra a ensayar cuando se somete a un esfuerzo
mecánico, por lo que aporta información acerca de la resistencia frente a esfuerzos mecánicos.
Los principales ensayos de laboratorio que permiten determinar las propiedades mecánicas
suelen ser:
 Resistencia a la tracción (alargamiento de rotura): determina lo resistente que es el
material al ser sometido a un esfuerzo de estirado. (Plástico, 2016)
 Compresión: indica el comportamiento de un material o envase cuando está sometido
a una carga de compresión a una velocidad uniforme y baja en su eje longitudinal.
(Plástico, 2016)
CONTROL DE CALIODAD 9
 Resistencia a la flexión: designa la capacidad del material de soportar fuerzas
aplicadas perpendicularmente a su eje longitudinal. (Plástico, 2016)
 Resistencia a la punción: designa la resistencia de una muestra, en forma de lámina o
film, a ser perforado por un punzón. (Plástico, 2016)
 Rasgado: indica la fuerza necesaria para propagar el rasgado de un corte.
 Coeficiente de rozamiento: es la resistencia que encuentra un material cuando desliza
sobre otro material. (Plástico, 2016)
 Dureza: es la resistencia que opone un material a ser rayado o penetrado.
 Separación por pelado: determina la fuerza de unión de los materiales plásticos.
(Plástico, 2016)
2.1.1.2 PROPIEDADES BARRERA
Determina la capacidad de un material para impedir el paso de un determinado gas a través
del mismo. Los principales ensayos de laboratorio que permiten determinar las propiedades
barreras suelen ser:
 Determinación de la velocidad de transmisión de gases (O2, CO2, N2, etc.): designa la
cantidad de una sustancia (en masa o volumen) que atraviesa un material por una
unidad de superficie y por unidad de tiempo y por gradiente de presión (cm3/
(m2·día·atm)). (Plástico, 2016)
 Determinación de la velocidad de transmisión de vapor de agua: designa la cantidad de
una sustancia (en masa o volumen) que atraviesa un material por una unidad superficie
y por unidad de tiempo y por gradiente de presión (cm3/ (m2·día·atm)). (Plástico,
2016)
CONTROL DE CALIODAD
10
2.1.1.3 PROPIEDADES DE ABSORCIÓN DE HUMEDAD
 Ensayo Cobb: mide la cantidad de agua absorbida por una superficie de cartón papel
durante un tiempo. (Plástico, 2016)
2.1.1.4 PROPIEDADES ÓPTICAS
Determinan la capacidad de la muestra de material de interaccionar con la luz. Los principales
ensayos de laboratorio que permiten determinar las propiedades ópticas suelen ser:
 Brillo: está asociado a la capacidad de una superficie de reflejar más luz en unas
direcciones que en otras. Se mide la cantidad de brillo del rayo reflejado. (Plástico,
2016)
 Turbidez: designa la dispersión de la luz producida por la acumulación de partículas
diminutas del material o por defectos superficiales. (Plástico, 2016)
2.1.1.5 PROPIEDADES TERMICAS
Determinan el comportamiento de un material frente a solicitudes térmicas, bien en
calentamiento o bien en enfriamiento, congelado, etc. Los principales ensayos de laboratorio que
permiten determinar las propiedades térmicas suelen ser:
 Temperatura de fusión: designa la temperatura a la que el material pasa de estado
sólido al líquido. (Plástico, 2016)
 Temperatura de reblandecimiento: es la temperatura a partir de la cual un material
plástico pasa de un estado rígido a gomoso y blando. (Plástico, 2016)
CONTROL DE CALIODAD
11
2.1.1.6 IINTERACCIÓN ENVASE-PRODUCTO
Determina la capacidad de un material de interactuar con el producto o alimento con el cual se
encuentra en contacto directo. Los principales ensayos de laboratorio que permiten determinar la
interacción entre un envase y el producto contenido suelen ser:
 Ensayo de migración global: se entiende como migración global a la cantidad total de
sustancias que se transfieren del envase al alimento, independientemente de cuál sea la
naturaleza de los migrantes, por lo que no da ninguna información acerca de toxicidad
de estas sustancias. (Plástico, 2016)
 Ensayo de migración específica: designa la cantidad de una sustancia definida que se
transfiere del envase al alimento y que generalmente tiene un interés toxicológico.
(Plástico, 2016)
 Test organoléptico: Valoración cualitativa que se realiza sobre un producto basado en
la valoración de los sentidos. (Plástico, 2016)
Fuente: Del libro “La correcta especificación de los envases”.
Figura: 1 Interacciones entorno-envase-producto.
CONTROL DE CALIODAD
12
2.1.1.7 OTRAS PROPIEDADES FÍSICAS
En función de la naturaleza o presentación del material o del envase, existen otras propiedades
físicas que pueden resultar de interés conocer. Algunas de estas propiedades son:
 Densidad: es la relación entre la masa por unidad de volumen.
 Gramaje: designa la cantidad de masa del material que hay por unidad de superficie.
Unidad, g/m2. (Plástico, 2016)
 Espesor: designa el espesor de lámina. Unidad, m. (Plástico, 2016)
 Tensión superficial: resistencia que presenta un líquido a deformarse o romperse. Para
asegurar la adhesión de un líquido a un material, la tensión superficial del material
tiene que ser mayor que la del líquido.
2.1.2 CÓMO LOS PUEDE COTEJAR EL ENVASADOR
Si la empresa envasadora desea contrastar las características especificadas en la ficha técnica
del envase, existen parámetros cuya medición es inmediata y es susceptible de ser medida en la
propia instalación de la envasadora si dispone de los equipos necesarios, por ejemplo, espesor,
brillo, entre otros. Del mismo modo se pueden realizar estudios de comportamiento real para la
aplicación concreta y evaluar propiedades mecánicas, según la resistencia del envase, por
ejemplo las propiedades de soldadura según envasado real en máquina.
Para otros parámetros, quizá se requiera de laboratorios externos para su evaluación. En tal
caso, es necesario contactar con expertos para seguir recomendaciones sobre las propiedades más
críticas de control. (Plástico, 2016)
Algunos equipos que puede incorporar el envasador son:
 Máquina de ensayo de tracción y compresión axial, para comprobar la resistencia del
envase según nivel de llenado y presiones internas aplicadas.
CONTROL DE CALIODAD
13
 Medidor de espesores por efecto Hall, permite obtener de forma no destructiva un
perfil de espesores de una muestra de material no ferroso.
 Equipos de medición de la permeabilidad al oxígeno, tanto para la medición en films
como en envases.
Figura: 2 ejemplo de un ensayo de compresión axial sobre una botella.
Figura: 3 Ejemplo de un medidor de espesores, por
efecto Hall.
Figura: 4 Ensayos de transmisión al oxígeno en envases.
Fuente: Del libro “La correcta
especificación de los Fuente: envases”.
Fuente: Del libro “La correcta especificación de
los envases”.
Fuente: Del libro “La correcta especificación de
los envases”.
CONTROL DE CALIODAD
14
2.2 ESPECIFICASIONES TÉCNICAS DE LOS ENVASES
2.2.1 ESPECCIFICACIONES DE ENVASES DE VIDRIO
Fuente: Del libro “La correcta especificación de los envases”.
El vidrio es un producto mineral obtenido de una mezcla fundida a altas temperaturas de
materiales inorgánicos que, al enfriarse de manera drástica, solidifica y da como resultado un
sólido de composición variable, en función de las materias primas utilizadas y el tratamiento
térmico aplicado. (Plástico, 2016)
El vidrio utilizado en la fabricación de envases es de tipo sodio-cálcico, donde las
características diferenciadoras de estos envases son: el color, el tipo de tapón-tapa aplicable (del
que dependerá el tipo de boca a utilizar).
Una de las ventajas que poseen los envases de vidrio es la conservación del aroma del
producto contenido, sobre todo en almacenamientos prolongados ya que el vidrio es
impermeable a los gases, vapores y líquidos. Por otro lado, es químicamente inerte frente a
líquidos y productos alimentarios no planteando problemas de compatibilidad.
Figura: 5 Distintas formas y colores de botellas
CONTROL DE CALIODAD
15
Otra característica es que es un material higiénico, que posee fácil limpieza y es esterilizable,
así como inodoro, no transmite sabores ni los modifica. Puede colorearse y aportar, así, una
protección frente a los rayos ultravioletas que pudieran dañar al contenido.
Los envases de vidrio se pueden fabricar de primera elaboración o de fabricación directa y de
segunda fabricación, lo que significa, que se fabrican a partir de una preforma de vidrio especial
elaborada por estiramiento.
Los tres tipos de envases de vidrio más utilizados son:
 Botellas de vidrio de cuello estrecho (diámetro menor de 35mm), para productos
líquidos.
 Tarros de vidrio de cuello ancho (diámetro mayor de 35mm), generalmente para
alimentos sólidos, mermeladas, compotas.
 Frascos para productos farmacéuticos, cosméticos, químicos y de perfumería.
Fuente: Del libro “La correcta especificación de los envases”.
Figura: 6 Esquema de botella y tarro industrial de vidrio.
CONTROL DE CALIODAD
16
En las fichas técnicas deben de constar como mínimo:
 Tipo de boca o cierre.
 Diámetro de interior y exterior de la boca. Unidad, mm.
 Altura máxima. Unidad, mm.
 Capacidad. Unidad, ml.
 Peso. Unidad, g.
 Color.
Respecto a las especificaciones a considerar, se puede indicar como más comunes nivel de
usuario las siguientes:
 Determinación de la resistencia a la carga vertical mediante aplicación de presión
vertical con una prensa. Sirve para evaluar la carga máxima que puede soportar un
envase durante su apilado y transporte. Unidad, kN.
Norma aplicable: UNE-EN ISO 8113.
 Determinación de la resistencia a la presión interna mediante la aplicación de presión
al agua contenida en el envase a ensayar, durante un tiempo establecido o hasta la
rotura del envase. Este parámetro es útil en aquellos envases expuestos a una presión
interna alta, como son bebidas carbonatadas o líquidos que aumenten su volumen en
función de la temperatura, como por ejemplo los aceites. Unidad, bar. Norma
aplicable: UNE-EN ISO 7458.
 Determinación de la resistencia al choque térmico mediante inmersión bajo
condiciones específicas de los envases en baños de agua fría y caliente. Sirve para
evaluar la aptitud a procesos de envasado donde se somete el envase a un cambio
brusco de temperatura. Norma aplicable: UNE-EN ISO 7459. (Plástico, 2016)
CONTROL DE CALIODAD
17
Fuente: Del libro “La correcta especificación de los envases”.
En función del tipo de envase, existen unas normas y recomendaciones de carácter más
específico como son:
 Las normas y reglamentos que controlan el volumen de producto envasado. Como
ejemplo ilustrativo, a nivel nacional se encuentra:
 Real Decreto 1798/2003, de 26 de diciembre, por el que se regulan las gamas de
cantidades nominales y de capacidades nominales para determinados productos
envasados. (BOE nº 9, 10-Ene-2004). En él se encuentra, entre otros la tabla resumen
para los volúmenes nominales admitidos (en litros) según el producto líquido que se
trate.
 Aunque en el mercado se encuentra una gran cantidad de modelos con distintas
dimensiones, existen normativas que especifican la relación existente entre las
características dimensionales y de fabricación de un recipiente normalmente utilizado
para el consumo humano.
Así, en Europa existe la norma UNE 126102:2004, que establece a modo general una
tabla en la que relacionan los principales aspectos de la botella, como son, su capacidad, peso y
dimensiones principales y tolerancias así como tipo de producto a contener. (Plástico, 2016)
Figura: 7 Fragilidad del vidrio.
CONTROL DE CALIODAD
18
Otras reglas que afectan a los envases de vidrio son:
 Las normas y reglamentos que regulan el envasado de sustancias peligrosas.
 Aquellas relativas a los requerimientos de embalaje, expedición y transporte.
 Las normas relativas a los tipos de cierre, ya que si bien el vidrio es alta barrera a
gases, el cierre es un punto débil de dicha barrera.
Fuente: Del libro “La correcta especificación de los envases”.
Figura: 8 Cierre y permeación al oxígeno.
CONTROL DE CALIODAD
19
CAPITULO 3
TENDENCIAS DE CONTROL DE CALIDAD
3.1. DIMENSIONES Y FORMAS
Las dimensiones que poseerán los envases de vidrio dependerán de las especificaciones de la
empresa y el rubro, y estas se rigen a su vez según la norma técnica de su país en el cual se usen.
3.1.1 INSTRUMENTO DE MEDICIÓN
PIE DE REY
Figura: 9 botellas de vidrio de uso corriente
Fuente: 1 Guía técnica ainia de envase y embalaje.
Figura: 10 Pie de rey digital
Fuente: www.jorbasola.com
CONTROL DE CALIODAD
20
3.2 ESPESORES
Igualmente que en las dimensiones estas están determinadas por las especificaciones del rubro
y la empresa y la norma técnica vigente del país.
3.2.1 INSTRUMENTO DE MEDICIÓN
MEDIDOR MAGMNETICO DE ESPESOR
Figura: 11 Espesor de un vidrio.
Fuente: www.caracteristicas.com
Figura: 12 Medidor magnético de espesor.
Fuente: www.boustens.com
CONTROL DE CALIODAD
21
3.3 PESOS
El peso del vidrio de la fabricación del envase está determinado por la forma de la botella
(redonda o perfilada), de la capacidad y de la cantidad total de piezas a producir.
En efecto, una botella de forma particular normalmente requiere un peso de vidrio mayor,
debido a la complejidad de la distribución homogénea del vidrio; obviamente una botella de 750
ml requiere un peso de vidrio superior que una de 250 ml, dado el mayor desarrollo de la
superficie.
La cantidad a producir puede influir sobre el proyecto de la serie de moldes (por ejemplo una
cantidad muy alta comporta un mayor coste de equipos en términos absolutos, pero dado que
permiten un proyecto de los moldes más sofisticado, puede comportar una reducción del peso del
vidrio).
A continuación se muestra una tabla indicativa de pesos de vidrio en función de la capacidad
y la forma del artículo.
Debemos subrayar que el mayor peso de vidrio de los artículos perfilados con respecto a los
redondos sirve para dar mayor resistencia en los puntos críticos (por ejemplo, aristas en el fondo,
hombros planos, etc.). (Naviglio, 2015)
CONTROL DE CALIODAD
22
Fuente: www.elcorteingles.esFuente: www.antzara.com
Figura: 15 Botella de vino tinto,
Bonarda Argentina.
Figura: 14 botella de champagne
Cordón Rouge.
Fuente: Libro “transparencias 2.0 técnicas formas materiales”.
Figura: 13 tabla indicativa de pesos de vidrio en función de la capacidad y la forma del artículo.
CONTROL DE CALIODAD
23
3.3.1 INSTRUMENTO DE MEDICIÓN
BALANZA DIGITAL DE ALTA PRESICIÓN
3.4 CAPACIDAD
La capacidad de las botellas se distingue en capacidad útil y capacidad ras de la boca
 La capacidad útil es la capacidad comercial requerida por el cliente y mide la cantidad
de producto que se introducirá.
 La capacidad a ras de la boca es la capacidad técnica total de la botella. Se obtiene
añadiendo a la capacidad útil el espacio de cabeza, desde el nivel de llenado hasta el
ras de la boca (en promedio, un 3% d la capacidad útil).
Por nivel de llenado se entiende la cota sobre el cuello de la botella a la que llegara el
líquido, una vez llenado el envase. Entre la cota y la boca de la botella se encuentra el
espacio de la cabeza y el espacio para el eventual corcho. El espacio de cabeza varía en
función del tipo de cierre, del proceso de llenado y de la naturaleza del producto.
(Naviglio, 2015)
Figura: 16 Balanza digital.
Fuente: www.solostocks.com
CONTROL DE CALIODAD
24
3.4.1 INSTRUMENTO DE MEDICIÓN
CALIBRE DE NIVEL DE LLENADO
Fuente: Heuft.com
Figura: 17 Detección del nivel de llenado.
Figura: 18 FGH - Calibre de nivel
de llenado.
Fuente: 2www.at2e-usa.com.
CONTROL DE CALIODAD
25
3.5 TENSIONES PERMANENTES
El origen de las tensiones permanentes en una muestra de vidrio ya fría, es la deformación
viscosa que tiene lugar cuando el vidrio está aún caliente (zona visco elástica), debido a las
tensiones temporales creadas, a su vez, por la existencia de un gradiente de temperaturas.
En pocas palabras, el proceso de creación de las tensiones permanentes transcurre, según
indica el esquema de la figura 18, en la forma siguiente:
El vidrio caliente al enfriarse, sigue una ley que origina un gradiente de temperaturas en el
espesor. El gradiente de temperaturas, a su vez, da lugar a una distribución de tensiones
temporales por efecto del diferente momento de dilatación de capas. El vidrio, que está en estado
visco elástico, bajo la acción de las tensiones temporales, se deforma, produciendo una relajación
Figura: 19 Proceso de creación de tensiones permanentes.
Fuente: Libro “Estudio del recorrido industrial del vidrio”.
CONTROL DE CALIODAD
26
parcial o total de estas tensiones. Al entrar el vidrio en la zona elástica, en la que es
completamente rígido, quedan «congeladas» la forma y dimensiones de cada estrato. Por tanto,
las capas para lograr el equilibrio (igual longitud) a temperatura ambiente, siguiendo la ley de
enfriamiento, se han tenido que contraer como si tuvieran coeficiente de dilatación distinto, a
costa de generar una distribución de tensiones que son permanentes. (Naviglio, 2015)
3.5.1 INSTRUMENTO DE MEDICIÓN
POR EMISION DE RAYOS X
Las variables implicadas en la reflexión están relacionadas por la ley de Bragg.
2dhkl senθ = nλ
Con este método se miden deformaciones elásticas y no es precisa una preparación previa de
la muestra. La técnica de rayos X permite medir tensiones residuales solo en la superficie del
Fuente: Libro “Alivio de tensiones residuales”.
Figura: 20 Método de difracción de rayos X.
CONTROL DE CALIODAD
27
material y está especialmente indicada para variaciones muy rápidas de las mismas, dado que el
área de medida es prácticamente puntual.
3.6 DEFECTOS ESTETICOS
Como burbujas (causadas por una mala inyección de la carga) piedras o fisuras, que
disminuyen la resistencia durante el embalaje o transporte, por lo general estos defectos son
causados en la misma planta de fabricación ya se por los materiales estén con impurezas.
(Naviglio, 2015)
Figura: 21 Botellas con féculas de impureza.
Fuente: www.taringa.net
CONTROL DE CALIODAD
28
3.6.1 INSTRUMENTO DE MEDICIÓN
LSS – Visores (Light System Small)
3.7 ALTURA INTERNA
Es la altura medida desde la base interna de la botella hasta la superficie de sellado.
3.7.1 INSTRUMENTO DE MEDICIÓN
INDICADOR DIGITAL DE ALTURA
Fuente: ate2e.com
Figura: 22 Aparato de visualización
simple para partículas en botellas de vidrio.
Figura: 23 HG - 1 Indicador digital
de altura.
Fuente: ate2e.com
CONTROL DE CALIODAD
29
3.8 DECORACIÓN
Por decoración del vidrio se entiende sustancialmente modificar el aspecto del envase
mediante una segunda elaboración.
Hay diferentes modos de decorar un vidrio. Para las botellas y tarros, los más comunes son la
serigrafía, el arenado, el satinado con ácido y la pintura. (Naviglio, 2015)
3.9 RESISTENCIA AL CHOQUE TÉRMICO
La resistencia al llamado choque térmico se evalúa en conformidad con los reglamentos
internacionales. (Naviglio, 2015)
3.9.1 INSTRUMENTO DE MEDICIÓN
CAMARAS DE CHOQUE TÉRMICO
Está compuesto por dos cubas que contiene agua a temperatura conocida y constante: una
temperatura ambiente (aproximadamente 20o C) y otra a una temperatura mayor
(aproximadamente 65o C).
Los envases se sumergen durante 15 minutos en el agua a temperatura más elevada y, a
continuación, en el agua a temperatura ambiente durante 2 minutos. Según las normas ASTM, es
aceptable una resistencia a 40o C o 113o F. (Naviglio, 2015)
CONTROL DE CALIODAD
30
3.10 RESISTENCIA A LA COMPRESIÓN AXIAL
La carga axial se determina mediante el vertical Load Tester, ejerciendo fuerza creciente en el
plano de la boca del envase hasta su rotura.
Los límites de resistencia a la carga son establecidos por Bruni Glass en función del envase y
se verifican según el método previsto por la norma UNI 9035 (ISO 8113).
El incumplimiento de estos límites constituye un defecto mayor. (Naviglio, 2015)
Fuente: 3www.grupoalava.com
Figura: 24 Cámara de choque térmico
CONTROL DE CALIODAD
31
3.10.1 INSTRUMENTO DE MEDICIÓN
BTLT- 1 (Bottle Top Load Tester)
3.11 RESISTENCIA AL IMPACTO
La medición de la resistencia a los golpes (inch/pounds) se realiza mediante la detección de la
rotura del envase provocada por el impacto con un martillo a masa conocida, situado a una altura
preestablecida, que realiza un movimiento pendular. La medición se puede realizar a la altura del
hombro o de la base del recipiente.
Los límites de resistencia a la prueba de impacto son definidos por Bruni Glass en función del
envase y se verifican según el método previsto por la normativa UNI 9302.
Figura: 25 Probador de resistencia a la fuerza axial para botellas de vidrio.
Fuente: at2e.com
CONTROL DE CALIODAD
32
El incumplimiento de estos límites constituye un defecto mayor.
3.11.1 INSTRUMENTO DE MEDICIÓN
COMPROBADOR DE IMPACTO
3.12 TRANSMISIÓN DE LUZ
Varía en función de la longitud de la onda del color y del espesor del vidrio; a continuación se
muestran los valores indicativos de poder de filtración (Naviglio, 2015):
Figura: 26 Impact Tester
Fuente: www.agrintl.com
CONTROL DE CALIODAD
33
3.12.1 INSTRUMENTO DE MEDICIÓN
DOSÍMETRO DE PELÍCULA
3.13 RESISTENCIA HIDROLÍTICA
La estabilidad química de los envases de vidrio para uso farmacéutico es expresada por la
resistencia hidrolítica, es decir, la resistencia para liberar sustancias minerales solubles en agua
Fuente: Transferencias 2.0 Técnicas formas materiales.
Figura: 27 Valores indicativos del poder de filtración.
Figura: 28 Dosímetro de película.
Fuente: www.lecsifilm.com.ar
CONTROL DE CALIODAD
34
bajo condiciones específicas de contacto entre la superficie interna del envase o el polvo del
vidrio y el agua.
Los envases de vidrio son ampliamente utilizados en la industria farmacéutica, como
contenedor de diversas preparaciones. Para poder validar los envases para este uso, y dado este
contacto directo inevitable entre envase y preparación, es imprescindible garantizar la ausencia
de migraciones no deseadas hacia el producto. La estabilidad química de los envases de vidrio
para uso farmacéutico es lo que se conoce como Resistencia Hidrolítica.
El vidrio boro silicato 3.3 pertenece a la clase hidrolítica 1, según DIN ISO 719 (98 °C),
norma que divide en 5 clases esta resistencia del vidrio frente al agua. Esto quiere decir que
cuando el vidrio con tamaño de grano entre 300-500 µm se expone al agua a 98 ºC durante 1
hora, pierde menos de 31 μg de Na2O por gramo de vidrio.
El vidrio boro silicato 3.3 también pertenece a la clase 1 según DIN ISO 720 (121 °C), norma
que divide en 3 clases esta resistencia del vidrio frente al agua. Esto quiere decir que cuando el
vidrio se expone al agua a 121 ºC durante 1 hora, pierde menos de 62 μg de Na2O por gramo de
vidrio.
Fuente: 4www.schott.com
Figura: 29 Frasco de boro silicato 3.3.
CONTROL DE CALIODAD
35
3.13.1 INSTRUMENTO DE MEDICIÓN
MOLINO DE BOLAS RETSCH
Dentro de los equipos disponibles para la realización de los tests de RH, destaca un molino de
bolas Retsch modelo PM100, para triturar las muestras, un conjunto de tamices, para seleccionar
el tamaño adecuado de partículas de vidrio a analizar, y una autoclave Selecta modelo
Autotester-E, para poder forzar la posible migración de sustancias a detectar y analizar.
Figura: 30 Molino de bolas Retsch modelo P100.
Fuente: 5www.iqs.edu.
CONTROL DE CALIODAD
36
3.14 COLOR
El color del vidrio es el resultado de su interacción con la radiación luminosa que incide sobre
él. Si un haz de luz blanca atraviesa el vidrio sin pérdidas, el vidrio será incoloro, pero si absorbe
determinadas longitudes de onda, el vidrio mostrará la coloración resultante de las zonas no
absorbidas [1]. La estructura básica de un vidrio, formada por óxidos formadores, fundentes y
estabilizantes, es incolora por lo que es preciso incorporar determinados compuestos químicos
para producir la coloración. Los compuestos incorporados al vidrio que aportan color pero
mantienen la transparencia del vidrio se denominan cromóforos, mientras que los compuestos
que aportan color y vuelven al vidrio opaco se denominan opacificantes. La gran problemática
del estudio de la coloración es la presencia de varios cromóforos y/u opacificantes en un mismo
vidrio para conseguir tonalidades intermedias, incluso un mismo elemento puede presentar dos
valencias diferentes en la masa vítrea modificando el color final del vidrio. Por ello, este trabajo
trata de recoger las técnicas más comunes para el estudio del color de los vidrios.
Figura: 31 vidrios de diferente colore y tonalidades.
Fuente: Elartedelvidrio.com
CONTROL DE CALIODAD
37
CAPITULO 4
CONCLUSIONES Y RECOMENDACIONES
4.1 CONCLUSIONES
 Las especificaciones técnicas de un envase son el conjunto de parámetros
representados en unidades físicas controlables y medibles, las cuales permiten validar
una calidad y seguridad, así como hacer un uso del material en las correctas
condiciones y/o poder comparar entre los distintos materiales.
 Los espesores de la botella depende del tamaño y del modelo de la botella en estudio.
 La geometría de la botella y la base de la botella depende de la presión interna que
soporta, comportándose mejor para bebidas gaseosas con presión la forma petaloide.
 Con las máquinas de última generación se mejora la calidad de botellas ya que éstas
tienen incorporado sensores electrónicos de alta respuesta a las variaciones de las
especificaciones predeterminadas; generando gráficos, diagramas, etc., en el
computador de la 99 Sopladora, lo que permite predecir y corregir los defectos antes
de que ocurran fallas graves.
4.2 RECOMENDACIONES
 Se vio que en el control de calidad se abarcan una innumerable cantidad de parámetros
para concluir en la calidad del envase, veo que se facilitaría de manera inmediata si se
dividieran los parámetros que tiene una característica en común y luego pasar con las
demás.
 Las condiciones en las que se realiza la medición de la resistencia de impacto son algo
rústicos, se haría más viable si este proceso fuese medido con unos instrumentos más
exactos para evitar la recolección de datos lejos del teórico.
CONTROL DE CALIODAD
38
CAPITULO 5
Bibliografía
Naviglio, T. s. (2015). transparencias 2.0 tecnicas formas materiales. itallia: Bruni Glass.
Plástico, A. C. (2016). La correta especificación de los envases. España: Ecoembes.
vidrio, s. e. (1995). Calidad y control en la industria del vidrio. Verre, 16.

Weitere ähnliche Inhalte

Was ist angesagt?

M.evaluacion sensorial alimentos
M.evaluacion sensorial alimentosM.evaluacion sensorial alimentos
M.evaluacion sensorial alimentosTeresita Lird
 
Preparación de la Materia Prima
Preparación de la Materia PrimaPreparación de la Materia Prima
Preparación de la Materia PrimaAzarías Garabitos
 
CONTROL DE MATERIA PRIMA-PREREQUISITO
CONTROL DE MATERIA PRIMA-PREREQUISITOCONTROL DE MATERIA PRIMA-PREREQUISITO
CONTROL DE MATERIA PRIMA-PREREQUISITONelson Mendoza
 
Diagramas de Flujo y causa efecto de envasado de vodka Dark Night
Diagramas de Flujo y causa efecto de envasado de vodka Dark NightDiagramas de Flujo y causa efecto de envasado de vodka Dark Night
Diagramas de Flujo y causa efecto de envasado de vodka Dark Nightalejandrovelasquez89
 
Subproductos de frutas y hortalizas
Subproductos de frutas y hortalizasSubproductos de frutas y hortalizas
Subproductos de frutas y hortalizasStephanie Melo Cruz
 
Elaboracion de mermelada de frutilla
Elaboracion de mermelada de frutillaElaboracion de mermelada de frutilla
Elaboracion de mermelada de frutillaMaycol Ortega Vera
 
Trabajo envases, empaques y embalajes 2do corte
Trabajo envases, empaques y embalajes 2do corteTrabajo envases, empaques y embalajes 2do corte
Trabajo envases, empaques y embalajes 2do corteroelmora
 
Presentacion envases
Presentacion envasesPresentacion envases
Presentacion envasesgsunahcurc
 
Elaboración de salchicha
Elaboración de salchichaElaboración de salchicha
Elaboración de salchichaIvan Hinojosa
 
Determinacion de la permeabilidad de los empaques
Determinacion de la permeabilidad de los empaquesDeterminacion de la permeabilidad de los empaques
Determinacion de la permeabilidad de los empaquesJhonás A. Vega
 
315600945 macerados-de-frutas-en-alcohol
315600945 macerados-de-frutas-en-alcohol315600945 macerados-de-frutas-en-alcohol
315600945 macerados-de-frutas-en-alcoholjuancarlosquila
 
Tipos y características de envases y empaque
Tipos y características de envases y empaqueTipos y características de envases y empaque
Tipos y características de envases y empaqueAnnyta Cervantzz
 
Elaboracion de la salsa de tomate
Elaboracion de la salsa de tomateElaboracion de la salsa de tomate
Elaboracion de la salsa de tomatelalo137
 
Presentacion y programas pre requisitos del sistema haccp bpm y phs 2021
Presentacion y programas pre requisitos del sistema haccp bpm y phs 2021Presentacion y programas pre requisitos del sistema haccp bpm y phs 2021
Presentacion y programas pre requisitos del sistema haccp bpm y phs 2021Daniel Rojas Hurtado
 

Was ist angesagt? (20)

M.evaluacion sensorial alimentos
M.evaluacion sensorial alimentosM.evaluacion sensorial alimentos
M.evaluacion sensorial alimentos
 
Preparación de la Materia Prima
Preparación de la Materia PrimaPreparación de la Materia Prima
Preparación de la Materia Prima
 
CONTROL DE MATERIA PRIMA-PREREQUISITO
CONTROL DE MATERIA PRIMA-PREREQUISITOCONTROL DE MATERIA PRIMA-PREREQUISITO
CONTROL DE MATERIA PRIMA-PREREQUISITO
 
botellas de vidrio
 botellas de vidrio  botellas de vidrio
botellas de vidrio
 
Informe original de lacteos
Informe original de lacteosInforme original de lacteos
Informe original de lacteos
 
Diagramas de Flujo y causa efecto de envasado de vodka Dark Night
Diagramas de Flujo y causa efecto de envasado de vodka Dark NightDiagramas de Flujo y causa efecto de envasado de vodka Dark Night
Diagramas de Flujo y causa efecto de envasado de vodka Dark Night
 
Subproductos de frutas y hortalizas
Subproductos de frutas y hortalizasSubproductos de frutas y hortalizas
Subproductos de frutas y hortalizas
 
Planta de-mermelada
Planta de-mermeladaPlanta de-mermelada
Planta de-mermelada
 
Elaboracion de mermelada de frutilla
Elaboracion de mermelada de frutillaElaboracion de mermelada de frutilla
Elaboracion de mermelada de frutilla
 
La harina..metodos de analisis
La harina..metodos de analisisLa harina..metodos de analisis
La harina..metodos de analisis
 
Trabajo envases, empaques y embalajes 2do corte
Trabajo envases, empaques y embalajes 2do corteTrabajo envases, empaques y embalajes 2do corte
Trabajo envases, empaques y embalajes 2do corte
 
Presentacion envases
Presentacion envasesPresentacion envases
Presentacion envases
 
Elaboración de salchicha
Elaboración de salchichaElaboración de salchicha
Elaboración de salchicha
 
Empaque Embalaje
Empaque EmbalajeEmpaque Embalaje
Empaque Embalaje
 
Determinacion de la permeabilidad de los empaques
Determinacion de la permeabilidad de los empaquesDeterminacion de la permeabilidad de los empaques
Determinacion de la permeabilidad de los empaques
 
Defecto de los embutidos(2)
Defecto de los embutidos(2)Defecto de los embutidos(2)
Defecto de los embutidos(2)
 
315600945 macerados-de-frutas-en-alcohol
315600945 macerados-de-frutas-en-alcohol315600945 macerados-de-frutas-en-alcohol
315600945 macerados-de-frutas-en-alcohol
 
Tipos y características de envases y empaque
Tipos y características de envases y empaqueTipos y características de envases y empaque
Tipos y características de envases y empaque
 
Elaboracion de la salsa de tomate
Elaboracion de la salsa de tomateElaboracion de la salsa de tomate
Elaboracion de la salsa de tomate
 
Presentacion y programas pre requisitos del sistema haccp bpm y phs 2021
Presentacion y programas pre requisitos del sistema haccp bpm y phs 2021Presentacion y programas pre requisitos del sistema haccp bpm y phs 2021
Presentacion y programas pre requisitos del sistema haccp bpm y phs 2021
 

Ähnlich wie Tendencias y manejo del control de calidad en los envases

RepaQ Packaging Consulting dossier formación jul13
RepaQ Packaging Consulting dossier formación jul13RepaQ Packaging Consulting dossier formación jul13
RepaQ Packaging Consulting dossier formación jul13Montse Castillo Malivern
 
Lanzamiento Manual Empaque y Embalaje para Exportación
Lanzamiento Manual Empaque y Embalaje para ExportaciónLanzamiento Manual Empaque y Embalaje para Exportación
Lanzamiento Manual Empaque y Embalaje para ExportaciónProColombia
 
Lema hilda mejora_proceso_productivo_pael_tisu_manufactura_esbelta
Lema hilda mejora_proceso_productivo_pael_tisu_manufactura_esbeltaLema hilda mejora_proceso_productivo_pael_tisu_manufactura_esbelta
Lema hilda mejora_proceso_productivo_pael_tisu_manufactura_esbeltaLuisAlberto605
 
Pinzon chavarro ana yamile microsoft_powerpoint
Pinzon chavarro ana yamile  microsoft_powerpointPinzon chavarro ana yamile  microsoft_powerpoint
Pinzon chavarro ana yamile microsoft_powerpointAnaYamilePinzn
 
Practicas de produccion limpia
Practicas de produccion limpiaPracticas de produccion limpia
Practicas de produccion limpiaOliva Lesmes Celis
 
Indenntifiacion de plasticos
Indenntifiacion de plasticosIndenntifiacion de plasticos
Indenntifiacion de plasticosAdriana Sarmiento
 
Inndenntifiacion de plasticos
Inndenntifiacion de plasticosInndenntifiacion de plasticos
Inndenntifiacion de plasticosAdriana Sarmiento
 
Salgado tesis original mixta
Salgado tesis original mixtaSalgado tesis original mixta
Salgado tesis original mixtaSandra Cabrera
 
Guia.bpa.arroz.ctes .2016 argentina
Guia.bpa.arroz.ctes .2016 argentinaGuia.bpa.arroz.ctes .2016 argentina
Guia.bpa.arroz.ctes .2016 argentinaJoseph Salcarriet
 
Formato pa imprinmir
Formato pa imprinmirFormato pa imprinmir
Formato pa imprinmirgiancitito
 
Sistemas de gestion_ambiental_y_trabajadores_de _la_industria_del_papel (fsc-...
Sistemas de gestion_ambiental_y_trabajadores_de _la_industria_del_papel (fsc-...Sistemas de gestion_ambiental_y_trabajadores_de _la_industria_del_papel (fsc-...
Sistemas de gestion_ambiental_y_trabajadores_de _la_industria_del_papel (fsc-...Anthony Dominguez
 
Indicadores_envases.pptx
Indicadores_envases.pptxIndicadores_envases.pptx
Indicadores_envases.pptxJairoBorja6
 
Material clase productos
Material clase productosMaterial clase productos
Material clase productosCiuad de Asis
 

Ähnlich wie Tendencias y manejo del control de calidad en los envases (20)

RepaQ Packaging Consulting dossier formación jul13
RepaQ Packaging Consulting dossier formación jul13RepaQ Packaging Consulting dossier formación jul13
RepaQ Packaging Consulting dossier formación jul13
 
Tarea (3)
Tarea (3)Tarea (3)
Tarea (3)
 
Proyecto CINTAS ADHESIVAS
Proyecto CINTAS ADHESIVAS Proyecto CINTAS ADHESIVAS
Proyecto CINTAS ADHESIVAS
 
Lanzamiento Manual Empaque y Embalaje para Exportación
Lanzamiento Manual Empaque y Embalaje para ExportaciónLanzamiento Manual Empaque y Embalaje para Exportación
Lanzamiento Manual Empaque y Embalaje para Exportación
 
Lema hilda mejora_proceso_productivo_pael_tisu_manufactura_esbelta
Lema hilda mejora_proceso_productivo_pael_tisu_manufactura_esbeltaLema hilda mejora_proceso_productivo_pael_tisu_manufactura_esbelta
Lema hilda mejora_proceso_productivo_pael_tisu_manufactura_esbelta
 
Prevención y Control de Riesgos Relacionados con la Calidad del Ambiente Medi...
Prevención y Control de Riesgos Relacionados con la Calidad del Ambiente Medi...Prevención y Control de Riesgos Relacionados con la Calidad del Ambiente Medi...
Prevención y Control de Riesgos Relacionados con la Calidad del Ambiente Medi...
 
Pinzon chavarro ana yamile microsoft_powerpoint
Pinzon chavarro ana yamile  microsoft_powerpointPinzon chavarro ana yamile  microsoft_powerpoint
Pinzon chavarro ana yamile microsoft_powerpoint
 
Formato IEEE cristian_cardona_grupo_78
Formato IEEE cristian_cardona_grupo_78Formato IEEE cristian_cardona_grupo_78
Formato IEEE cristian_cardona_grupo_78
 
Capitulo i
Capitulo iCapitulo i
Capitulo i
 
ENVASES DE ALIMENTOS ENVASES DE PLASTICO CAP. 2.pptx
ENVASES  DE ALIMENTOS   ENVASES  DE  PLASTICO  CAP. 2.pptxENVASES  DE ALIMENTOS   ENVASES  DE  PLASTICO  CAP. 2.pptx
ENVASES DE ALIMENTOS ENVASES DE PLASTICO CAP. 2.pptx
 
Practicas de produccion limpia
Practicas de produccion limpiaPracticas de produccion limpia
Practicas de produccion limpia
 
Indenntifiacion de plasticos
Indenntifiacion de plasticosIndenntifiacion de plasticos
Indenntifiacion de plasticos
 
Inndenntifiacion de plasticos
Inndenntifiacion de plasticosInndenntifiacion de plasticos
Inndenntifiacion de plasticos
 
Salgado tesis original mixta
Salgado tesis original mixtaSalgado tesis original mixta
Salgado tesis original mixta
 
Guia.bpa.arroz.ctes .2016 argentina
Guia.bpa.arroz.ctes .2016 argentinaGuia.bpa.arroz.ctes .2016 argentina
Guia.bpa.arroz.ctes .2016 argentina
 
Formato pa imprinmir
Formato pa imprinmirFormato pa imprinmir
Formato pa imprinmir
 
Sistemas de gestion_ambiental_y_trabajadores_de _la_industria_del_papel (fsc-...
Sistemas de gestion_ambiental_y_trabajadores_de _la_industria_del_papel (fsc-...Sistemas de gestion_ambiental_y_trabajadores_de _la_industria_del_papel (fsc-...
Sistemas de gestion_ambiental_y_trabajadores_de _la_industria_del_papel (fsc-...
 
Capitulo normalizacion
Capitulo normalizacionCapitulo normalizacion
Capitulo normalizacion
 
Indicadores_envases.pptx
Indicadores_envases.pptxIndicadores_envases.pptx
Indicadores_envases.pptx
 
Material clase productos
Material clase productosMaterial clase productos
Material clase productos
 

Kürzlich hochgeladen

Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfs7yl3dr4g0n01
 
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdfnicolascastaneda8
 
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelosFicha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelosRamiroCruzSalazar
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfKEVINYOICIAQUINOSORI
 
libro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacioneslibro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacionesRamon Bartolozzi
 
Ejemplos aplicados de flip flops para la ingenieria
Ejemplos aplicados de flip flops para la ingenieriaEjemplos aplicados de flip flops para la ingenieria
Ejemplos aplicados de flip flops para la ingenieriaAndreBarrientos3
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxwilliam801689
 
Herramientas de la productividad - Revit
Herramientas de la productividad - RevitHerramientas de la productividad - Revit
Herramientas de la productividad - RevitDiegoAlonsoCastroLup1
 
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERUQUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERUManuelSosa83
 
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdf
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdfLA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdf
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdfbcondort
 
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJODIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJOJimyAMoran
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaAlexanderimanolLencr
 
Presentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónPresentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónmaz12629
 
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdfAnálisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdfGabrielCayampiGutier
 
Gestion de proyectos para el control y seguimiento
Gestion de proyectos para el control  y seguimientoGestion de proyectos para el control  y seguimiento
Gestion de proyectos para el control y seguimientoMaxanMonplesi
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCarlosGabriel96
 
ingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxjhorbycoralsanchez
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZgustavoiashalom
 
UNIDAD II 2.pdf ingenieria civil lima upn
UNIDAD  II 2.pdf ingenieria civil lima upnUNIDAD  II 2.pdf ingenieria civil lima upn
UNIDAD II 2.pdf ingenieria civil lima upnDayronCernaYupanquiy
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023RonaldoPaucarMontes
 

Kürzlich hochgeladen (20)

Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdf
 
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf
 
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelosFicha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdf
 
libro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacioneslibro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operaciones
 
Ejemplos aplicados de flip flops para la ingenieria
Ejemplos aplicados de flip flops para la ingenieriaEjemplos aplicados de flip flops para la ingenieria
Ejemplos aplicados de flip flops para la ingenieria
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docx
 
Herramientas de la productividad - Revit
Herramientas de la productividad - RevitHerramientas de la productividad - Revit
Herramientas de la productividad - Revit
 
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERUQUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
 
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdf
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdfLA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdf
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdf
 
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJODIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiología
 
Presentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónPresentacion de la ganaderia en la región
Presentacion de la ganaderia en la región
 
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdfAnálisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
 
Gestion de proyectos para el control y seguimiento
Gestion de proyectos para el control  y seguimientoGestion de proyectos para el control  y seguimiento
Gestion de proyectos para el control y seguimiento
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
 
ingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptx
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
 
UNIDAD II 2.pdf ingenieria civil lima upn
UNIDAD  II 2.pdf ingenieria civil lima upnUNIDAD  II 2.pdf ingenieria civil lima upn
UNIDAD II 2.pdf ingenieria civil lima upn
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
 

Tendencias y manejo del control de calidad en los envases

  • 1. 10 DE SETIEMBRE DEL 2018 ENVASES Y EMBALAJE COLORACIÓN DEL VIDRIO Manuel Gustavo Melgarejo Valladares UNIVERSIDAD FEDERICO VILLARREAL
  • 2. CONTROL DE CALIODAD 1 TENDENCIAS DE CONTROL DE CALIDAD Melgarejo Valladares Gustavo Septiembre 2018 Universidad Nacional Federico Villarreal Facultad de Ingeniería Industrial y Sistemas Escuela Profesional de Ingeniería Agroindustrial
  • 3. CONTROL DE CALIODAD 2 INDICE INDICE ...................................................................................................................................... 2 INTRODUCCIÓN ..................................................................................................................... 4 CAPLITULO 1........................................................................................................................... 7 1.1 OBJETIVO....................................................................................................................... 7 CAPITULO 2............................................................................................................................. 8 FUNDAMENTO TEORICO.................................................................................................. 8 2.1 PARAMETROS DE CALIDAD Y TEST ................................................................... 8 2.2 ESPECIFICASIONES TÉCNICAS DE LOS ENVASES ......................................... 14 CAPITULO 3........................................................................................................................... 19 TENDENCIAS DE CONTROL DE CALIDAD ................................................................. 19 3.1. DIMENSIONES Y FORMAS .................................................................................. 19 3.2 ESPESORES .............................................................................................................. 20 3.3 PESOS........................................................................................................................ 21 3.4 CAPACIDAD............................................................................................................. 23 3.5 TENSIONES PERMANENTES ................................................................................ 25 3.6 DEFECTOS ESTETICOS.......................................................................................... 27 3.7 ALTURA INTERNA ................................................................................................. 28 3.8 DECORACIÓN.......................................................................................................... 29 3.9 RESISTENCIA AL CHOQUE TÉRMICO ............................................................... 29 3.10 RESISTENCIA A LA COMPRESIÓN AXIAL...................................................... 30 3.11 RESISTENCIA AL IMPACTO ............................................................................... 31
  • 4. CONTROL DE CALIODAD 3 3.12 TRANSMISIÓN DE LUZ ....................................................................................... 32 3.13 RESISTENCIA HIDROLÍTICA.............................................................................. 33 3.14 COLOR .................................................................................................................... 36 CAPITULO 4........................................................................................................................... 37 CONCLUSIONES Y RECOMENDACIONES................................................................... 37 4.1 CONCLUSIONES ..................................................................................................... 37 4.2 RECOMENDACIONES ............................................................................................ 37 CAPITULO 5........................................................................................................................... 38 Bibliografía............................................................................................................................... 38
  • 5. CONTROL DE CALIODAD 4 INTRODUCCIÓN Hasta los años setenta, la calidad de los envases de vidrio se garantizaba a través de una selección exhaustiva de los artículos realizada por equipos humanos. El autocontrol y el control del proceso estaban poco desarrollados. Todos los lotes eran sometidos a un control estadístico de recepción según las normas Military Standard 105 D. En la década de los 70 se implantan la selección y acondicionamiento automático de los envases, desarrollándose máquinas cada vez más sofisticadas. Ello supuso una reducción muy importante de efectivos. En la década de los años ochenta se implanta en los centros de producción planes específicos de autocontrol, dirigidos a aumentar la eficacia de los sistemas de fabricación y selección de los artículos. Durante este largo período los sistemas de calidad estaban dirigidos al aseguramiento de las especificaciones del producto. En 1991 la Dirección General de la empresa decide implantar la gestión total de la calidad debido a las siguientes causas: -Fuerte competitividad del sector en una situación de sobrecapacidad. -Las posibilidades de una fuerte reducción de costes y plantilla se agotarían en un período corto de años. -Nueva cultura de gestión de la empresa. -Primacía del sector en obtener la certificación según normas ISO -Aumento de la participación de las personas en las tareas de calidad. Desde el punto de vista de la empresa se considera que el cliente es prioritario porque es la base del negocio y sin él no hay continuidad de la empresa. Los servicios y productos de calidad
  • 6. CONTROL DE CALIODAD 5 deben lograr la satisfacción del cliente porque cumplan los requisitos esperados. El beneficio se obtiene a través de la mejora continua de los procesos, lo que lleva implícito una reducción de costos. La mejora continua se consigue mediante el liderazgo del equipo directivo y la participación de todos los empleados, y requiere una formación constante. (vidrio, 1995) En este documento se han trabajado fichas de especificaciones técnicas de distintos tipos de envases, de forma que permita a las empresas del sector adquirir y disponer de conocimientos sobre los aspectos más relevantes de un envase a lo largo de su vida, así como los parámetros de calidad y test que se utilizan para controlarlos. Las especificaciones técnicas de un envase son el conjunto de parámetros representados en unidades físicas controlables y medibles, las cuales permiten validar una calidad y seguridad, así cómo hacer un uso del material en las correctas condiciones y/o poder comparar entre los distintos materiales. Como ejemplo de estos parámetros se podrían nombrar la resistencia a tracción de un film plástico, la transparencia, sus propiedades barreras a gases, la resistencia a compresión de un envase de cartón, entre otros. La empresa envasadora deberá conocer las propiedades físico-químicas de su producto y sus requerimientos de conservación, así como las condiciones a las que se Resumen Ejecutivo Con esta guía se pretende ofrecer un documento de ayuda a todas las empresas relacionadas con el sector del envasado, de manera que sirva como elemento de conexión entre los fabricantes de envases y/o las empresas envasadoras. 1 expondrá el envase durante el envasado, almacenamiento, transporte y condiciones de uso, obteniendo de esta forma el conjunto de requerimientos totales del envase. Dichos requerimientos deberán ser consultados con su proveedor de envase para obtener aquel envase que los satisfaga. Para facilitar la comprensión se ha añadido casos específicos en los que se coordina la información del fabricante de envases con las empresas usuarias y los requerimientos del envase. La colaboración entre los distintos agentes
  • 7. CONTROL DE CALIODAD 6 involucrados debe resultar en una mejor coordinación de esfuerzos y adaptación de los requerimientos en todas las etapas que afronta un envase. De esta manera, se consiguen soluciones más eficientes y respetuosas con el medio ambiente. Este texto responde a la experiencia de AINIA Centro Tecnológico y AIMPLAS Instituto Tecnológico del Plástico, con el objeto de presentar una guía lo más completa posible. Su experiencia les ha permitido dar soluciones adecuadas del envasado al sector de alimentación y afines. (Plástico, 2016)
  • 8. CONTROL DE CALIODAD 7 CAPLITULO 1 1.1 OBJETIVO El objetivo del proyecto, es el estudio de la fabricación de envases de utilización en la industria alimentaria, centrándonos en la obtención de films complejos mediante el proceso de coextrusion. Analizaremos los distintos tipos de complejos presentes en el mercado y su clasificación, en función de las características requeridas para el envase de determinados alimentos. Se realizará un estudio minucioso del proceso de fabricación de dichos films teniendo en cuenta los distintos factores que afectan a dicha producción, como su impacto ambiental, su coste económico, y su precio de mercado.
  • 9. CONTROL DE CALIODAD 8 CAPITULO 2 FUNDAMENTO TEORICO 2.1 PARAMETROS DE CALIDAD Y TEST 2.1.1 QUÉ PARAMETROS SE SUELEN MEDIR A continuación se enumeran, de manera genérica, los principales parámetros de calidad y tests con los que se suelen medir los envases, sin considerar el tipo de envase o material. Todas las propiedades relacionadas en este apartado pueden analizarse sobre una probeta de material con el objeto de conocer las características del material, o bien, sobre un envase o una muestra de un envase ya fabricado, de manera que permite conocer cómo influye el diseño o la condiciones de procesado del envase sobre estas propiedades. (Plástico, 2016) 2.1.1.1 PROPIEDADES MECÁNICAS Determinan el comportamiento de la muestra a ensayar cuando se somete a un esfuerzo mecánico, por lo que aporta información acerca de la resistencia frente a esfuerzos mecánicos. Los principales ensayos de laboratorio que permiten determinar las propiedades mecánicas suelen ser:  Resistencia a la tracción (alargamiento de rotura): determina lo resistente que es el material al ser sometido a un esfuerzo de estirado. (Plástico, 2016)  Compresión: indica el comportamiento de un material o envase cuando está sometido a una carga de compresión a una velocidad uniforme y baja en su eje longitudinal. (Plástico, 2016)
  • 10. CONTROL DE CALIODAD 9  Resistencia a la flexión: designa la capacidad del material de soportar fuerzas aplicadas perpendicularmente a su eje longitudinal. (Plástico, 2016)  Resistencia a la punción: designa la resistencia de una muestra, en forma de lámina o film, a ser perforado por un punzón. (Plástico, 2016)  Rasgado: indica la fuerza necesaria para propagar el rasgado de un corte.  Coeficiente de rozamiento: es la resistencia que encuentra un material cuando desliza sobre otro material. (Plástico, 2016)  Dureza: es la resistencia que opone un material a ser rayado o penetrado.  Separación por pelado: determina la fuerza de unión de los materiales plásticos. (Plástico, 2016) 2.1.1.2 PROPIEDADES BARRERA Determina la capacidad de un material para impedir el paso de un determinado gas a través del mismo. Los principales ensayos de laboratorio que permiten determinar las propiedades barreras suelen ser:  Determinación de la velocidad de transmisión de gases (O2, CO2, N2, etc.): designa la cantidad de una sustancia (en masa o volumen) que atraviesa un material por una unidad de superficie y por unidad de tiempo y por gradiente de presión (cm3/ (m2·día·atm)). (Plástico, 2016)  Determinación de la velocidad de transmisión de vapor de agua: designa la cantidad de una sustancia (en masa o volumen) que atraviesa un material por una unidad superficie y por unidad de tiempo y por gradiente de presión (cm3/ (m2·día·atm)). (Plástico, 2016)
  • 11. CONTROL DE CALIODAD 10 2.1.1.3 PROPIEDADES DE ABSORCIÓN DE HUMEDAD  Ensayo Cobb: mide la cantidad de agua absorbida por una superficie de cartón papel durante un tiempo. (Plástico, 2016) 2.1.1.4 PROPIEDADES ÓPTICAS Determinan la capacidad de la muestra de material de interaccionar con la luz. Los principales ensayos de laboratorio que permiten determinar las propiedades ópticas suelen ser:  Brillo: está asociado a la capacidad de una superficie de reflejar más luz en unas direcciones que en otras. Se mide la cantidad de brillo del rayo reflejado. (Plástico, 2016)  Turbidez: designa la dispersión de la luz producida por la acumulación de partículas diminutas del material o por defectos superficiales. (Plástico, 2016) 2.1.1.5 PROPIEDADES TERMICAS Determinan el comportamiento de un material frente a solicitudes térmicas, bien en calentamiento o bien en enfriamiento, congelado, etc. Los principales ensayos de laboratorio que permiten determinar las propiedades térmicas suelen ser:  Temperatura de fusión: designa la temperatura a la que el material pasa de estado sólido al líquido. (Plástico, 2016)  Temperatura de reblandecimiento: es la temperatura a partir de la cual un material plástico pasa de un estado rígido a gomoso y blando. (Plástico, 2016)
  • 12. CONTROL DE CALIODAD 11 2.1.1.6 IINTERACCIÓN ENVASE-PRODUCTO Determina la capacidad de un material de interactuar con el producto o alimento con el cual se encuentra en contacto directo. Los principales ensayos de laboratorio que permiten determinar la interacción entre un envase y el producto contenido suelen ser:  Ensayo de migración global: se entiende como migración global a la cantidad total de sustancias que se transfieren del envase al alimento, independientemente de cuál sea la naturaleza de los migrantes, por lo que no da ninguna información acerca de toxicidad de estas sustancias. (Plástico, 2016)  Ensayo de migración específica: designa la cantidad de una sustancia definida que se transfiere del envase al alimento y que generalmente tiene un interés toxicológico. (Plástico, 2016)  Test organoléptico: Valoración cualitativa que se realiza sobre un producto basado en la valoración de los sentidos. (Plástico, 2016) Fuente: Del libro “La correcta especificación de los envases”. Figura: 1 Interacciones entorno-envase-producto.
  • 13. CONTROL DE CALIODAD 12 2.1.1.7 OTRAS PROPIEDADES FÍSICAS En función de la naturaleza o presentación del material o del envase, existen otras propiedades físicas que pueden resultar de interés conocer. Algunas de estas propiedades son:  Densidad: es la relación entre la masa por unidad de volumen.  Gramaje: designa la cantidad de masa del material que hay por unidad de superficie. Unidad, g/m2. (Plástico, 2016)  Espesor: designa el espesor de lámina. Unidad, m. (Plástico, 2016)  Tensión superficial: resistencia que presenta un líquido a deformarse o romperse. Para asegurar la adhesión de un líquido a un material, la tensión superficial del material tiene que ser mayor que la del líquido. 2.1.2 CÓMO LOS PUEDE COTEJAR EL ENVASADOR Si la empresa envasadora desea contrastar las características especificadas en la ficha técnica del envase, existen parámetros cuya medición es inmediata y es susceptible de ser medida en la propia instalación de la envasadora si dispone de los equipos necesarios, por ejemplo, espesor, brillo, entre otros. Del mismo modo se pueden realizar estudios de comportamiento real para la aplicación concreta y evaluar propiedades mecánicas, según la resistencia del envase, por ejemplo las propiedades de soldadura según envasado real en máquina. Para otros parámetros, quizá se requiera de laboratorios externos para su evaluación. En tal caso, es necesario contactar con expertos para seguir recomendaciones sobre las propiedades más críticas de control. (Plástico, 2016) Algunos equipos que puede incorporar el envasador son:  Máquina de ensayo de tracción y compresión axial, para comprobar la resistencia del envase según nivel de llenado y presiones internas aplicadas.
  • 14. CONTROL DE CALIODAD 13  Medidor de espesores por efecto Hall, permite obtener de forma no destructiva un perfil de espesores de una muestra de material no ferroso.  Equipos de medición de la permeabilidad al oxígeno, tanto para la medición en films como en envases. Figura: 2 ejemplo de un ensayo de compresión axial sobre una botella. Figura: 3 Ejemplo de un medidor de espesores, por efecto Hall. Figura: 4 Ensayos de transmisión al oxígeno en envases. Fuente: Del libro “La correcta especificación de los Fuente: envases”. Fuente: Del libro “La correcta especificación de los envases”. Fuente: Del libro “La correcta especificación de los envases”.
  • 15. CONTROL DE CALIODAD 14 2.2 ESPECIFICASIONES TÉCNICAS DE LOS ENVASES 2.2.1 ESPECCIFICACIONES DE ENVASES DE VIDRIO Fuente: Del libro “La correcta especificación de los envases”. El vidrio es un producto mineral obtenido de una mezcla fundida a altas temperaturas de materiales inorgánicos que, al enfriarse de manera drástica, solidifica y da como resultado un sólido de composición variable, en función de las materias primas utilizadas y el tratamiento térmico aplicado. (Plástico, 2016) El vidrio utilizado en la fabricación de envases es de tipo sodio-cálcico, donde las características diferenciadoras de estos envases son: el color, el tipo de tapón-tapa aplicable (del que dependerá el tipo de boca a utilizar). Una de las ventajas que poseen los envases de vidrio es la conservación del aroma del producto contenido, sobre todo en almacenamientos prolongados ya que el vidrio es impermeable a los gases, vapores y líquidos. Por otro lado, es químicamente inerte frente a líquidos y productos alimentarios no planteando problemas de compatibilidad. Figura: 5 Distintas formas y colores de botellas
  • 16. CONTROL DE CALIODAD 15 Otra característica es que es un material higiénico, que posee fácil limpieza y es esterilizable, así como inodoro, no transmite sabores ni los modifica. Puede colorearse y aportar, así, una protección frente a los rayos ultravioletas que pudieran dañar al contenido. Los envases de vidrio se pueden fabricar de primera elaboración o de fabricación directa y de segunda fabricación, lo que significa, que se fabrican a partir de una preforma de vidrio especial elaborada por estiramiento. Los tres tipos de envases de vidrio más utilizados son:  Botellas de vidrio de cuello estrecho (diámetro menor de 35mm), para productos líquidos.  Tarros de vidrio de cuello ancho (diámetro mayor de 35mm), generalmente para alimentos sólidos, mermeladas, compotas.  Frascos para productos farmacéuticos, cosméticos, químicos y de perfumería. Fuente: Del libro “La correcta especificación de los envases”. Figura: 6 Esquema de botella y tarro industrial de vidrio.
  • 17. CONTROL DE CALIODAD 16 En las fichas técnicas deben de constar como mínimo:  Tipo de boca o cierre.  Diámetro de interior y exterior de la boca. Unidad, mm.  Altura máxima. Unidad, mm.  Capacidad. Unidad, ml.  Peso. Unidad, g.  Color. Respecto a las especificaciones a considerar, se puede indicar como más comunes nivel de usuario las siguientes:  Determinación de la resistencia a la carga vertical mediante aplicación de presión vertical con una prensa. Sirve para evaluar la carga máxima que puede soportar un envase durante su apilado y transporte. Unidad, kN. Norma aplicable: UNE-EN ISO 8113.  Determinación de la resistencia a la presión interna mediante la aplicación de presión al agua contenida en el envase a ensayar, durante un tiempo establecido o hasta la rotura del envase. Este parámetro es útil en aquellos envases expuestos a una presión interna alta, como son bebidas carbonatadas o líquidos que aumenten su volumen en función de la temperatura, como por ejemplo los aceites. Unidad, bar. Norma aplicable: UNE-EN ISO 7458.  Determinación de la resistencia al choque térmico mediante inmersión bajo condiciones específicas de los envases en baños de agua fría y caliente. Sirve para evaluar la aptitud a procesos de envasado donde se somete el envase a un cambio brusco de temperatura. Norma aplicable: UNE-EN ISO 7459. (Plástico, 2016)
  • 18. CONTROL DE CALIODAD 17 Fuente: Del libro “La correcta especificación de los envases”. En función del tipo de envase, existen unas normas y recomendaciones de carácter más específico como son:  Las normas y reglamentos que controlan el volumen de producto envasado. Como ejemplo ilustrativo, a nivel nacional se encuentra:  Real Decreto 1798/2003, de 26 de diciembre, por el que se regulan las gamas de cantidades nominales y de capacidades nominales para determinados productos envasados. (BOE nº 9, 10-Ene-2004). En él se encuentra, entre otros la tabla resumen para los volúmenes nominales admitidos (en litros) según el producto líquido que se trate.  Aunque en el mercado se encuentra una gran cantidad de modelos con distintas dimensiones, existen normativas que especifican la relación existente entre las características dimensionales y de fabricación de un recipiente normalmente utilizado para el consumo humano. Así, en Europa existe la norma UNE 126102:2004, que establece a modo general una tabla en la que relacionan los principales aspectos de la botella, como son, su capacidad, peso y dimensiones principales y tolerancias así como tipo de producto a contener. (Plástico, 2016) Figura: 7 Fragilidad del vidrio.
  • 19. CONTROL DE CALIODAD 18 Otras reglas que afectan a los envases de vidrio son:  Las normas y reglamentos que regulan el envasado de sustancias peligrosas.  Aquellas relativas a los requerimientos de embalaje, expedición y transporte.  Las normas relativas a los tipos de cierre, ya que si bien el vidrio es alta barrera a gases, el cierre es un punto débil de dicha barrera. Fuente: Del libro “La correcta especificación de los envases”. Figura: 8 Cierre y permeación al oxígeno.
  • 20. CONTROL DE CALIODAD 19 CAPITULO 3 TENDENCIAS DE CONTROL DE CALIDAD 3.1. DIMENSIONES Y FORMAS Las dimensiones que poseerán los envases de vidrio dependerán de las especificaciones de la empresa y el rubro, y estas se rigen a su vez según la norma técnica de su país en el cual se usen. 3.1.1 INSTRUMENTO DE MEDICIÓN PIE DE REY Figura: 9 botellas de vidrio de uso corriente Fuente: 1 Guía técnica ainia de envase y embalaje. Figura: 10 Pie de rey digital Fuente: www.jorbasola.com
  • 21. CONTROL DE CALIODAD 20 3.2 ESPESORES Igualmente que en las dimensiones estas están determinadas por las especificaciones del rubro y la empresa y la norma técnica vigente del país. 3.2.1 INSTRUMENTO DE MEDICIÓN MEDIDOR MAGMNETICO DE ESPESOR Figura: 11 Espesor de un vidrio. Fuente: www.caracteristicas.com Figura: 12 Medidor magnético de espesor. Fuente: www.boustens.com
  • 22. CONTROL DE CALIODAD 21 3.3 PESOS El peso del vidrio de la fabricación del envase está determinado por la forma de la botella (redonda o perfilada), de la capacidad y de la cantidad total de piezas a producir. En efecto, una botella de forma particular normalmente requiere un peso de vidrio mayor, debido a la complejidad de la distribución homogénea del vidrio; obviamente una botella de 750 ml requiere un peso de vidrio superior que una de 250 ml, dado el mayor desarrollo de la superficie. La cantidad a producir puede influir sobre el proyecto de la serie de moldes (por ejemplo una cantidad muy alta comporta un mayor coste de equipos en términos absolutos, pero dado que permiten un proyecto de los moldes más sofisticado, puede comportar una reducción del peso del vidrio). A continuación se muestra una tabla indicativa de pesos de vidrio en función de la capacidad y la forma del artículo. Debemos subrayar que el mayor peso de vidrio de los artículos perfilados con respecto a los redondos sirve para dar mayor resistencia en los puntos críticos (por ejemplo, aristas en el fondo, hombros planos, etc.). (Naviglio, 2015)
  • 23. CONTROL DE CALIODAD 22 Fuente: www.elcorteingles.esFuente: www.antzara.com Figura: 15 Botella de vino tinto, Bonarda Argentina. Figura: 14 botella de champagne Cordón Rouge. Fuente: Libro “transparencias 2.0 técnicas formas materiales”. Figura: 13 tabla indicativa de pesos de vidrio en función de la capacidad y la forma del artículo.
  • 24. CONTROL DE CALIODAD 23 3.3.1 INSTRUMENTO DE MEDICIÓN BALANZA DIGITAL DE ALTA PRESICIÓN 3.4 CAPACIDAD La capacidad de las botellas se distingue en capacidad útil y capacidad ras de la boca  La capacidad útil es la capacidad comercial requerida por el cliente y mide la cantidad de producto que se introducirá.  La capacidad a ras de la boca es la capacidad técnica total de la botella. Se obtiene añadiendo a la capacidad útil el espacio de cabeza, desde el nivel de llenado hasta el ras de la boca (en promedio, un 3% d la capacidad útil). Por nivel de llenado se entiende la cota sobre el cuello de la botella a la que llegara el líquido, una vez llenado el envase. Entre la cota y la boca de la botella se encuentra el espacio de la cabeza y el espacio para el eventual corcho. El espacio de cabeza varía en función del tipo de cierre, del proceso de llenado y de la naturaleza del producto. (Naviglio, 2015) Figura: 16 Balanza digital. Fuente: www.solostocks.com
  • 25. CONTROL DE CALIODAD 24 3.4.1 INSTRUMENTO DE MEDICIÓN CALIBRE DE NIVEL DE LLENADO Fuente: Heuft.com Figura: 17 Detección del nivel de llenado. Figura: 18 FGH - Calibre de nivel de llenado. Fuente: 2www.at2e-usa.com.
  • 26. CONTROL DE CALIODAD 25 3.5 TENSIONES PERMANENTES El origen de las tensiones permanentes en una muestra de vidrio ya fría, es la deformación viscosa que tiene lugar cuando el vidrio está aún caliente (zona visco elástica), debido a las tensiones temporales creadas, a su vez, por la existencia de un gradiente de temperaturas. En pocas palabras, el proceso de creación de las tensiones permanentes transcurre, según indica el esquema de la figura 18, en la forma siguiente: El vidrio caliente al enfriarse, sigue una ley que origina un gradiente de temperaturas en el espesor. El gradiente de temperaturas, a su vez, da lugar a una distribución de tensiones temporales por efecto del diferente momento de dilatación de capas. El vidrio, que está en estado visco elástico, bajo la acción de las tensiones temporales, se deforma, produciendo una relajación Figura: 19 Proceso de creación de tensiones permanentes. Fuente: Libro “Estudio del recorrido industrial del vidrio”.
  • 27. CONTROL DE CALIODAD 26 parcial o total de estas tensiones. Al entrar el vidrio en la zona elástica, en la que es completamente rígido, quedan «congeladas» la forma y dimensiones de cada estrato. Por tanto, las capas para lograr el equilibrio (igual longitud) a temperatura ambiente, siguiendo la ley de enfriamiento, se han tenido que contraer como si tuvieran coeficiente de dilatación distinto, a costa de generar una distribución de tensiones que son permanentes. (Naviglio, 2015) 3.5.1 INSTRUMENTO DE MEDICIÓN POR EMISION DE RAYOS X Las variables implicadas en la reflexión están relacionadas por la ley de Bragg. 2dhkl senθ = nλ Con este método se miden deformaciones elásticas y no es precisa una preparación previa de la muestra. La técnica de rayos X permite medir tensiones residuales solo en la superficie del Fuente: Libro “Alivio de tensiones residuales”. Figura: 20 Método de difracción de rayos X.
  • 28. CONTROL DE CALIODAD 27 material y está especialmente indicada para variaciones muy rápidas de las mismas, dado que el área de medida es prácticamente puntual. 3.6 DEFECTOS ESTETICOS Como burbujas (causadas por una mala inyección de la carga) piedras o fisuras, que disminuyen la resistencia durante el embalaje o transporte, por lo general estos defectos son causados en la misma planta de fabricación ya se por los materiales estén con impurezas. (Naviglio, 2015) Figura: 21 Botellas con féculas de impureza. Fuente: www.taringa.net
  • 29. CONTROL DE CALIODAD 28 3.6.1 INSTRUMENTO DE MEDICIÓN LSS – Visores (Light System Small) 3.7 ALTURA INTERNA Es la altura medida desde la base interna de la botella hasta la superficie de sellado. 3.7.1 INSTRUMENTO DE MEDICIÓN INDICADOR DIGITAL DE ALTURA Fuente: ate2e.com Figura: 22 Aparato de visualización simple para partículas en botellas de vidrio. Figura: 23 HG - 1 Indicador digital de altura. Fuente: ate2e.com
  • 30. CONTROL DE CALIODAD 29 3.8 DECORACIÓN Por decoración del vidrio se entiende sustancialmente modificar el aspecto del envase mediante una segunda elaboración. Hay diferentes modos de decorar un vidrio. Para las botellas y tarros, los más comunes son la serigrafía, el arenado, el satinado con ácido y la pintura. (Naviglio, 2015) 3.9 RESISTENCIA AL CHOQUE TÉRMICO La resistencia al llamado choque térmico se evalúa en conformidad con los reglamentos internacionales. (Naviglio, 2015) 3.9.1 INSTRUMENTO DE MEDICIÓN CAMARAS DE CHOQUE TÉRMICO Está compuesto por dos cubas que contiene agua a temperatura conocida y constante: una temperatura ambiente (aproximadamente 20o C) y otra a una temperatura mayor (aproximadamente 65o C). Los envases se sumergen durante 15 minutos en el agua a temperatura más elevada y, a continuación, en el agua a temperatura ambiente durante 2 minutos. Según las normas ASTM, es aceptable una resistencia a 40o C o 113o F. (Naviglio, 2015)
  • 31. CONTROL DE CALIODAD 30 3.10 RESISTENCIA A LA COMPRESIÓN AXIAL La carga axial se determina mediante el vertical Load Tester, ejerciendo fuerza creciente en el plano de la boca del envase hasta su rotura. Los límites de resistencia a la carga son establecidos por Bruni Glass en función del envase y se verifican según el método previsto por la norma UNI 9035 (ISO 8113). El incumplimiento de estos límites constituye un defecto mayor. (Naviglio, 2015) Fuente: 3www.grupoalava.com Figura: 24 Cámara de choque térmico
  • 32. CONTROL DE CALIODAD 31 3.10.1 INSTRUMENTO DE MEDICIÓN BTLT- 1 (Bottle Top Load Tester) 3.11 RESISTENCIA AL IMPACTO La medición de la resistencia a los golpes (inch/pounds) se realiza mediante la detección de la rotura del envase provocada por el impacto con un martillo a masa conocida, situado a una altura preestablecida, que realiza un movimiento pendular. La medición se puede realizar a la altura del hombro o de la base del recipiente. Los límites de resistencia a la prueba de impacto son definidos por Bruni Glass en función del envase y se verifican según el método previsto por la normativa UNI 9302. Figura: 25 Probador de resistencia a la fuerza axial para botellas de vidrio. Fuente: at2e.com
  • 33. CONTROL DE CALIODAD 32 El incumplimiento de estos límites constituye un defecto mayor. 3.11.1 INSTRUMENTO DE MEDICIÓN COMPROBADOR DE IMPACTO 3.12 TRANSMISIÓN DE LUZ Varía en función de la longitud de la onda del color y del espesor del vidrio; a continuación se muestran los valores indicativos de poder de filtración (Naviglio, 2015): Figura: 26 Impact Tester Fuente: www.agrintl.com
  • 34. CONTROL DE CALIODAD 33 3.12.1 INSTRUMENTO DE MEDICIÓN DOSÍMETRO DE PELÍCULA 3.13 RESISTENCIA HIDROLÍTICA La estabilidad química de los envases de vidrio para uso farmacéutico es expresada por la resistencia hidrolítica, es decir, la resistencia para liberar sustancias minerales solubles en agua Fuente: Transferencias 2.0 Técnicas formas materiales. Figura: 27 Valores indicativos del poder de filtración. Figura: 28 Dosímetro de película. Fuente: www.lecsifilm.com.ar
  • 35. CONTROL DE CALIODAD 34 bajo condiciones específicas de contacto entre la superficie interna del envase o el polvo del vidrio y el agua. Los envases de vidrio son ampliamente utilizados en la industria farmacéutica, como contenedor de diversas preparaciones. Para poder validar los envases para este uso, y dado este contacto directo inevitable entre envase y preparación, es imprescindible garantizar la ausencia de migraciones no deseadas hacia el producto. La estabilidad química de los envases de vidrio para uso farmacéutico es lo que se conoce como Resistencia Hidrolítica. El vidrio boro silicato 3.3 pertenece a la clase hidrolítica 1, según DIN ISO 719 (98 °C), norma que divide en 5 clases esta resistencia del vidrio frente al agua. Esto quiere decir que cuando el vidrio con tamaño de grano entre 300-500 µm se expone al agua a 98 ºC durante 1 hora, pierde menos de 31 μg de Na2O por gramo de vidrio. El vidrio boro silicato 3.3 también pertenece a la clase 1 según DIN ISO 720 (121 °C), norma que divide en 3 clases esta resistencia del vidrio frente al agua. Esto quiere decir que cuando el vidrio se expone al agua a 121 ºC durante 1 hora, pierde menos de 62 μg de Na2O por gramo de vidrio. Fuente: 4www.schott.com Figura: 29 Frasco de boro silicato 3.3.
  • 36. CONTROL DE CALIODAD 35 3.13.1 INSTRUMENTO DE MEDICIÓN MOLINO DE BOLAS RETSCH Dentro de los equipos disponibles para la realización de los tests de RH, destaca un molino de bolas Retsch modelo PM100, para triturar las muestras, un conjunto de tamices, para seleccionar el tamaño adecuado de partículas de vidrio a analizar, y una autoclave Selecta modelo Autotester-E, para poder forzar la posible migración de sustancias a detectar y analizar. Figura: 30 Molino de bolas Retsch modelo P100. Fuente: 5www.iqs.edu.
  • 37. CONTROL DE CALIODAD 36 3.14 COLOR El color del vidrio es el resultado de su interacción con la radiación luminosa que incide sobre él. Si un haz de luz blanca atraviesa el vidrio sin pérdidas, el vidrio será incoloro, pero si absorbe determinadas longitudes de onda, el vidrio mostrará la coloración resultante de las zonas no absorbidas [1]. La estructura básica de un vidrio, formada por óxidos formadores, fundentes y estabilizantes, es incolora por lo que es preciso incorporar determinados compuestos químicos para producir la coloración. Los compuestos incorporados al vidrio que aportan color pero mantienen la transparencia del vidrio se denominan cromóforos, mientras que los compuestos que aportan color y vuelven al vidrio opaco se denominan opacificantes. La gran problemática del estudio de la coloración es la presencia de varios cromóforos y/u opacificantes en un mismo vidrio para conseguir tonalidades intermedias, incluso un mismo elemento puede presentar dos valencias diferentes en la masa vítrea modificando el color final del vidrio. Por ello, este trabajo trata de recoger las técnicas más comunes para el estudio del color de los vidrios. Figura: 31 vidrios de diferente colore y tonalidades. Fuente: Elartedelvidrio.com
  • 38. CONTROL DE CALIODAD 37 CAPITULO 4 CONCLUSIONES Y RECOMENDACIONES 4.1 CONCLUSIONES  Las especificaciones técnicas de un envase son el conjunto de parámetros representados en unidades físicas controlables y medibles, las cuales permiten validar una calidad y seguridad, así como hacer un uso del material en las correctas condiciones y/o poder comparar entre los distintos materiales.  Los espesores de la botella depende del tamaño y del modelo de la botella en estudio.  La geometría de la botella y la base de la botella depende de la presión interna que soporta, comportándose mejor para bebidas gaseosas con presión la forma petaloide.  Con las máquinas de última generación se mejora la calidad de botellas ya que éstas tienen incorporado sensores electrónicos de alta respuesta a las variaciones de las especificaciones predeterminadas; generando gráficos, diagramas, etc., en el computador de la 99 Sopladora, lo que permite predecir y corregir los defectos antes de que ocurran fallas graves. 4.2 RECOMENDACIONES  Se vio que en el control de calidad se abarcan una innumerable cantidad de parámetros para concluir en la calidad del envase, veo que se facilitaría de manera inmediata si se dividieran los parámetros que tiene una característica en común y luego pasar con las demás.  Las condiciones en las que se realiza la medición de la resistencia de impacto son algo rústicos, se haría más viable si este proceso fuese medido con unos instrumentos más exactos para evitar la recolección de datos lejos del teórico.
  • 39. CONTROL DE CALIODAD 38 CAPITULO 5 Bibliografía Naviglio, T. s. (2015). transparencias 2.0 tecnicas formas materiales. itallia: Bruni Glass. Plástico, A. C. (2016). La correta especificación de los envases. España: Ecoembes. vidrio, s. e. (1995). Calidad y control en la industria del vidrio. Verre, 16.