SlideShare ist ein Scribd-Unternehmen logo
1 von 110
Downloaden Sie, um offline zu lesen
S. Sarkar
Sewers and Sewer Networks
Design, Construction and Maintenance
http://cpheeo.nic.in/Sewerage.aspx
WASTEWATER MANUAL
RAW
WATER
TREATED WATER
WASTEWATER
TEATED
WASTEWATER
WASTEWATER TREATMENT PLANT
WATER TREATMENT PLANT
Classification of Sewers
• Domestic or Industrial Sewers
• Storm Sewers
• Combined Sewers
They are designed to carry wastewater generated from domestic
establishments or small- and medium- sized industrial establishments in a
municipal area but not storm-water
They are designed to carry off only stormwater and groundwater but excludes
sewage from domestic and/ or industrial source
They are designed to carry off stormwater, domestic and industrial
wastewater
Advantages and Disadvantages of Combined Sewers
• It is initially economical to set up a combined sewer rather than
separately installing domestic sewers and stormwater sewers
• During dry season lack of stormwater causes a low flow rate. Low
flow rate gives rise to low velocity of flow. At low velocities, due to
less turbulence, the deposition of sewage solids are more. Result is
siltation and consequent foul odor generation due to degradation of
the settled solids.
• In contrast, during wet or rainy seasons, the flow rate is very high.
Therefore, pumping costs are more, causing high operation and
maintenance cost.
• Pumps that are designed to operate at high flow rate to tackle the
wet season flow, runs in low flow condition in dry season which is an
inefficient operation that consumes more power than usual.
Due to the above reasons, combined sewers are not generally
recommended by the manual of sewerage and sewage treatment,
Government of India
Estimation of Quantity of Sanitary Sewage
The sewers are designed to carry:
• Spent water from a community
• Some groundwater
• Fraction of the stormwater
• Industrial wastewater for small establishments
The sanitary sewers are designed to carry the wastewater from the above
sources to a sewage/wastewater treatment plants
Carrying capacity of the sewers depends on: 1. Present and 2. Future
quantities of flow rate expected.
Thus, it is important to estimate the design flow rate for the sewers to be
constructed.
Estimation of Sewage Flowrate
Two Parameters:
1. The contributing population, and
2. Per capita (per person) flowrate of
sewage
Both of these
quantities depend
on the design
period
Design period: The length of the time up to which the capacity of a sewer will
be adequate is called a design period.
Normally design period for a sewerage system is considered as 30 years
But, mechanical rotating equipment such as pumps are designed for 15 years
Forecasting the Population
Prospective population of the project area (may be a city, town or a
metropolitan area)
Methods:
• Demographic population projection
• Arithmetical increase method
• Incremental Increase method
• Geometrical Increase method
• Growth rate
• Graphical method
• Logistic method
• Method of density
Where is the forecast found for design purposes?
Normally for a city, population growth forecasts are found from the
master-plan prepared by town planning or other relevant authorities.
What to do when masterplan or planners’ documents are unavailable?
Floor-Space Index Based Calculation
1. From the city-plan find out the % of the total area available for residential
development
2. Actual total floor area = Area for residential development X Floor Space
Index (FSI)
3. Find out floor area required for one person or assume it depending on
the available data from the city. Normally it is 9 sqm/ person.
4. Find out the density of population per hectare
5. Multiply the density with the total area of the city to find out the total
population
This total population can be used for estimating the quantity of total sewage
flow.
Example: Finding out population density based on Floor Space Index method
A well-planned city has following areas earmarked for its development in the planning
stage: Roads- 20%; Gardens- 15%; Schools – 5%; markets and Commerical places – 2%;
Hospital and medical facilities – 2% and rest is residential area. The Floor Space Index
(FSI) for the city is fixed at 2. If the floor area is 9 sqm/ person, find out the projected
population density of the city in numbers/ hecatare.
Residential Area (%) = 100 – (20+15+5+2+2) = 56
Actual Floor Area = Area of the land X FSI
Population that can reside in the area= Actual Floor area / Area required by a person
= 0.56X2 /9
Population density (numbers / hectare) = 0.56X2X10000/9 = 1244
numbers / sqm
Per Capita Sewage Flow rate
Ideally the entire amount of water used by a community should appear as the total
flow in a sanitary sewer
Water is lost due to:
• Evaporation Loss
• Seepage into ground
• Leakges
The dry weather flowrate is slightly less than the per capita water consumption
For very dry and arid regions,
Average sewage flowrate ≥ 40% of water consumption rate
In well-paved and well-developed areas,
Average sewage flowrate ≈ 90% of water consumption rate
Conservative estimate is 80% of water consumption rate
Design water consumption in India = 130 LPCD (litre per capita per day)
Design minimum wastewater flow in India = 100 LPCD
Variations in Flow and Peak Factor
Time of the day
Flowrate
Water consumption varies from hour to
hour. Along with daily variations, there
also are seasonal variations.
For design purpose, sewers are always
designed to carry maximum or peak flow
rates, rather than designing it for average
flowrate.
Peak Factor (PF) =
Maximum wastewater flow rate
Average flow rate of wastewater
Population Peak factor
< 20,000 3.0
20,000 – 50,000 2.5
50,000 – 7,50,000 2.25
> 7,50,000 2.0
4 8 12 16 20 24
Average
In addition, commercial and industrial contributions are to be considered
into the total flow rate.
Groundwater Infiltration into Sewer lines
The sewers have joints. Some groundwater runoff may also seep into the
sanitary sewers.
The extent of groundwater infiltration into the sewers depend on the
workmanship and the level of the groundwater table with respect to the sewers.
Usually, for a sanitary sewer below the groundwater table the following
values are taken,
Minimum Maximum
Liters/ha.d 5000 50000
Liters per day/
manhole
250 500
Maximum sanitary flow rate = Average domestic flow rate X PF + infiltration flow rate
PEAK FLOW RATE or MAXIMUM FLOW RATE
Area with Sufficient Urbanization
Area with little or no urbanization
More paved surface, higher
imperviousness, less absorption by soil
High volume of water on the surface,
High runoff, needs quick evacuation
to avoid flooding/ inundation
RAINFALL
How to evacuate this increased runoff?
BUILD EFFICIENT STORM SEWER SYSTEM
Finding Out of Runoff
Runoff quantity depends on:
• Rainfall Characteristics (Intensity, Duration and space-
time distributions)
• Characteristics of the watershed surface (nature,
permeability, slope, and landscaping)
• Time of concentration (time required for flow to reach
the sewer)
The design should be adequate to carry from a basin or watershed the
maximum runoff caused by the design rainfall.
Storm sewers are designed for a rainfall with particular frequency or return
period. The design rainfall is fixed after economic considerations involving
the Intensity-duration and frequency (IDF) curves in an area.
Case I
tnttt
tttt
tttt
nn 


0
022
011
2
Rainfall duration is Δt
Time Runoff
t0= 0 Q0 = Q(t=0) =0
t1= Δt Q1=A1IC1
t2=2Δt Q2=A2IC2
tn=nΔt Qn=AnICn
Rainfall over a watershed draining at a single
discharge point
I = Intensity of the rainfall
A = Area
C= Run-off coefficient
Case II Rainfall duration is 2Δt
Time Runoff
t0= 0 Q0 = Q(t=0)= 0
t1= Δt Q1=A1IC1
t2=2Δt Q2=A1IC1+A2IC2
t3=3Δt Q3=A2IC2+A3IC3
tn=nΔt Qn= An-1ICn-1+AnICn
tn=(n+1)Δt Qn+1 =AnICn
tn+2 =(n+2) Δt Qn+2 =0
Case III Rainfall duration is nΔt
Time Runoff
t0= 0 Q0 = 0
t1= Δt Q1=A1IC1
tj=jΔt
tn=nΔt
tn+1=(n+1)Δt
T2n-1=(2n-1)Δt Q2n-1=A1IC1
t2n =2nΔt Q2n =0


j
k
kkj ICAQ
1


n
k
kkn ICAQ
1

 
n
k
kkn ICAQ
2
1
A Few Observations
• If the duration of the rainfall is tn and tn is the time necessary for the water
droplet to reach to the basin outlet from the hydraulically most distant place
in the basin, the entire surface area of the basin contributes to the flow rate
or the runoff observed from the basin.
• If the duration of the rainfall is longer than tn, the runoff value remains equal
to the same as the case above, from the time tn until the end of the rainfall
duration.
• If the duration of the rainfall is shorter than tn, the maximum runoff occurs at
the end of the rainfall and is smaller than the runoff obtained for a
precipitation of duration tn.
• The maximum runoff flow is always reached at the latest by the end of the
rainfall.
The maximum runoff due to a precipitation of uniform intensity I falling all over the
drainage basin, and of duration tn (the longest time for water to travel to the
outfall from the basin), is thus given by
 

n
k
kk
n
k
kkn CAIICAQ
11
Rational Equation
Q = 10 CIA
Q = Run-off in cum/hr
C= coefficient of run-off
I= Intensity of design rainfall, mm/hr
A = Area of drainage basin in hectares
 

n
k
kk
n
k
kkn CAIICAQ
11
In familiar terms, the above equation is thus given by,
AICQ 
Values of C
Absolutely impervious basin….1.0
Paved Areas……0.9
Lawn and Gardens….0.15
Water-bound macadem roads…0.45
The period of time after which the entire
basin area starts contributing to the run-off is
called the time of concentration. Varies from
3 to 30 minutes
Maximum run-off is obtained from a rain having a
duration equal to the time of concentration. SEWER
OUTFALL
DRAINAGE BASIN
tC
Time of Concentration (tc)
The duration of such a rainfall is called critical rainfall duration and the intensity of
such rainfall is known as critical rainfall intensity.
fec ttt 
te
tf
SEWER
OUTFALL
te= time of entry
tf= time of flow
Sub-basin
Time of entry is the longest time required for a water droplet in an urban sub-basin
to travel to a street inlet.
Kirpich’s model:
385.0
77.0
0195.0
s
FL
te 
L= maximum distance travelled by
the water on the surface
s= average slope of the route
travelled by water
F = friction factor
Surface type F
Rural watershed (flat ground) 1.0
Grass surface 2.0
Concrete or Asphalt surface 0.4
Concrete channel 0.2
Time of flow is the time required for water to travel to a sewage outfall from the street
inlet in the urban sub-basin. It is always computed considering that the pipe is running
full. 2
1
3
21
sR
n
v 
v
L
tf 
Typical Rainfall Intensity-Duration-Frequency CurvesRainfallIntensity,mm/hr
Duration, minutes
The curves can vary
from place to place
and the shape of
the curve follows
different patterns.
kt
a
I


kt
a
I n


n
x
tb
CN
I
)( 

I ( rainfall intensity) and T (duration) are variables; other terms are constants that can be
found out from fitting the curve with the field data obtained.
How to find out the
design maximum run-off
of a basin?
1. Decide on the frequency
of rainfall on which the
design will be based on.
Lets assume it is twice in a
year (that means we shall
allow flooding to occur on
average twice in a year).
2. From the contour map of the area find out the time of concentration of the basin (say 15
minutes)
3. Find out the rainfall intensity corresponding to the time of concentration. (TOC = duration
of rainfall )
4. Apply Rational Formula to find out the maximum or design runoff
/1.2 ha
/2.4 ha
/1.8 ha
/120 m
/180 m
Find out the maximum design runoff at
the discharge point
Assume: C = 0.3 (Entire area), 5-year frequency, vel.
In sewers = 0.6 m/s
200
25
175
75
100
125
150
50RainfallIntensity,mm/hr
Flow time in sewer from MH 1  MH 2
= (120 m)/ (0.6 m/s) (60 s/ min) = 3.3 min
Flow time in sewer from MH 2  MH 3
= (180 m)/ (0.6 m/s) (60 s/ min) = 5.0 min
Time of concentration from remote points of 3 separate areas to MH 3:
Area 1: 5.0 + 3.3 + 5.0 = 13.3 min
Area 2: 5.0 + 3.3 = 8.3 min
Area 3: 8.0 min (inlet time only)
Max. time conc. = Duration of rainfall = 13.3 min
I = 110 mm/hr. for 5-year frequency
Sum of CA values = 0.3 (1.2 + 2.4 + 1.8) = 1.62
Q = 10 x 110 x 1.62 = 1782 m3/hr.
HYDRAULIC DESIGN OF SEWERS
Design of sewers are done assuming steady-state conditions. Steady-state
means that the discharge or flow-rate at a point remains time-invariant.
Objectives:
1. Carry the peak flow rate for which the sewer is designed
2. Transport suspended solids in such a manner that the siltation in
a sewer is kept to a minimum
This is directly connected with the maximum achievable velocity in
the sewers. We do not want the sewage pipe materials to get worn
out. The wastewater manual recommends a maximum velocity of
3 m/s.
This condition gives us an idea about the minimum velocity that
has to be maintained inside a sewer during a low flow period.
Sewers versus Treated Water Conduits
SEWER WATER CONDUITS
1. They are never designed to run full; there is
always an empty space provided at the top.
1. They are always
designed to run full.
Reasons: a) Biodegradation causes
generation of gases like methane, hydrogen
sulfide, ammonia etc. which can get
dissolved if running under pressure.
b) At same slopes, the velocity and carrying
capacity is more when it runs partially full.
2. It is unpressurised. It maintains a gravity flow; It
is laid in gradients or slopes.
2. It is pressurized.
Normally, we do not
worry about the slope of
the water mains or lines
when we lay them.
Minimum Velocity in a Sewer
The velocity should be such that:
A) It will not allow the particles to settle inside
the sewer
B) Even if there is a deposition, it will promote
scouring of the particles so that it can self-cleanse
itself
The generation of Self-cleansing velocity should occur within the sewer for at
least once in a day.
W
α
W cosα
W sinα
Drag Force RSw 
If the block (Particle) has a unit length and unit width and thickness is dp , then
From the force balance, when the particle is on the verge of slipping down the plane,
 sinW
Volume
WeightSubmerged
submrged
)])(g*d*nV)-V[(
1
wnVV
V

])[1( wdn  
buyoancy)g*d*V(
1
s 
V
]1[)1(  sw Sn 
psub dW *1*1*
 sin]1)[1( psww dSnRS 
R= Hydraulic mean radius S= Slope of the channel
ps dS
R
k
S ]1[  sin)1( nk 
pss dSk
R
R
n
SR
n
v )1(
111
2
1
3
2
2
1
3
2

pss dSkR
n
v )1(
1 6
1

Where,
SELF-CLEANSING VELOCITY
Self-Cleansing Velocity
pSS DSkR
n
V )1(
1 6
1

n = roughness coefficient
R = Hydraulic Mean Radius =
P
A
A= Area of the channel
P= Wetted perimeter of the channel
Ss = Specific gravity of the particle
k = Dimensionless constant, 0.04 for granular particles, 0.8 for organic
matters
DP = Diameter of the particle for which the sewer will be designed, this
is the maximum particle size the sewer can safely carry
Sewers are always designed to attain the self cleansing velocities
JAPAN
D
d
α/2α/2
]
2
cos
22
[
DD
d  ]
2
cos1[
2
1 

D
d
2
4
DA


360
.
4
2 
Da 
2
cos
2
*
2
sin
2
*
2
1
*2
 DD

]
2
sin
360
[
4
2


 Da]
2
sin
360
[



A
a
D
d
α/2α/2
4
4
2
D
D
D
P
A
R 


]
2
sin360
1[
4 


D
p
a
r
DP 
360
*

Dp 
360
360
*





D
D
P
p
]
2
sin360
1[



R
r
D
d
α/2α/2
2/13/21
SR
n
V 
2/13/21
sr
n
v 
3/23/2
3/2
3/2
2
sin360
1 












R
r
R
r
V
v
3/2
2
sin360
1
2
sin
360
*
.
.













V
v
A
a
VA
va
Q
q
D
d
α/2α/2
]
2
cos1[
2
1 

D
d
]
2
sin360
1[



R
r
3/2
2
sin360
1 






V
v
3/2
2
sin360
1
2
sin
360 












Q
q
In all the above expressions, α is the only variable, all other
parameters are constant. Thus at different values of α, the above
proportional elements can be easily calculated
d/D a/A v/V q/Q
1.00 1.00 1.00 1.00
0.9 0.949 1.124 1.066
0.8 0.858 1.140 0.988
0.7 0.748 1.120 0.838
0.5 0.5 1.000 0.500
0.4 0.373 0.902 0.337
Capital Letters denote the situation
when the sewers run full
Maximum velocity is achieved
when the sewers are designed
to run at 80% of the full depth.
Designing Sewer Systems
Sewers are designed taking consideration of 30 years.
Population in the initial years of the design period are low compared to the
design population at the end of design period
Peak flow rate in the initial years is low compared to the designed peak flow
rate (ultimate peak flow)
Sizing should be such that it will attain the self-cleansing velocity at the
average design flow rate or at least at the maximum flow rate at the beginning
of the design period.
s
1000
2/13/21
sr
n
v 
]
2
sin360
1[
4 


D
p
a
r
3/2
2
sin360
1 






V
vVelocity at partially full flow
Velocity at full flow
For Partially-full flow v is not influenced by the diameter of the
pipe, rather is much influenced by the slope of the channel
After finding the minimum slope required, the pipe size is decided on the basis
of ultimate design peak flow rate and the permissible depth of flow. Adoption
of the above slopes would ensure minimum flow velocity of 0.6 m/s
Minimum size for a public sewer is 150 mm diameter
Minimum size for a public sewer in hilly terrain is 100 mm diameter
FROM THE SEWAGE TREATMENT MANUAL, GOI
Gravity Sewer: Minimum Pipe Slope for Attaining Vmin= 0. 6 m/s
Diameter
(mm)
Discharge
(lps)
Slope (m/m)
n= 0.013 n= 0.015
200 19 0.0033 0.0044
250 30 0.0025 0.0033
300 40 0.0019 0.0026
400 75 0.0013 0.0017
450 95 0.0011 0.0015
500 115 0.001 0.0013
600 170 0.0008 0.0010
700 230 0.0006* 0.0008
900 380 0.0004* 0.0006*
A slope below 0.0008
becomes practically
difficult for construction
purposes
Sewers with flat slopes
may be required to avoid
excessive excavation
where surface slopes are
flat or change in the
elevation is small.
The slope and size of the sewer should be such that the velocity of flow shall
increase progressively or shall remain steady throughout the length of the sewer.
Sewers shall have slope steeper than or equal to the ground slope, otherwise the
minimum ground cover may not be maintained through out the length of the
sewer.
What will be the diameter of the sewer designed with the following
conditions:
a) Population to be served: Present = 50,000; Design= 100,000;
b) Water consumption: Present = 130 lpcd; Design = 180 lpcd
c) 80 % of supplied water appears as wastewater
d) Self-cleansing velocity to maintained in the sewer = 0.6 m/s;
e) Maximum velocity in the sewer 3 m/s;
f) Minimum size of the sewer = 150 mm;
g) Peak factor = 2.5
h) n=0.015 i) Average Ground Slope = 1 in 5000
d/D a/A v/V q/Q
1.00 1.00 1.00 1.00
0.9 0.949 1.124 1.066
0.8 0.858 1.140 0.988
0.7 0.748 1.120 0.838
0.5 0.5 1.000 0.500
0.4 0.373 0.902 0.337
Slope to be provided = s=0.8 in 1000 = 0.8/1000 = 0.0008 (from the table)
We want the sewer to run 80% full at its ultimate peak flowrate so that maximum possible
velocity can be attained).
Q = A.V
STEP 1. Find out the average flowrate and maximum flow rate at present and after the
design period
STEP 2. Find out the optimum slope to be provided
STEP 3. Find out the size based on the ultimate peak flowrate.
2/13/21
sR
n
V 
2
4







D
A 
4
4
2
D
D
D
P
A
R 


2/1
3/22
*
4
1
*
4
. s
D
n
D
VAQ 







Time Average flowrate Peak factor Peak flowrate
Present 50,000* 130*0.8 L/d=0.06 cum/s 2.5 0.15 cum/s
Design 100,000* 180*0.8 L/d= 0.167 cum/s 2.25 0.375 cum/s
Q = 0.375/0.988 = 0.380
From the chart q/Q = 0.988 when d/D =0.8
Q=0.380 m3/s S= 0.0008 n =0.015
380.0)0008.0(*
4
*
015.0
1
*
4
2/1
3/22





 DD
Take D = 900 mm (next available size)
2/1
3/22
*
4
*
1
*
4
. s
D
n
D
VAQ 







  m/s697.0)0008.0(4/900.0
015.0
11 2/13/22/13/2
 sR
n
V
cum/s395.0697.0*
4
)85.0(
.
2


VAQ
D = 849 mm
949.0
395.0
375.0

Q
q
At ultimate peak flow,
77.0
D
d
135.1
V
v
m/s791.0697.0*135.1 v >0.6 m/s [OK]
Velocity is maximum when the depth of flow d = 0.8 D
At d/D = 0.8, v/V = 1.140
For a circular channel running under gravity,
Hence, vmax = 1.140*0.697 m/s = 0.794m/s < 3 m/s (Maxm. Velocity allowable)
O.K.
At the ultimate average flow rate q,
q/Q =(0.167/0.395)=0.42
From the proportionality chart, extrapolating, v/V = 0.93
Hence, v = 0.97* 0.697 m/s = 0.676 m/s >0.6 m/s O.K.
At the peak present flowrate q1,
q1/Q =(0.15/0.395)=0.38
Hence, v = 0.93* 0.697 m/s = 0.65 m/s >0.6 m/s OK
From the proportionality chart, extrapolating, v/V = 0.97
NOTE: If the velocity at the present peak flow rate is found to be below 0.6 m/s, then a
slight increase in the slope with the same diameter may help attain the minimum
required velocity of 0.6 m/s
Sewerage System
Preliminary Requirements
• It is meant for the transport stormwater and wastewater from the generation
point to the treatment plant. So it should be laid as deep as possible so that all
wastewater or storm water flow can be collected and transported.
• Erosion and corrosion resistant. Should be structurally strong enough to resist
impact loads or overburden and live loads
• Size and slope to be designed to carry the peak load as well as to carry average
flow in such a manner that the deposition shall be minimized.
• Maintenance should be easy, economical and safe for the workers.
Aims of the design are: a) make the system operational and b) Economical to build
and c) make the system durable through out its entire design life
Layout of Sewer Lines
Steps followed for making the layout:
Selection of an outlet or disposal points
Fixing limits to the drainage area or zone boundaries
Finalizing the location of Trunk and Main sewers
Finalizing the location of Pumping stations wherever necessary
Trunk sewer is the sewer in the network
with the largest diameter that extends
farthest from the sewage outfall
All other sewers are considered as
branches
Whenever two sewers meet at a point, the
incoming one with larger diameter is called the
main sewer.
Trunk Sewer
Outfall
Nomenclature System Followed in Sewer Systems
Trunk Sewer
32
4
L.3.1
R.3.1
R.3.2
L1.R.3.1.1
L1.R.3.1.2
L2.R.3.1.1 L2.R.3.1.2
Outfall
Network
manhole
NOMENCLATURE IN CASE OF DESIGN OF SEWER
NETWORK USING COMPUTER PROGRAMME
In case of design of sewer
network using computer
programme, there is no
restriction in the
nomenclature of the sewers
and manholes as required
for the manual design.
It is sufficient to give node
numbers as well as pipe
(link) numbers in any
manner in the sewer
network for design of the
network for using computer
software.
Most common location of laying sanitary
sewer is along the center of the streets
House
House
The individual domestic connections
can be from either side of the streets
For very wide streets the sewers are
laid on each side of the streets in the
curb or under the sidewalk
House
House
Street
Street
Sewer
Sewer
Sewer
To avoid any contamination sewer
lines are never laid near to the water
mains. If it is unavoidable, the sewers
are encased in concrete
Slope of the sewers generally follow the
natural slope of the ground or the street
Design Approach
1. On a map of the area locate all the sewer lines and measure the contributory
area to each of the sewer lines or points.
2. Also, draw the longitudinal section or profiles of the sewer lines. Mark on the
profile view the critical points such as basements of the low lying houses, levels
of existing sewers, disposal points, etc.
3. Design all the branch sewers, main sewers and trunk sewers, starting from
the farthest point in the network and based on the following considerations:
a) A self cleansing velocity is maintained at present peak flow
b) The sewer should run 0.8 full at the design ultimate peak flow
c) Minimum velocity of 0.6 m/s is obtained
d) Maximum velocity should not be beyond 3 m/s
Example of a Profile of a Sewer Line
A view inside a sewer in London
Sewer Appurtenances
These are devices necessary (except pipes and conduits) for proper functioning
of the sanitary, storm and combined sewers
The appurtenances include:
1. Manhole
2. Drop Manhole
3. Lampholes
4. Gully-traps
5. Intercepting chambers
6. Flushing tanks
7. Street Inlets
8. Siphons
9. Grease traps
10. Side-flow weirs
11. Leaping weirs
12. Venturi flumes
13. Outfall structures
Sewer lines
Brickwork sewer line HDPE sewer pipe
RCC sewer pipes
MANHOLES
Manholes are RCC or masonry chambers, constructed at suitable intervals along the
sewer lines, for providing access to the inside of the sewers.
Helps in: a) Joining the sewer pipes; b) Inspection and cleaning of pipes; c) mainte-
nance; d) Ventilation if manholes are perforated
Water
main
Electric
cable
Gutter Curbmanhole
Sewer
Manholes are provided at every transition points:
bend junction Change in gradient
Change in sewer diameter At regular intervals
Between two adjacent manholes, the sewer
line runs straight with constant slope
Manholes
Brickwork HDPE
RCC precast RCC precast
TYPES OF BRICKWORK MANHOLES
Rectangular manhole (900x800 mm)
SHALLOW MANHOLE:
•depth less than 0.9 m
•Suitable for branch sewers or
places with no heavy traffic
• It is also called an inspection
chamber
Rectangular manhole for (1200× 900mm)
NORMAL OR MEDIUM MANHOLES:
•depth 0.9 m to 2.5 m
•Heavy cover is provided at the top
• May be either square or rectangular
(900mm X900mm and 1200mm X 900
mm)
TYPES OF BRICKWORK MANHOLES
Arch type manhole for (1400 mm × 900 mm)Typical circular manhole
DEEP MANHOLES
•deeper than 2.5 m
•Heavy cover is provided at the top
•Size in the upper portion is reduced by offset: May be either square
or rectangular or circular
Access shaft: Minimum size is
0.75 X 0.6 m
Working chamber: Provides working
space for inspection and cleaning
operations, Minimum size 1,2 m X
0.9 m or 1.2 m dia; minimum height
is 1.8 m
Benching: concreted portion sloping
towards semicircular or U -shaped
bottom part of the main sewer, the
slope facilitates the entry of sewage
into the main sewer
Steps or ladders: for accessing
RCC AND COMBINATION MANHOLES
• Advantages over brickwork manholes:
– better quality control in raw materials and
workmanship
– easier fixing in the field with maximum speed and
minimum disturbance to traffic
• Concerns:
– The concrete corrosion of the inside by sulphide gas
and the soil side by sulphate in soil water.
• Solution:
– The use of high alumina cement is advisable in
manufacture itself or sulphate resistant cement with
extra lining of 25 mm thickness over inner wall with
high alumina cement.
• Two types of RCC manholes can be used –
– Manholes with vertical shaft in RCC and the
corbelled cone portion in brickwork
– Entire manhole in RCC and corbelled cone portion
separately precast and jointed
• The entries and exits of main sewers as well as
house service sewers requires careful detailing
because the issue of puncturing the walls for
insertions of especially house service sewers
later on is impossible.
RCC AND COMBINATION MANHOLES
HDPE MANHOLES
• HDPE manholes with EN 13598-2: 2009 and ISO
(ISO 9001: 2008) specifications are recent
entrants. (Indian std. not yet brought out by BIS)
• Advantages:
– Speedy construction as compared to brickwork
manholes as these come ready made.
• Site-specific precautions:
– To be safeguarded against uplift pressure due to high
GW level and crushing under heavy traffic load.
DROP MANHOLE
It is used when a branch sewer joins a main sewer at a height more than 600 mm above the
main sewer or the drop is more than 600 mm.
Advantages: 1) Steep gradients in the branch sewer can be avoided ; 2) The sewage from
the branch sewers may fall on the person working; This is avoided.
Plug
Inspection Arm
FLUSHING MANHOLE
Provided where it is not possible
to gain enough flow so as to
maintain a self-cleansing velocity.
Often such condition is prevalent
at the beginning of the branch
sewers.
Generally provided at the head
of the sewers where enough
storage is provided to
generate a high velocity to
flush out the obstructions
Automatic Flushing Tanks
Automatic Flushing Tanks
Curb Inlet
Gratings
Different Types of Street Inlets
GUTTER TYPE
CURB TYPE INLETS
COMBINATION MULTIPLE TYPE INLETS
CATCH BASINS
SEWER
A Type of Street Inlet
The basin helps in settling the grit,
sand, debris, etc. before the
storm water enters the sewer line
Hood prevents the escape of the
foul gases into the sewer line and
network
Oil and Grease Trap
Generally located near the sources which can generate oil and grease-
contaminated wastewater. Restaurants, garages, automobile repair workshops
Oil and grease in the sewer system can : a) sticks to the inner surface of sewers
and reduces the sewer capacity; b)entraps suspended matter, further reducing
the capacity; c) adversely affect the performance of wastewater treatment
plants
REGULATOR OR OVERFLOW DEVICES OR STORM-RELIEF WORKS
The regulators are provided to avoid overloading of sewers, pumping stations,
treatment plant or disposal arrangements by diverting excess flow to relief
sewers or overflow stream.
The overloading is caused by excess flow coming in a pipeline due to heavy
rainfall or excess stormwater. As they are not expected to carry huge pollutant
load, the excess stormwater can be safely disposed of to natural streams
without any treatment.
Three types of Regulator devices:
a) Leaping Weir
b) Side-flow or Overflow weir
c) Siphon spillway
Leaping Weir
Arrangement consists of an opening at the invert of a storm drain through which
the normal storm flow is taken into an intercepting sewer and excess flow leaps
over the combined sewer to flow to a neighboring stream
INCOMING FLOW
Intercepting Sewer
Overflow or Side-flow Weir
Excess water is allowed to overflow the
combined sewer in the manhole, from
where it is taken to another channel that
leads to stormwater drain or manhole.
The weir length has to be sufficiently
long for effective regulation
Siphon Spillway
Air Line
Receiving StreamSewer
Spillway
Different Cross-sectional Shapes of Sewers
Most widely used cross-sectional shape is a circular-section sewer.
The reasons behind the preferences are:
a) A circular section provides the maximum area of flow for a given
perimeter, therefore higher value of hydraulic mean radius.
P
A
R 
2/13/21
sR
n
V 
It is the most efficient section, among all possible variations
b) It uses the minimum amount of materials for is manufacture, therefore it is
economical to use such a section
c) Manufacture is easy and convenient
d) Structurally more stable (without any corners, hence load is evenly distributed all
around
e) Chances of deposition is less
d/D a/A v/V q/Q
1.00 1.00 1.00 1.00
0.9 0.949 1.124 1.066
0.8 0.858 1.140 0.988
0.7 0.748 1.120 0.838
0.5 0.5 1.000 0.500
0.4 0.373 0.902 0.337
0.3 0.252 0.776 0.196
0.2 0.143 0.615 0.088
Advantages of a circular sewer diminishes when the sewer is not running at least half-full
Lesser the discharge, poorer is the performance
OVOID OR EGG-SHAPED SEWER
At low discharges 2- 15%
higher velocities are available
for these type of sections
compared to Hydraulically
Equivalent Circular Sections
Standard Oval Shaped Sewers
“New Type” Oval Shaped Sewers
Hydraulically Equivalent Section: Two sewers of
different shape (i.e. different sections) are said to be of
hydraulically equivalent when they carry the same
discharge when running full at the same slope.
d/D v/V
Ovoid circular
0.25 0.7 0.698
0.20 0.62 0.61
0.10 0.44 0.4
0.05 0.29 0.25
Design of Ovoid-Shaped Sewers
1. Calculate the approximate diameter of a hydraulically equivalent circular sewer that
would carry the same discharge at the same slope as the ovoid-shaped sewer.
2. Top horizontal diameter of the Ovoid-sewer = 0.84 X Diam. of the circular sewer
3. Find out the other dimensions from the following figures, according to the type of
sewer to be designed
Horse-Shoe Type of Sections
Open-Drain Sections
P
A
R 
2/13/21
sR
n
V 
VAQ *
Design a gravity –flow trunk sanitary sewer for
the area . The trunk sewer is to be laid
along Peach Avenue starting at 4th Street and
ending at 11th Street. Assume that the
that the following design criteria have been
developed based on an analysis of local
conditions and codes:
1. For design period use the saturation
period.
2. For population densities use the data given
in the table.
3. For residential WW flows use the data given in
the table.
4. For commercial and industrial flows (average):
a. Commercial – 20 m3 /ha . d
b. Industrial - 30 m3 /ha . d
5. For institutional flows (average):
College - 400 m3 / d (5330 students x 75 L/ student . d)/ (1000 L/ m3 )
6. For infiltration allowance:
a. For residential areas, obtain the peak infiltration values from the fig. (b):
b. For commercial, industrial, and institutional areas also obtain the peak
infiltration values from the fig. (b). However, to take into account that the
total length of sewers in these areas will generally be < that in residential areas,
use only 50% of the actual area to compute the infiltration allowance.
7. For infiltration allowance  Assume steady – flow
8. Peaking Factors:
a. Residential  Use the curve, fig. (c)
b. Commercial  1.8
c. Industrial  2.1
d. Institutional (school) 4.0
PeakingFactor
9. Hyd. Design Eq.  Manning Eq. , n = 0.0013, Use Fig. 6 -10 (Nomogram)
10. Min. pipe size  As per local Bldg. Code, 200 mm
11. Min. velocity  0.75 m/s
12. Min cover  As per local Bldg. Code, 200 mm, 2.0 m
Solution:
1. Lay out the trunk sewer. Draw a line to
represent the proposed sewer [Fig. (a)].
2. Locate the no. of MH’s:
(a) Change in direction
(b) Change in slope
(c) Pipe junctions
(d) Upper end of sewers
(e) Intervals: 90 – 120 m or less (As per Code)
Identify each MH with a no.
In Fig. (a),
only MHs at major junctions numbered.
In an actual design,
intermediate MHs to be located and numbered.
a. Column 1  5, Identify lines, Summarize data
b. Column 6  13, Obtain cumulative peak domestic flows
3. Prepare design tables. Comments:
Table 1
c. Column 14  18, Obtain cumulative peak commercial flows
d. Column 19  23, Obtain cumulative peak industrial flows
Table 2
e. Column 24 26, Obtain cumulative peak institutional flows
f. Column 27 28, Obtain cumulative average and peak flows
g. Column 29 32, Obtain infiltration allowance
h. Column 33 Total Cumulative Peak Design Flow  Columns 28 + 32
Table 3
i. Columns 35  38 , Sewer Design, Manning’s Eq., n = 0.013 , v > 0.75 m/s
j. Columns 39  42, Layout Data
Column s 39/40  Ground surface elevations obtained by interpolation from Fig. (a)
Column s 41/42  Sewer invert elevations (By Trial and Error from Work Sheet)
Table 4
0.121
m3/s
0.0018
m/m
0.330
m3/s
0.0009
m/m
Line 2-3:
q/Q=0.313/0.330
=0.95
d/D=0.86
v/V=1.04
WORK – SHEET
(1) Plot ground surface elevations, working backwards
(2) Sketch invert and crown
(3) Line 1: Locate the invert of the upper end of the pipe
Upper Invert Elevation=Ground surface – depth of cover – pipe wall thickness – pipe dia.
= 20.00 m - 2.00 m - 0.05 m - 0.45 m
=17.5 m
Lower Invert Elevation= Upper Invert Elevation-(Slope of sewer)x(Length of sewer)
17.5 m - (0.0018 m/m) x (707 m)
=16.23 m
Check: Depth of Cover  Adequate/ Not adequate ?
=19.00 m – (16.23 m + 0.45 m + 0.05 m)
= 2.27 m  OK
If Depth of Cover  Not adequate / too shallow
Two alternatives:
(1) Repeat with a lower invert elevation, or
(2) A steeper slope
Depth of cover
Wall thickness
Ground surface
Inside top  “Crown”
Inside bottom  “Invert”
Bottom
Some Other Important Considerations
(1) When a MH is located at a sewer junction:
Outlet sewer invert elevation is fixed by the invert level of the lowest inlet sewer
(2) If the pipe size increases:
The crowns of the two pipes must be matched at the MH
To avoid the backing up of WW in to the smaller pipe.
An example: Increase in size from 450 mm  750 mm at MH 2
450 mm dia.
750 mm dia.
16.23 m
16.23 m
+0.45 m
-0.75 m
=15.93 m
15.93 m
-(0.0009 m/m)x(707 m)
=15.29 m
Sewer junction
Example of a Profile of a Sewer Line
Small Bore Sewer System
They are designed to carry only the liquid part of the domestic sewage generated
for off-site treatment or disposal
Septic Tank or
interceptor tank
Sewer
Solids are separated at a septic tank or at the
aqua-privies before the sewage reaches the
sewers
The advantages:
a) The sewer can have less velocity and flowrate
as it receives only settled wastewater
b) Economic as it requires less cost of
excavation, material and treatment
c) Upgradation from on-site treatment system to
conventional treatment system is easily done
d) Maintenance of strict sewer gradients is not
required as there is no self-cleansing velocity
requirement
Minimum diameter of the sewer pipes is recommended to be 100 mm
Small Bore Sewer System
The small bore sewer system outfall can be any of the following:
a)The conventional sewer system
b) Waste stabilization ponds
c) Any other low cost treatment systems followed by fish ponds or land-
based disposal with precautions
Limitations:
a) Interceptor tank requires periodical cleaning and disposal of solids
b) Any illegal connection without any interceptor tank shall ruin the
system. So, strict vigilance is required.
Shallow Sewer System
These are modification of surface drain with covers and consist of a network of
pipework laid in the areas away from the places where heavy sewage loads are
expected.
Pipes are laid in flat gradients following the natural slope of the ground. The
minimum depth is 0.4 m
System contains:
a) House connections
b) Inspection
chambers
c) Laterals
d) Street-collector
sewers
e) Pumping stations
The laterals are minimum diameter 100 mm
The street collectors have a minimum diameter of 150 mm
Shallow Sewer System
Suitability of the system:
1. High density habitats such as slums or squatter settlements ( with population
density more than 170 per hectre)
2. Ground-condition is adverse and on-site disposal is not possible
3. Sewage has to be disposed of and minimum water consumption is 25 lpcd.
Limitations:
a) It is suitable when suitable ground slope is available
b) Unless flushed out at peak flowrates, there is a possibility of solids
deposition if there is not enough ground slope available
c) May require frequent cleaning

Weitere ähnliche Inhalte

Was ist angesagt?

Suitability selection of source and criteria considered for water supply.
Suitability selection of source and criteria considered for water supply.Suitability selection of source and criteria considered for water supply.
Suitability selection of source and criteria considered for water supply.GOVERNMENT ENGINEERING COLLAGE DAHOD
 
Collection of sewage &amp; estimation of its discharge
Collection of sewage &amp; estimation of its dischargeCollection of sewage &amp; estimation of its discharge
Collection of sewage &amp; estimation of its dischargeRajdip Bhdaraka
 
Water demand/Waterrequirements
Water demand/Waterrequirements Water demand/Waterrequirements
Water demand/Waterrequirements dhavalsshah
 
design and analysis of water distribution System
design and analysis of water distribution Systemdesign and analysis of water distribution System
design and analysis of water distribution SystemMian Umair Afzal
 
Design and Construction of Sewers And Sewer Appurtenances
Design and Construction of Sewers And Sewer AppurtenancesDesign and Construction of Sewers And Sewer Appurtenances
Design and Construction of Sewers And Sewer AppurtenancesTulsiram Bhattarai
 
Introduction, water demand
Introduction, water demandIntroduction, water demand
Introduction, water demandGARRE RAVI KUMAR
 
Water demand and Population forecasting
Water demand and Population forecastingWater demand and Population forecasting
Water demand and Population forecastingShivangi Somvanshi
 
Intake structures-Introduction
Intake structures-IntroductionIntake structures-Introduction
Intake structures-IntroductionDeepak Paithankar
 
Sewage Conveyance and Pumping
Sewage Conveyance and PumpingSewage Conveyance and Pumping
Sewage Conveyance and PumpingGAURAV. H .TANDON
 
Design of sewerage collection system and cost estimation
Design of sewerage collection system and cost estimationDesign of sewerage collection system and cost estimation
Design of sewerage collection system and cost estimationVijay Kumar
 

Was ist angesagt? (20)

Water demand
Water demandWater demand
Water demand
 
L 2 sources and water supply schemes
L 2 sources and water supply schemesL 2 sources and water supply schemes
L 2 sources and water supply schemes
 
Suitability selection of source and criteria considered for water supply.
Suitability selection of source and criteria considered for water supply.Suitability selection of source and criteria considered for water supply.
Suitability selection of source and criteria considered for water supply.
 
Collection of sewage &amp; estimation of its discharge
Collection of sewage &amp; estimation of its dischargeCollection of sewage &amp; estimation of its discharge
Collection of sewage &amp; estimation of its discharge
 
Reservoirs
ReservoirsReservoirs
Reservoirs
 
Water demand/Waterrequirements
Water demand/Waterrequirements Water demand/Waterrequirements
Water demand/Waterrequirements
 
design and analysis of water distribution System
design and analysis of water distribution Systemdesign and analysis of water distribution System
design and analysis of water distribution System
 
Quantity of Water
Quantity of WaterQuantity of Water
Quantity of Water
 
L 5and l-6 sewer design
L 5and l-6 sewer designL 5and l-6 sewer design
L 5and l-6 sewer design
 
Sewer Appurtenances
Sewer AppurtenancesSewer Appurtenances
Sewer Appurtenances
 
Design and Construction of Sewers And Sewer Appurtenances
Design and Construction of Sewers And Sewer AppurtenancesDesign and Construction of Sewers And Sewer Appurtenances
Design and Construction of Sewers And Sewer Appurtenances
 
Introduction, water demand
Introduction, water demandIntroduction, water demand
Introduction, water demand
 
Water demand and Population forecasting
Water demand and Population forecastingWater demand and Population forecasting
Water demand and Population forecasting
 
Intake structures-Introduction
Intake structures-IntroductionIntake structures-Introduction
Intake structures-Introduction
 
Dry weather flow
Dry weather flowDry weather flow
Dry weather flow
 
Intake structures in wwwe
Intake structures in wwweIntake structures in wwwe
Intake structures in wwwe
 
SEWER DESIGN:
SEWER DESIGN:SEWER DESIGN:
SEWER DESIGN:
 
Sewerage System
Sewerage SystemSewerage System
Sewerage System
 
Sewage Conveyance and Pumping
Sewage Conveyance and PumpingSewage Conveyance and Pumping
Sewage Conveyance and Pumping
 
Design of sewerage collection system and cost estimation
Design of sewerage collection system and cost estimationDesign of sewerage collection system and cost estimation
Design of sewerage collection system and cost estimation
 

Ähnlich wie sewers and sewer netwrok - design construction and maintenance

Estimating sewage discharge and peak drainage discharge
Estimating sewage discharge and peak drainage dischargeEstimating sewage discharge and peak drainage discharge
Estimating sewage discharge and peak drainage dischargeAnkit Gola
 
L5 - ESTIMATION OF SEWAGE.pptx
L5 - ESTIMATION OF SEWAGE.pptxL5 - ESTIMATION OF SEWAGE.pptx
L5 - ESTIMATION OF SEWAGE.pptxPRACHI DESSAI
 
Sources, intake structures and water demand in Water Supply Schemes
  Sources, intake structures and water demand in Water Supply Schemes   Sources, intake structures and water demand in Water Supply Schemes
Sources, intake structures and water demand in Water Supply Schemes Vaibhav Kambale
 
water supply and Treatment (2).pptx
water supply and Treatment (2).pptxwater supply and Treatment (2).pptx
water supply and Treatment (2).pptxabdiwasa mahamed
 
L1 - Introduction.ppt
L1 - Introduction.pptL1 - Introduction.ppt
L1 - Introduction.pptPRACHI DESSAI
 
Chapter 1..Water Demand (1) examples.pptx
Chapter 1..Water Demand (1) examples.pptxChapter 1..Water Demand (1) examples.pptx
Chapter 1..Water Demand (1) examples.pptxHeniyit
 
14 d&amp;i design of surface drainage
14 d&amp;i design of surface drainage14 d&amp;i design of surface drainage
14 d&amp;i design of surface drainageMuhammadImran1202
 
5-Runoff computation (2).ppt
5-Runoff computation (2).ppt5-Runoff computation (2).ppt
5-Runoff computation (2).pptJohnAyele
 
Critical assesment of the Sustainable Urban Drainage component of the Church ...
Critical assesment of the Sustainable Urban Drainage component of the Church ...Critical assesment of the Sustainable Urban Drainage component of the Church ...
Critical assesment of the Sustainable Urban Drainage component of the Church ...Achim von Malotki
 
Quality &amp; quantity of water
Quality &amp; quantity of waterQuality &amp; quantity of water
Quality &amp; quantity of waterdhara dattani
 

Ähnlich wie sewers and sewer netwrok - design construction and maintenance (20)

Estimating sewage discharge and peak drainage discharge
Estimating sewage discharge and peak drainage dischargeEstimating sewage discharge and peak drainage discharge
Estimating sewage discharge and peak drainage discharge
 
L5 - ESTIMATION OF SEWAGE.pptx
L5 - ESTIMATION OF SEWAGE.pptxL5 - ESTIMATION OF SEWAGE.pptx
L5 - ESTIMATION OF SEWAGE.pptx
 
Waste water estimation
Waste water estimationWaste water estimation
Waste water estimation
 
L 4 wastewater flow rates
L 4 wastewater flow ratesL 4 wastewater flow rates
L 4 wastewater flow rates
 
WATERSHED CATCHMENT.pptx
WATERSHED CATCHMENT.pptxWATERSHED CATCHMENT.pptx
WATERSHED CATCHMENT.pptx
 
Sources, intake structures and water demand in Water Supply Schemes
  Sources, intake structures and water demand in Water Supply Schemes   Sources, intake structures and water demand in Water Supply Schemes
Sources, intake structures and water demand in Water Supply Schemes
 
WATERSHED CATCHMENT.pdf
WATERSHED CATCHMENT.pdfWATERSHED CATCHMENT.pdf
WATERSHED CATCHMENT.pdf
 
C-039.pdf
C-039.pdfC-039.pdf
C-039.pdf
 
water supply and Treatment (2).pptx
water supply and Treatment (2).pptxwater supply and Treatment (2).pptx
water supply and Treatment (2).pptx
 
L1 - Introduction.ppt
L1 - Introduction.pptL1 - Introduction.ppt
L1 - Introduction.ppt
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Chapter 1..Water Demand (1) examples.pptx
Chapter 1..Water Demand (1) examples.pptxChapter 1..Water Demand (1) examples.pptx
Chapter 1..Water Demand (1) examples.pptx
 
Water Requirements
Water RequirementsWater Requirements
Water Requirements
 
Sewer Design
Sewer Design Sewer Design
Sewer Design
 
14 d&amp;i design of surface drainage
14 d&amp;i design of surface drainage14 d&amp;i design of surface drainage
14 d&amp;i design of surface drainage
 
5-Runoff computation (2).ppt
5-Runoff computation (2).ppt5-Runoff computation (2).ppt
5-Runoff computation (2).ppt
 
Floods
FloodsFloods
Floods
 
Critical assesment of the Sustainable Urban Drainage component of the Church ...
Critical assesment of the Sustainable Urban Drainage component of the Church ...Critical assesment of the Sustainable Urban Drainage component of the Church ...
Critical assesment of the Sustainable Urban Drainage component of the Church ...
 
Quality &amp; quantity of water
Quality &amp; quantity of waterQuality &amp; quantity of water
Quality &amp; quantity of water
 
25 Rural Drainage.ppt
25 Rural Drainage.ppt25 Rural Drainage.ppt
25 Rural Drainage.ppt
 

Kürzlich hochgeladen

2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 

Kürzlich hochgeladen (20)

2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 

sewers and sewer netwrok - design construction and maintenance

  • 1. S. Sarkar Sewers and Sewer Networks Design, Construction and Maintenance
  • 4.
  • 5.
  • 6. Classification of Sewers • Domestic or Industrial Sewers • Storm Sewers • Combined Sewers They are designed to carry wastewater generated from domestic establishments or small- and medium- sized industrial establishments in a municipal area but not storm-water They are designed to carry off only stormwater and groundwater but excludes sewage from domestic and/ or industrial source They are designed to carry off stormwater, domestic and industrial wastewater
  • 7. Advantages and Disadvantages of Combined Sewers • It is initially economical to set up a combined sewer rather than separately installing domestic sewers and stormwater sewers • During dry season lack of stormwater causes a low flow rate. Low flow rate gives rise to low velocity of flow. At low velocities, due to less turbulence, the deposition of sewage solids are more. Result is siltation and consequent foul odor generation due to degradation of the settled solids. • In contrast, during wet or rainy seasons, the flow rate is very high. Therefore, pumping costs are more, causing high operation and maintenance cost. • Pumps that are designed to operate at high flow rate to tackle the wet season flow, runs in low flow condition in dry season which is an inefficient operation that consumes more power than usual. Due to the above reasons, combined sewers are not generally recommended by the manual of sewerage and sewage treatment, Government of India
  • 8. Estimation of Quantity of Sanitary Sewage The sewers are designed to carry: • Spent water from a community • Some groundwater • Fraction of the stormwater • Industrial wastewater for small establishments The sanitary sewers are designed to carry the wastewater from the above sources to a sewage/wastewater treatment plants Carrying capacity of the sewers depends on: 1. Present and 2. Future quantities of flow rate expected. Thus, it is important to estimate the design flow rate for the sewers to be constructed.
  • 9. Estimation of Sewage Flowrate Two Parameters: 1. The contributing population, and 2. Per capita (per person) flowrate of sewage Both of these quantities depend on the design period Design period: The length of the time up to which the capacity of a sewer will be adequate is called a design period. Normally design period for a sewerage system is considered as 30 years But, mechanical rotating equipment such as pumps are designed for 15 years
  • 10. Forecasting the Population Prospective population of the project area (may be a city, town or a metropolitan area) Methods: • Demographic population projection • Arithmetical increase method • Incremental Increase method • Geometrical Increase method • Growth rate • Graphical method • Logistic method • Method of density Where is the forecast found for design purposes? Normally for a city, population growth forecasts are found from the master-plan prepared by town planning or other relevant authorities. What to do when masterplan or planners’ documents are unavailable?
  • 11. Floor-Space Index Based Calculation 1. From the city-plan find out the % of the total area available for residential development 2. Actual total floor area = Area for residential development X Floor Space Index (FSI) 3. Find out floor area required for one person or assume it depending on the available data from the city. Normally it is 9 sqm/ person. 4. Find out the density of population per hectare 5. Multiply the density with the total area of the city to find out the total population This total population can be used for estimating the quantity of total sewage flow.
  • 12. Example: Finding out population density based on Floor Space Index method A well-planned city has following areas earmarked for its development in the planning stage: Roads- 20%; Gardens- 15%; Schools – 5%; markets and Commerical places – 2%; Hospital and medical facilities – 2% and rest is residential area. The Floor Space Index (FSI) for the city is fixed at 2. If the floor area is 9 sqm/ person, find out the projected population density of the city in numbers/ hecatare. Residential Area (%) = 100 – (20+15+5+2+2) = 56 Actual Floor Area = Area of the land X FSI Population that can reside in the area= Actual Floor area / Area required by a person = 0.56X2 /9 Population density (numbers / hectare) = 0.56X2X10000/9 = 1244 numbers / sqm
  • 13. Per Capita Sewage Flow rate Ideally the entire amount of water used by a community should appear as the total flow in a sanitary sewer Water is lost due to: • Evaporation Loss • Seepage into ground • Leakges The dry weather flowrate is slightly less than the per capita water consumption For very dry and arid regions, Average sewage flowrate ≥ 40% of water consumption rate In well-paved and well-developed areas, Average sewage flowrate ≈ 90% of water consumption rate Conservative estimate is 80% of water consumption rate Design water consumption in India = 130 LPCD (litre per capita per day) Design minimum wastewater flow in India = 100 LPCD
  • 14. Variations in Flow and Peak Factor Time of the day Flowrate Water consumption varies from hour to hour. Along with daily variations, there also are seasonal variations. For design purpose, sewers are always designed to carry maximum or peak flow rates, rather than designing it for average flowrate. Peak Factor (PF) = Maximum wastewater flow rate Average flow rate of wastewater Population Peak factor < 20,000 3.0 20,000 – 50,000 2.5 50,000 – 7,50,000 2.25 > 7,50,000 2.0 4 8 12 16 20 24 Average
  • 15. In addition, commercial and industrial contributions are to be considered into the total flow rate. Groundwater Infiltration into Sewer lines The sewers have joints. Some groundwater runoff may also seep into the sanitary sewers. The extent of groundwater infiltration into the sewers depend on the workmanship and the level of the groundwater table with respect to the sewers. Usually, for a sanitary sewer below the groundwater table the following values are taken, Minimum Maximum Liters/ha.d 5000 50000 Liters per day/ manhole 250 500 Maximum sanitary flow rate = Average domestic flow rate X PF + infiltration flow rate PEAK FLOW RATE or MAXIMUM FLOW RATE
  • 16. Area with Sufficient Urbanization Area with little or no urbanization More paved surface, higher imperviousness, less absorption by soil High volume of water on the surface, High runoff, needs quick evacuation to avoid flooding/ inundation RAINFALL How to evacuate this increased runoff? BUILD EFFICIENT STORM SEWER SYSTEM
  • 17. Finding Out of Runoff Runoff quantity depends on: • Rainfall Characteristics (Intensity, Duration and space- time distributions) • Characteristics of the watershed surface (nature, permeability, slope, and landscaping) • Time of concentration (time required for flow to reach the sewer) The design should be adequate to carry from a basin or watershed the maximum runoff caused by the design rainfall. Storm sewers are designed for a rainfall with particular frequency or return period. The design rainfall is fixed after economic considerations involving the Intensity-duration and frequency (IDF) curves in an area.
  • 18. Case I tnttt tttt tttt nn    0 022 011 2 Rainfall duration is Δt Time Runoff t0= 0 Q0 = Q(t=0) =0 t1= Δt Q1=A1IC1 t2=2Δt Q2=A2IC2 tn=nΔt Qn=AnICn Rainfall over a watershed draining at a single discharge point I = Intensity of the rainfall A = Area C= Run-off coefficient
  • 19. Case II Rainfall duration is 2Δt Time Runoff t0= 0 Q0 = Q(t=0)= 0 t1= Δt Q1=A1IC1 t2=2Δt Q2=A1IC1+A2IC2 t3=3Δt Q3=A2IC2+A3IC3 tn=nΔt Qn= An-1ICn-1+AnICn tn=(n+1)Δt Qn+1 =AnICn tn+2 =(n+2) Δt Qn+2 =0
  • 20. Case III Rainfall duration is nΔt Time Runoff t0= 0 Q0 = 0 t1= Δt Q1=A1IC1 tj=jΔt tn=nΔt tn+1=(n+1)Δt T2n-1=(2n-1)Δt Q2n-1=A1IC1 t2n =2nΔt Q2n =0   j k kkj ICAQ 1   n k kkn ICAQ 1    n k kkn ICAQ 2 1
  • 21. A Few Observations • If the duration of the rainfall is tn and tn is the time necessary for the water droplet to reach to the basin outlet from the hydraulically most distant place in the basin, the entire surface area of the basin contributes to the flow rate or the runoff observed from the basin. • If the duration of the rainfall is longer than tn, the runoff value remains equal to the same as the case above, from the time tn until the end of the rainfall duration. • If the duration of the rainfall is shorter than tn, the maximum runoff occurs at the end of the rainfall and is smaller than the runoff obtained for a precipitation of duration tn. • The maximum runoff flow is always reached at the latest by the end of the rainfall. The maximum runoff due to a precipitation of uniform intensity I falling all over the drainage basin, and of duration tn (the longest time for water to travel to the outfall from the basin), is thus given by    n k kk n k kkn CAIICAQ 11
  • 22. Rational Equation Q = 10 CIA Q = Run-off in cum/hr C= coefficient of run-off I= Intensity of design rainfall, mm/hr A = Area of drainage basin in hectares    n k kk n k kkn CAIICAQ 11 In familiar terms, the above equation is thus given by, AICQ  Values of C Absolutely impervious basin….1.0 Paved Areas……0.9 Lawn and Gardens….0.15 Water-bound macadem roads…0.45
  • 23. The period of time after which the entire basin area starts contributing to the run-off is called the time of concentration. Varies from 3 to 30 minutes Maximum run-off is obtained from a rain having a duration equal to the time of concentration. SEWER OUTFALL DRAINAGE BASIN tC Time of Concentration (tc) The duration of such a rainfall is called critical rainfall duration and the intensity of such rainfall is known as critical rainfall intensity. fec ttt  te tf SEWER OUTFALL te= time of entry tf= time of flow Sub-basin
  • 24. Time of entry is the longest time required for a water droplet in an urban sub-basin to travel to a street inlet. Kirpich’s model: 385.0 77.0 0195.0 s FL te  L= maximum distance travelled by the water on the surface s= average slope of the route travelled by water F = friction factor Surface type F Rural watershed (flat ground) 1.0 Grass surface 2.0 Concrete or Asphalt surface 0.4 Concrete channel 0.2 Time of flow is the time required for water to travel to a sewage outfall from the street inlet in the urban sub-basin. It is always computed considering that the pipe is running full. 2 1 3 21 sR n v  v L tf 
  • 25. Typical Rainfall Intensity-Duration-Frequency CurvesRainfallIntensity,mm/hr Duration, minutes The curves can vary from place to place and the shape of the curve follows different patterns. kt a I   kt a I n   n x tb CN I )(   I ( rainfall intensity) and T (duration) are variables; other terms are constants that can be found out from fitting the curve with the field data obtained.
  • 26. How to find out the design maximum run-off of a basin? 1. Decide on the frequency of rainfall on which the design will be based on. Lets assume it is twice in a year (that means we shall allow flooding to occur on average twice in a year). 2. From the contour map of the area find out the time of concentration of the basin (say 15 minutes) 3. Find out the rainfall intensity corresponding to the time of concentration. (TOC = duration of rainfall ) 4. Apply Rational Formula to find out the maximum or design runoff
  • 27. /1.2 ha /2.4 ha /1.8 ha /120 m /180 m Find out the maximum design runoff at the discharge point Assume: C = 0.3 (Entire area), 5-year frequency, vel. In sewers = 0.6 m/s 200 25 175 75 100 125 150 50RainfallIntensity,mm/hr
  • 28. Flow time in sewer from MH 1  MH 2 = (120 m)/ (0.6 m/s) (60 s/ min) = 3.3 min Flow time in sewer from MH 2  MH 3 = (180 m)/ (0.6 m/s) (60 s/ min) = 5.0 min Time of concentration from remote points of 3 separate areas to MH 3: Area 1: 5.0 + 3.3 + 5.0 = 13.3 min Area 2: 5.0 + 3.3 = 8.3 min Area 3: 8.0 min (inlet time only) Max. time conc. = Duration of rainfall = 13.3 min I = 110 mm/hr. for 5-year frequency Sum of CA values = 0.3 (1.2 + 2.4 + 1.8) = 1.62 Q = 10 x 110 x 1.62 = 1782 m3/hr.
  • 29. HYDRAULIC DESIGN OF SEWERS Design of sewers are done assuming steady-state conditions. Steady-state means that the discharge or flow-rate at a point remains time-invariant. Objectives: 1. Carry the peak flow rate for which the sewer is designed 2. Transport suspended solids in such a manner that the siltation in a sewer is kept to a minimum This is directly connected with the maximum achievable velocity in the sewers. We do not want the sewage pipe materials to get worn out. The wastewater manual recommends a maximum velocity of 3 m/s. This condition gives us an idea about the minimum velocity that has to be maintained inside a sewer during a low flow period.
  • 30. Sewers versus Treated Water Conduits SEWER WATER CONDUITS 1. They are never designed to run full; there is always an empty space provided at the top. 1. They are always designed to run full. Reasons: a) Biodegradation causes generation of gases like methane, hydrogen sulfide, ammonia etc. which can get dissolved if running under pressure. b) At same slopes, the velocity and carrying capacity is more when it runs partially full. 2. It is unpressurised. It maintains a gravity flow; It is laid in gradients or slopes. 2. It is pressurized. Normally, we do not worry about the slope of the water mains or lines when we lay them.
  • 31. Minimum Velocity in a Sewer The velocity should be such that: A) It will not allow the particles to settle inside the sewer B) Even if there is a deposition, it will promote scouring of the particles so that it can self-cleanse itself The generation of Self-cleansing velocity should occur within the sewer for at least once in a day.
  • 32. W α W cosα W sinα Drag Force RSw  If the block (Particle) has a unit length and unit width and thickness is dp , then From the force balance, when the particle is on the verge of slipping down the plane,  sinW Volume WeightSubmerged submrged )])(g*d*nV)-V[( 1 wnVV V  ])[1( wdn   buyoancy)g*d*V( 1 s  V ]1[)1(  sw Sn  psub dW *1*1*  sin]1)[1( psww dSnRS  R= Hydraulic mean radius S= Slope of the channel ps dS R k S ]1[  sin)1( nk  pss dSk R R n SR n v )1( 111 2 1 3 2 2 1 3 2  pss dSkR n v )1( 1 6 1  Where, SELF-CLEANSING VELOCITY
  • 33. Self-Cleansing Velocity pSS DSkR n V )1( 1 6 1  n = roughness coefficient R = Hydraulic Mean Radius = P A A= Area of the channel P= Wetted perimeter of the channel Ss = Specific gravity of the particle k = Dimensionless constant, 0.04 for granular particles, 0.8 for organic matters DP = Diameter of the particle for which the sewer will be designed, this is the maximum particle size the sewer can safely carry Sewers are always designed to attain the self cleansing velocities
  • 34. JAPAN
  • 35. D d α/2α/2 ] 2 cos 22 [ DD d  ] 2 cos1[ 2 1   D d 2 4 DA   360 . 4 2  Da  2 cos 2 * 2 sin 2 * 2 1 *2  DD  ] 2 sin 360 [ 4 2    Da] 2 sin 360 [    A a
  • 36. D d α/2α/2 4 4 2 D D D P A R    ] 2 sin360 1[ 4    D p a r DP  360 *  Dp  360 360 *      D D P p ] 2 sin360 1[    R r
  • 37. D d α/2α/2 2/13/21 SR n V  2/13/21 sr n v  3/23/2 3/2 3/2 2 sin360 1              R r R r V v 3/2 2 sin360 1 2 sin 360 * . .              V v A a VA va Q q
  • 38. D d α/2α/2 ] 2 cos1[ 2 1   D d ] 2 sin360 1[    R r 3/2 2 sin360 1        V v 3/2 2 sin360 1 2 sin 360              Q q In all the above expressions, α is the only variable, all other parameters are constant. Thus at different values of α, the above proportional elements can be easily calculated
  • 39.
  • 40.
  • 41. d/D a/A v/V q/Q 1.00 1.00 1.00 1.00 0.9 0.949 1.124 1.066 0.8 0.858 1.140 0.988 0.7 0.748 1.120 0.838 0.5 0.5 1.000 0.500 0.4 0.373 0.902 0.337 Capital Letters denote the situation when the sewers run full Maximum velocity is achieved when the sewers are designed to run at 80% of the full depth.
  • 42. Designing Sewer Systems Sewers are designed taking consideration of 30 years. Population in the initial years of the design period are low compared to the design population at the end of design period Peak flow rate in the initial years is low compared to the designed peak flow rate (ultimate peak flow) Sizing should be such that it will attain the self-cleansing velocity at the average design flow rate or at least at the maximum flow rate at the beginning of the design period.
  • 43. s 1000 2/13/21 sr n v  ] 2 sin360 1[ 4    D p a r 3/2 2 sin360 1        V vVelocity at partially full flow Velocity at full flow For Partially-full flow v is not influenced by the diameter of the pipe, rather is much influenced by the slope of the channel
  • 44. After finding the minimum slope required, the pipe size is decided on the basis of ultimate design peak flow rate and the permissible depth of flow. Adoption of the above slopes would ensure minimum flow velocity of 0.6 m/s Minimum size for a public sewer is 150 mm diameter Minimum size for a public sewer in hilly terrain is 100 mm diameter FROM THE SEWAGE TREATMENT MANUAL, GOI
  • 45. Gravity Sewer: Minimum Pipe Slope for Attaining Vmin= 0. 6 m/s Diameter (mm) Discharge (lps) Slope (m/m) n= 0.013 n= 0.015 200 19 0.0033 0.0044 250 30 0.0025 0.0033 300 40 0.0019 0.0026 400 75 0.0013 0.0017 450 95 0.0011 0.0015 500 115 0.001 0.0013 600 170 0.0008 0.0010 700 230 0.0006* 0.0008 900 380 0.0004* 0.0006* A slope below 0.0008 becomes practically difficult for construction purposes Sewers with flat slopes may be required to avoid excessive excavation where surface slopes are flat or change in the elevation is small. The slope and size of the sewer should be such that the velocity of flow shall increase progressively or shall remain steady throughout the length of the sewer. Sewers shall have slope steeper than or equal to the ground slope, otherwise the minimum ground cover may not be maintained through out the length of the sewer.
  • 46. What will be the diameter of the sewer designed with the following conditions: a) Population to be served: Present = 50,000; Design= 100,000; b) Water consumption: Present = 130 lpcd; Design = 180 lpcd c) 80 % of supplied water appears as wastewater d) Self-cleansing velocity to maintained in the sewer = 0.6 m/s; e) Maximum velocity in the sewer 3 m/s; f) Minimum size of the sewer = 150 mm; g) Peak factor = 2.5 h) n=0.015 i) Average Ground Slope = 1 in 5000 d/D a/A v/V q/Q 1.00 1.00 1.00 1.00 0.9 0.949 1.124 1.066 0.8 0.858 1.140 0.988 0.7 0.748 1.120 0.838 0.5 0.5 1.000 0.500 0.4 0.373 0.902 0.337
  • 47. Slope to be provided = s=0.8 in 1000 = 0.8/1000 = 0.0008 (from the table) We want the sewer to run 80% full at its ultimate peak flowrate so that maximum possible velocity can be attained). Q = A.V STEP 1. Find out the average flowrate and maximum flow rate at present and after the design period STEP 2. Find out the optimum slope to be provided STEP 3. Find out the size based on the ultimate peak flowrate. 2/13/21 sR n V  2 4        D A  4 4 2 D D D P A R    2/1 3/22 * 4 1 * 4 . s D n D VAQ         Time Average flowrate Peak factor Peak flowrate Present 50,000* 130*0.8 L/d=0.06 cum/s 2.5 0.15 cum/s Design 100,000* 180*0.8 L/d= 0.167 cum/s 2.25 0.375 cum/s Q = 0.375/0.988 = 0.380 From the chart q/Q = 0.988 when d/D =0.8
  • 48. Q=0.380 m3/s S= 0.0008 n =0.015 380.0)0008.0(* 4 * 015.0 1 * 4 2/1 3/22       DD Take D = 900 mm (next available size) 2/1 3/22 * 4 * 1 * 4 . s D n D VAQ           m/s697.0)0008.0(4/900.0 015.0 11 2/13/22/13/2  sR n V cum/s395.0697.0* 4 )85.0( . 2   VAQ D = 849 mm 949.0 395.0 375.0  Q q At ultimate peak flow, 77.0 D d 135.1 V v m/s791.0697.0*135.1 v >0.6 m/s [OK]
  • 49. Velocity is maximum when the depth of flow d = 0.8 D At d/D = 0.8, v/V = 1.140 For a circular channel running under gravity, Hence, vmax = 1.140*0.697 m/s = 0.794m/s < 3 m/s (Maxm. Velocity allowable) O.K. At the ultimate average flow rate q, q/Q =(0.167/0.395)=0.42 From the proportionality chart, extrapolating, v/V = 0.93 Hence, v = 0.97* 0.697 m/s = 0.676 m/s >0.6 m/s O.K. At the peak present flowrate q1, q1/Q =(0.15/0.395)=0.38 Hence, v = 0.93* 0.697 m/s = 0.65 m/s >0.6 m/s OK From the proportionality chart, extrapolating, v/V = 0.97 NOTE: If the velocity at the present peak flow rate is found to be below 0.6 m/s, then a slight increase in the slope with the same diameter may help attain the minimum required velocity of 0.6 m/s
  • 51.
  • 52. Preliminary Requirements • It is meant for the transport stormwater and wastewater from the generation point to the treatment plant. So it should be laid as deep as possible so that all wastewater or storm water flow can be collected and transported. • Erosion and corrosion resistant. Should be structurally strong enough to resist impact loads or overburden and live loads • Size and slope to be designed to carry the peak load as well as to carry average flow in such a manner that the deposition shall be minimized. • Maintenance should be easy, economical and safe for the workers. Aims of the design are: a) make the system operational and b) Economical to build and c) make the system durable through out its entire design life
  • 53.
  • 54.
  • 55. Layout of Sewer Lines Steps followed for making the layout: Selection of an outlet or disposal points Fixing limits to the drainage area or zone boundaries Finalizing the location of Trunk and Main sewers Finalizing the location of Pumping stations wherever necessary Trunk sewer is the sewer in the network with the largest diameter that extends farthest from the sewage outfall All other sewers are considered as branches Whenever two sewers meet at a point, the incoming one with larger diameter is called the main sewer. Trunk Sewer Outfall
  • 56. Nomenclature System Followed in Sewer Systems Trunk Sewer 32 4 L.3.1 R.3.1 R.3.2 L1.R.3.1.1 L1.R.3.1.2 L2.R.3.1.1 L2.R.3.1.2 Outfall Network manhole
  • 57. NOMENCLATURE IN CASE OF DESIGN OF SEWER NETWORK USING COMPUTER PROGRAMME In case of design of sewer network using computer programme, there is no restriction in the nomenclature of the sewers and manholes as required for the manual design. It is sufficient to give node numbers as well as pipe (link) numbers in any manner in the sewer network for design of the network for using computer software.
  • 58. Most common location of laying sanitary sewer is along the center of the streets House House The individual domestic connections can be from either side of the streets For very wide streets the sewers are laid on each side of the streets in the curb or under the sidewalk House House Street Street Sewer Sewer Sewer To avoid any contamination sewer lines are never laid near to the water mains. If it is unavoidable, the sewers are encased in concrete Slope of the sewers generally follow the natural slope of the ground or the street
  • 59. Design Approach 1. On a map of the area locate all the sewer lines and measure the contributory area to each of the sewer lines or points. 2. Also, draw the longitudinal section or profiles of the sewer lines. Mark on the profile view the critical points such as basements of the low lying houses, levels of existing sewers, disposal points, etc. 3. Design all the branch sewers, main sewers and trunk sewers, starting from the farthest point in the network and based on the following considerations: a) A self cleansing velocity is maintained at present peak flow b) The sewer should run 0.8 full at the design ultimate peak flow c) Minimum velocity of 0.6 m/s is obtained d) Maximum velocity should not be beyond 3 m/s
  • 60. Example of a Profile of a Sewer Line
  • 61. A view inside a sewer in London
  • 62. Sewer Appurtenances These are devices necessary (except pipes and conduits) for proper functioning of the sanitary, storm and combined sewers The appurtenances include: 1. Manhole 2. Drop Manhole 3. Lampholes 4. Gully-traps 5. Intercepting chambers 6. Flushing tanks 7. Street Inlets 8. Siphons 9. Grease traps 10. Side-flow weirs 11. Leaping weirs 12. Venturi flumes 13. Outfall structures
  • 63. Sewer lines Brickwork sewer line HDPE sewer pipe RCC sewer pipes
  • 64.
  • 65.
  • 66. MANHOLES Manholes are RCC or masonry chambers, constructed at suitable intervals along the sewer lines, for providing access to the inside of the sewers. Helps in: a) Joining the sewer pipes; b) Inspection and cleaning of pipes; c) mainte- nance; d) Ventilation if manholes are perforated Water main Electric cable Gutter Curbmanhole Sewer Manholes are provided at every transition points: bend junction Change in gradient Change in sewer diameter At regular intervals Between two adjacent manholes, the sewer line runs straight with constant slope
  • 68. TYPES OF BRICKWORK MANHOLES Rectangular manhole (900x800 mm) SHALLOW MANHOLE: •depth less than 0.9 m •Suitable for branch sewers or places with no heavy traffic • It is also called an inspection chamber Rectangular manhole for (1200× 900mm) NORMAL OR MEDIUM MANHOLES: •depth 0.9 m to 2.5 m •Heavy cover is provided at the top • May be either square or rectangular (900mm X900mm and 1200mm X 900 mm)
  • 69. TYPES OF BRICKWORK MANHOLES Arch type manhole for (1400 mm × 900 mm)Typical circular manhole DEEP MANHOLES •deeper than 2.5 m •Heavy cover is provided at the top •Size in the upper portion is reduced by offset: May be either square or rectangular or circular
  • 70. Access shaft: Minimum size is 0.75 X 0.6 m Working chamber: Provides working space for inspection and cleaning operations, Minimum size 1,2 m X 0.9 m or 1.2 m dia; minimum height is 1.8 m Benching: concreted portion sloping towards semicircular or U -shaped bottom part of the main sewer, the slope facilitates the entry of sewage into the main sewer Steps or ladders: for accessing
  • 71. RCC AND COMBINATION MANHOLES • Advantages over brickwork manholes: – better quality control in raw materials and workmanship – easier fixing in the field with maximum speed and minimum disturbance to traffic • Concerns: – The concrete corrosion of the inside by sulphide gas and the soil side by sulphate in soil water. • Solution: – The use of high alumina cement is advisable in manufacture itself or sulphate resistant cement with extra lining of 25 mm thickness over inner wall with high alumina cement.
  • 72. • Two types of RCC manholes can be used – – Manholes with vertical shaft in RCC and the corbelled cone portion in brickwork – Entire manhole in RCC and corbelled cone portion separately precast and jointed • The entries and exits of main sewers as well as house service sewers requires careful detailing because the issue of puncturing the walls for insertions of especially house service sewers later on is impossible. RCC AND COMBINATION MANHOLES
  • 73. HDPE MANHOLES • HDPE manholes with EN 13598-2: 2009 and ISO (ISO 9001: 2008) specifications are recent entrants. (Indian std. not yet brought out by BIS) • Advantages: – Speedy construction as compared to brickwork manholes as these come ready made. • Site-specific precautions: – To be safeguarded against uplift pressure due to high GW level and crushing under heavy traffic load.
  • 74. DROP MANHOLE It is used when a branch sewer joins a main sewer at a height more than 600 mm above the main sewer or the drop is more than 600 mm. Advantages: 1) Steep gradients in the branch sewer can be avoided ; 2) The sewage from the branch sewers may fall on the person working; This is avoided. Plug Inspection Arm
  • 75. FLUSHING MANHOLE Provided where it is not possible to gain enough flow so as to maintain a self-cleansing velocity. Often such condition is prevalent at the beginning of the branch sewers. Generally provided at the head of the sewers where enough storage is provided to generate a high velocity to flush out the obstructions
  • 79. Different Types of Street Inlets GUTTER TYPE CURB TYPE INLETS COMBINATION MULTIPLE TYPE INLETS
  • 80. CATCH BASINS SEWER A Type of Street Inlet The basin helps in settling the grit, sand, debris, etc. before the storm water enters the sewer line Hood prevents the escape of the foul gases into the sewer line and network
  • 81. Oil and Grease Trap Generally located near the sources which can generate oil and grease- contaminated wastewater. Restaurants, garages, automobile repair workshops Oil and grease in the sewer system can : a) sticks to the inner surface of sewers and reduces the sewer capacity; b)entraps suspended matter, further reducing the capacity; c) adversely affect the performance of wastewater treatment plants
  • 82. REGULATOR OR OVERFLOW DEVICES OR STORM-RELIEF WORKS The regulators are provided to avoid overloading of sewers, pumping stations, treatment plant or disposal arrangements by diverting excess flow to relief sewers or overflow stream. The overloading is caused by excess flow coming in a pipeline due to heavy rainfall or excess stormwater. As they are not expected to carry huge pollutant load, the excess stormwater can be safely disposed of to natural streams without any treatment. Three types of Regulator devices: a) Leaping Weir b) Side-flow or Overflow weir c) Siphon spillway
  • 83. Leaping Weir Arrangement consists of an opening at the invert of a storm drain through which the normal storm flow is taken into an intercepting sewer and excess flow leaps over the combined sewer to flow to a neighboring stream INCOMING FLOW Intercepting Sewer
  • 84. Overflow or Side-flow Weir Excess water is allowed to overflow the combined sewer in the manhole, from where it is taken to another channel that leads to stormwater drain or manhole. The weir length has to be sufficiently long for effective regulation
  • 85. Siphon Spillway Air Line Receiving StreamSewer Spillway
  • 86. Different Cross-sectional Shapes of Sewers Most widely used cross-sectional shape is a circular-section sewer. The reasons behind the preferences are: a) A circular section provides the maximum area of flow for a given perimeter, therefore higher value of hydraulic mean radius. P A R  2/13/21 sR n V  It is the most efficient section, among all possible variations b) It uses the minimum amount of materials for is manufacture, therefore it is economical to use such a section c) Manufacture is easy and convenient d) Structurally more stable (without any corners, hence load is evenly distributed all around e) Chances of deposition is less
  • 87. d/D a/A v/V q/Q 1.00 1.00 1.00 1.00 0.9 0.949 1.124 1.066 0.8 0.858 1.140 0.988 0.7 0.748 1.120 0.838 0.5 0.5 1.000 0.500 0.4 0.373 0.902 0.337 0.3 0.252 0.776 0.196 0.2 0.143 0.615 0.088 Advantages of a circular sewer diminishes when the sewer is not running at least half-full Lesser the discharge, poorer is the performance
  • 88. OVOID OR EGG-SHAPED SEWER At low discharges 2- 15% higher velocities are available for these type of sections compared to Hydraulically Equivalent Circular Sections Standard Oval Shaped Sewers “New Type” Oval Shaped Sewers Hydraulically Equivalent Section: Two sewers of different shape (i.e. different sections) are said to be of hydraulically equivalent when they carry the same discharge when running full at the same slope. d/D v/V Ovoid circular 0.25 0.7 0.698 0.20 0.62 0.61 0.10 0.44 0.4 0.05 0.29 0.25
  • 89. Design of Ovoid-Shaped Sewers 1. Calculate the approximate diameter of a hydraulically equivalent circular sewer that would carry the same discharge at the same slope as the ovoid-shaped sewer. 2. Top horizontal diameter of the Ovoid-sewer = 0.84 X Diam. of the circular sewer 3. Find out the other dimensions from the following figures, according to the type of sewer to be designed
  • 90. Horse-Shoe Type of Sections
  • 92. Design a gravity –flow trunk sanitary sewer for the area . The trunk sewer is to be laid along Peach Avenue starting at 4th Street and ending at 11th Street. Assume that the that the following design criteria have been developed based on an analysis of local conditions and codes: 1. For design period use the saturation period. 2. For population densities use the data given in the table. 3. For residential WW flows use the data given in the table. 4. For commercial and industrial flows (average): a. Commercial – 20 m3 /ha . d b. Industrial - 30 m3 /ha . d
  • 93. 5. For institutional flows (average): College - 400 m3 / d (5330 students x 75 L/ student . d)/ (1000 L/ m3 ) 6. For infiltration allowance: a. For residential areas, obtain the peak infiltration values from the fig. (b): b. For commercial, industrial, and institutional areas also obtain the peak infiltration values from the fig. (b). However, to take into account that the total length of sewers in these areas will generally be < that in residential areas, use only 50% of the actual area to compute the infiltration allowance.
  • 94. 7. For infiltration allowance  Assume steady – flow 8. Peaking Factors: a. Residential  Use the curve, fig. (c) b. Commercial  1.8 c. Industrial  2.1 d. Institutional (school) 4.0 PeakingFactor 9. Hyd. Design Eq.  Manning Eq. , n = 0.0013, Use Fig. 6 -10 (Nomogram) 10. Min. pipe size  As per local Bldg. Code, 200 mm 11. Min. velocity  0.75 m/s 12. Min cover  As per local Bldg. Code, 200 mm, 2.0 m
  • 95. Solution: 1. Lay out the trunk sewer. Draw a line to represent the proposed sewer [Fig. (a)]. 2. Locate the no. of MH’s: (a) Change in direction (b) Change in slope (c) Pipe junctions (d) Upper end of sewers (e) Intervals: 90 – 120 m or less (As per Code) Identify each MH with a no. In Fig. (a), only MHs at major junctions numbered. In an actual design, intermediate MHs to be located and numbered.
  • 96. a. Column 1  5, Identify lines, Summarize data b. Column 6  13, Obtain cumulative peak domestic flows 3. Prepare design tables. Comments: Table 1
  • 97. c. Column 14  18, Obtain cumulative peak commercial flows d. Column 19  23, Obtain cumulative peak industrial flows Table 2
  • 98. e. Column 24 26, Obtain cumulative peak institutional flows f. Column 27 28, Obtain cumulative average and peak flows g. Column 29 32, Obtain infiltration allowance h. Column 33 Total Cumulative Peak Design Flow  Columns 28 + 32 Table 3
  • 99. i. Columns 35  38 , Sewer Design, Manning’s Eq., n = 0.013 , v > 0.75 m/s j. Columns 39  42, Layout Data Column s 39/40  Ground surface elevations obtained by interpolation from Fig. (a) Column s 41/42  Sewer invert elevations (By Trial and Error from Work Sheet) Table 4
  • 100.
  • 103. WORK – SHEET (1) Plot ground surface elevations, working backwards (2) Sketch invert and crown (3) Line 1: Locate the invert of the upper end of the pipe Upper Invert Elevation=Ground surface – depth of cover – pipe wall thickness – pipe dia. = 20.00 m - 2.00 m - 0.05 m - 0.45 m =17.5 m Lower Invert Elevation= Upper Invert Elevation-(Slope of sewer)x(Length of sewer) 17.5 m - (0.0018 m/m) x (707 m) =16.23 m Check: Depth of Cover  Adequate/ Not adequate ? =19.00 m – (16.23 m + 0.45 m + 0.05 m) = 2.27 m  OK If Depth of Cover  Not adequate / too shallow Two alternatives: (1) Repeat with a lower invert elevation, or (2) A steeper slope
  • 104. Depth of cover Wall thickness Ground surface Inside top  “Crown” Inside bottom  “Invert” Bottom
  • 105. Some Other Important Considerations (1) When a MH is located at a sewer junction: Outlet sewer invert elevation is fixed by the invert level of the lowest inlet sewer (2) If the pipe size increases: The crowns of the two pipes must be matched at the MH To avoid the backing up of WW in to the smaller pipe. An example: Increase in size from 450 mm  750 mm at MH 2 450 mm dia. 750 mm dia. 16.23 m 16.23 m +0.45 m -0.75 m =15.93 m 15.93 m -(0.0009 m/m)x(707 m) =15.29 m Sewer junction
  • 106. Example of a Profile of a Sewer Line
  • 107. Small Bore Sewer System They are designed to carry only the liquid part of the domestic sewage generated for off-site treatment or disposal Septic Tank or interceptor tank Sewer Solids are separated at a septic tank or at the aqua-privies before the sewage reaches the sewers The advantages: a) The sewer can have less velocity and flowrate as it receives only settled wastewater b) Economic as it requires less cost of excavation, material and treatment c) Upgradation from on-site treatment system to conventional treatment system is easily done d) Maintenance of strict sewer gradients is not required as there is no self-cleansing velocity requirement Minimum diameter of the sewer pipes is recommended to be 100 mm
  • 108. Small Bore Sewer System The small bore sewer system outfall can be any of the following: a)The conventional sewer system b) Waste stabilization ponds c) Any other low cost treatment systems followed by fish ponds or land- based disposal with precautions Limitations: a) Interceptor tank requires periodical cleaning and disposal of solids b) Any illegal connection without any interceptor tank shall ruin the system. So, strict vigilance is required.
  • 109. Shallow Sewer System These are modification of surface drain with covers and consist of a network of pipework laid in the areas away from the places where heavy sewage loads are expected. Pipes are laid in flat gradients following the natural slope of the ground. The minimum depth is 0.4 m System contains: a) House connections b) Inspection chambers c) Laterals d) Street-collector sewers e) Pumping stations The laterals are minimum diameter 100 mm The street collectors have a minimum diameter of 150 mm
  • 110. Shallow Sewer System Suitability of the system: 1. High density habitats such as slums or squatter settlements ( with population density more than 170 per hectre) 2. Ground-condition is adverse and on-site disposal is not possible 3. Sewage has to be disposed of and minimum water consumption is 25 lpcd. Limitations: a) It is suitable when suitable ground slope is available b) Unless flushed out at peak flowrates, there is a possibility of solids deposition if there is not enough ground slope available c) May require frequent cleaning