SlideShare ist ein Scribd-Unternehmen logo
1 von 28
Downloaden Sie, um offline zu lesen
HEAT CONDUCTION EQUATION
Prabal TalukdarPrabal Talukdar
Associate Professor
Department of Mechanical EngineeringDepartment of Mechanical Engineering
IIT Delhi
E-mail: prabal@mech.iitd.ac.inp
Heat TransferHeat Transfer
Heat transfer has direction as well as
magnitude, and thus it is a vector quantity
P.Talukdar/Mech-IITD
Coordinate SystemCoordinate System
The various distances and angles involved when describing the
location of a point in different coordinate systems
P.Talukdar/Mech-IITD
location of a point in different coordinate systems.
Fourier’s law of heat conduction
for one-dimensional heat conduction:
)Watt(
dx
dT
kAQcond −=&
If n is the normal of the isothermal surface at
point P, the rate of heat conduction at that point
can be expressed by Fourier’s law as
The heat transfer vector is
)Watt(
n
T
kAQn
∂
∂
−=&
always normal to an isothermal
surface and can be resolved
into its components like any
other vectorother vector
kQjQiQQ zyxn
r
&
r
&
r
&
r
& ++=
P.Talukdar/Mech-IITD x
T
kAQ xx
∂
∂
−=&
y
T
kAQ yy
∂
∂
−=&
z
T
kAQ zz
∂
∂
−=&
Steady versus Transient Heat
Transfer
• The term steady implies noy p
change with time at any point
within the medium, while
transient implies variationtransient implies variation
with time or time dependence.
Therefore, the temperature or
heat flux remains unchanged
with time during steady heat
transfer through a medium atg
any location, although both
quantities may vary from one
location to anotherlocation to another
P.Talukdar/Mech-IITD
Multidimensional Heat
Transfer
• Heat transfer problems are also classified as being one-p g
dimensional, two-dimensional, or three-dimensional,
depending on the relative magnitudes of heat transfer rates in
different directions and the level of accuracy desireddifferent directions and the level of accuracy desired
Ex: 1‐D heat transfer:
Heat transfer through the glass of a 
i d b id d t bwindow can be considered to be one‐
dimensional since heat transfer through 
the glass will occur predominantly in one 
direction (the direction normal to the (
surface of the glass) and heat transfer in 
other directions (from one side
edge to the other and from the top edge 
to the bottom) is negligible
P.Talukdar/Mech-IITD
to the bottom) is negligible
Heat GenerationHeat Generation
• A medium through which heat is conducted may involve the
conversion of electrical nuclear or chemical energy into heatconversion of electrical, nuclear, or chemical energy into heat
(or thermal) energy. In heat conduction analysis, such
conversion processes are characterized as heat generation.
• Heat generation is a volumetric phenomenon. That is, it occurs
throughout the body of a medium. Therefore, the rate of heat
generation in a medium is usually specified per unit volumegeneration in a medium is usually specified per unit volume
whose unit is W/m3
The rate of heat generation in a
medium may vary with time as wellmedium may vary with time as well
as position within the medium.
When the variation of heat
generation with position is known,
∫=
V
dVgG && Watt
P.Talukdar/Mech-IITD
g p
the total rate of heat generation in
a medium of volume V can be
determined from
V
1-D Heat Conduction Equationq
Assume the density of the wall is ρ, the specific
heat is C, and the area of the wall normal to the
direction of heat transfer is A.
An energy balance on this thin element during
a small time interval t can be expressed asa small time interval t can be expressed as
EΔ
P.Talukdar/Mech-IITD
t
E
GQQ element
elementxxx
Δ
Δ
=+− Δ+
&&&
)TT(x.A.C)TT(mCEEE tttttttttelement −Δρ=−=−=Δ Δ+Δ+Δ+
x.A.gVgG elementelement Δ== &&&
E
GQQ elementΔ
+ &&&
t
GQQ element
elementxxx
Δ
=+− Δ+
)TT(
ACAQQ ttt −
ΔΔ Δ+
&&&
Dividing by
t
)(
x.A.Cx.A.gQQ ttt
xxx
Δ
Δρ=Δ+− Δ+
Δ+
&
TTQQ1 −− &&g y
AΔx gives
t
TT
Cg
x
QQ
A
1 tttxxx
Δ
ρ=+
Δ
− Δ+Δ+
&
Taking the limit as Δx → 0 and Δt → 0 yields and since from Fourier’s Law:
⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
−
∂
∂
=
∂
∂
=
Δ
−Δ+
→Δ x
T
kA
xx
Q
x
QQ xxx
0x
lim
&&&
TT1 ∂⎞⎛ ∂∂
P.Talukdar/Mech-IITD
⎠⎝→Δ 0x
t
T
Cg
x
T
kA
xA
1
∂
∂
ρ=+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂
&
Plane wall: A is constant
TT ∂⎞⎛ ∂∂
Variable conductivity:
t
T
Cg
x
T
k
x ∂
∂
ρ=+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂
&
T1gT2
∂∂ &
Constant conductivity:
where the property k/ρC is the thermal
t
T1
k
g
x
T
2
∂
∂
α
=+
∂
∂
diffusivity
P.Talukdar/Mech-IITD
Heat Conduction Equation in a
L C li d
C id thi li d i l h ll l t f
Long Cylinder
Consider a thin cylindrical shell element of
thickness r in a long cylinder
The area of the cylinder normal to they
direction of heat transfer at any location is A =
2πrL where r is the value of the radius at that
location. Note that the heat transfer area A
depends on r in this case and thus it varies withdepends on r in this case, and thus it varies with
location.
E lΔ&&&
P.Talukdar/Mech-IITD
t
E
GQQ element
elementrrr
Δ
Δ
=+− Δ+
)TT(r.A.C)TT(mCEEE tttttttttelement −Δρ=−=−=Δ Δ+Δ+Δ+
r.A.gVgG elementelement Δ== &&&
)TT( −&&
t
)TT(
r.A.Cr.A.gQQ ttt
rrr
Δ
Δρ=Δ+− Δ+
Δ+
&&&
TTQQ1 &&
dividing by AΔr
gives t
TT
Cg
r
QQ
A
1 tttrrr
Δ
−
ρ=+
Δ
−
− Δ+Δ+
&
⎟
⎞
⎜
⎛ ∂∂∂−Δ+ T
kA
QQQ
li
&&&
⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
−
∂
∂
=
∂
∂
=
Δ
Δ+
→Δ r
T
kA
rr
Q
r
QQ rrr
0r
lim
T
C
T
kA
1 ∂
+⎟
⎞
⎜
⎛ ∂∂
&
P.Talukdar/Mech-IITD
t
Cg
r
kA
rA ∂
ρ=+⎟
⎠
⎞
⎜
⎝
⎛
∂∂
Different ExpressionsDifferent Expressions
Variable conductivity:
T
Cg
T
kr
1 ∂
ρ+⎟
⎞
⎜
⎛ ∂∂
&Variable conductivity:
t
Cg
r
.k.r
rr ∂
ρ=+⎟
⎠
⎜
⎝ ∂∂
T1gT1 ∂
⎟
⎞
⎜
⎛ ∂∂ &
Constant Conductivity:
t
T1
k
g
r
T
r
rr
1
∂
∂
α
=+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂
0
gdTd1
⎟
⎞
⎜
⎛ &
0
k
g
rd
r
drr
=+⎟
⎠
⎞
⎜
⎝
⎛
t
T1
r
T
r
rr
1
∂
∂
α
=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂
trrr ∂α⎠⎝ ∂∂
0
rd
dT
r
dr
d
=⎟
⎠
⎞
⎜
⎝
⎛
P.Talukdar/Mech-IITD
Heat Conduction Eq in a SphereHeat Conduction Eq. in a Sphere
A = 4πr2
Variable conductivity:
t
T
Cg
r
T
.k.r
rr
1 2
2
∂
∂
ρ=+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂
&
Constant Conductivity:
t
T1
k
g
r
T
r
rr
1 2
2
∂
∂
α
=+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂ &
P.Talukdar/Mech-IITD
Combined One‐Dimensional
Heat Conduction Equation t
T
Cg
r
T
.k.r
rr
1 n
n
∂
∂
ρ=+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂
&
General Heat Conduction
E iEquation
E lΔ&&&&&&&
P.Talukdar/Mech-IITD
t
E
GQQQQQQ element
elementzzyyxxzyx
Δ
Δ
=+−−−++ Δ+Δ+Δ+
)TT.(z.y.x.C)TT(mCEEE tttttttttelement −ΔΔΔρ=−=−=Δ Δ+Δ+Δ+
z.y.x.gVgG elementelement ΔΔΔ== &&&
t
E
GQQQQQQ element
elementzzyyxxzyx
Δ
Δ
=+−−−++ Δ+Δ+Δ+
&&&&&&&
t
TT
z.y.x.Cz.y.x.gQQQQQQ ttt
zzyyxxzyx
Δ
−
ΔΔΔρ=ΔΔΔ+−−−++ Δ+
Δ+Δ+Δ+
&&&&&&&
TT
Cg
QQ1QQ1QQ1 tttzzzyyyxxx −
ρ=+
−−− Δ+Δ+Δ+Δ+
&
&&&&&&
t
Cg
zy.xyz.xxz.y Δ
ρ=+
ΔΔΔ
−
ΔΔΔ
−
ΔΔΔ
−
P.Talukdar/Mech-IITD
TT
C
QQ1QQ1QQ1 tttzzzyyyxxx −−−− Δ+Δ+Δ+Δ+
&
&&&&&&
t
Cg
z
QQ
y.xyz.xx
QQ
z.y
tttzzzyyyxxx
Δ
ρ=+
ΔΔΔ
−
ΔΔΔ
−
ΔΔΔ
− Δ+Δ+Δ+Δ+
⎞⎛ ∂∂⎞⎛ ∂∂∂ TT1Q1QQ1 &&&
⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
−
∂
∂
=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
ΔΔ−
∂
∂
ΔΔ
=
∂
∂
ΔΔ
=
Δ
−
ΔΔ
Δ+
→Δ x
T
k
xx
T
z.y.k
xz.y
1
x
Q
z.y
1
x
QQ
z.y
1
lim xxxx
0x
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
∂
−
∂
∂
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
∂
ΔΔ−
∂
∂
ΔΔ
=
∂
∂
ΔΔ
=
Δ
−
ΔΔ
Δ+
→Δ y
T
k
yy
T
z.x.k
yzx
1
y
Q
zx
1
y
QQ
zx
1
lim
yyyy
0y
&&&
⎠⎝ ∂∂⎠⎝ ∂∂ΔΔ∂ΔΔΔΔΔ→Δ yyyyz.xyz.xyz.x0y
⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
−
∂
∂
=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
ΔΔ−
∂
∂
ΔΔ
=
∂
∂
ΔΔ
=
Δ
−
ΔΔ
Δ+
→Δ z
T
k
zz
T
y.x.k
zy.x
1
z
Q
y.x
1
z
QQ
y.x
1
lim zzzz
0z
&&&
t
T
Cg
z
T
k
zy
T
k
yx
T
k
x ∂
∂
ρ=+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂
+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
∂
∂
∂
+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂
&
Under what condition?
T1gTTT 222
∂∂∂∂ &
P.Talukdar/Mech-IITD
t
T1
k
g
z
T
y
T
x
T
222
∂
∂
α
=+
∂
∂
+
∂
∂
+
∂
∂
0
k
gTTT
2
2
2
2
2
2
=+
∂
∂
+
∂
∂
+
∂
∂ &
kzyx 222
∂∂∂
t
T1
z
T
y
T
x
T
2
2
2
2
2
2
∂
∂
α
=
∂
∂
+
∂
∂
+
∂
∂
tzyx ∂α∂∂∂
0
z
T
y
T
x
T
2
2
2
2
2
2
=
∂
∂
+
∂
∂
+
∂
∂
y
P.Talukdar/Mech-IITD
Cylindrical and SphericalCylindrical and Spherical
T
Cg
T
k
T
rk
1T
rk
1 ∂
ρ=+⎟
⎞
⎜
⎛ ∂∂
+⎟⎟
⎞
⎜⎜
⎛ ∂∂
+⎟
⎞
⎜
⎛ ∂∂
&
t
Cg
z
.k
z
r.k
rr
r.k
rr 2
∂
ρ=+⎟
⎠
⎜
⎝ ∂∂
+⎟⎟
⎠
⎜⎜
⎝ φ∂φ∂
+⎟
⎠
⎜
⎝ ∂∂
T
Cg
T
sink
1T
k
1T
rk
1 2 ∂
ρ=+⎟
⎞
⎜
⎛ ∂
θ
∂
+⎟⎟
⎞
⎜⎜
⎛ ∂∂
+⎟
⎞
⎜
⎛ ∂∂
&
P.Talukdar/Mech-IITD
t
Cgsin.k
sinr
k
sinrr
r.k
rr 2222
∂
ρ=+⎟
⎠
⎜
⎝ θ∂
θ
θ∂θ
+⎟⎟
⎠
⎜⎜
⎝ φ∂φ∂θ
+⎟
⎠
⎜
⎝ ∂∂
Boundary and Initial Conditions
• The temperature distribution in a medium depends on the
conditions at the boundaries of the medium as well as the heat
transfer mechanism inside the medium. To describe a heat
transfer problem completely, two boundary conditions must be
given for each direction of the coordinate system along whichgiven for each direction of the coordinate system along which
heat transfer is significant.
Th f d ifTherefore, we need to specify two
boundary conditions for one-dimensional
problems, four boundary conditions for
two dimensional problems and sixtwo-dimensional problems, and six
boundary conditions for three-dimensional
problems
P.Talukdar/Mech-IITD
• A diti hi h i ll ifi d t ti t 0 i ll d• A condition, which is usually specified at time t = 0, is called
the initial condition, which is a mathematical expression for
the temperature distribution of the medium initially.
)z,y,x(f)0,z,y,x(T =
• Note that under steady conditions, the heat conduction
equation does not involve any time derivatives, and thus we do
not need to specify an initial conditionp y
The heat conduction equation is first order in time, and thus the initial
condition cannot involve any derivatives (it is limited to a specified
temperature).
However, the heat conduction equation is second order in space
coordinates, and thus a boundary condition may involve first
d i ti t th b d i ll ifi d l f t t
P.Talukdar/Mech-IITD
derivatives at the boundaries as well as specified values of temperature
Specified Temperature Boundary
C di iCondition
The temperature of an exposed surface can
usually be measured directly and easily.
Therefore, one of the easiest ways toy
specify the thermal conditions on a surface
is to specify the temperature. For one-
dimensional heat transfer through a plane
wall of thickness L, for example, the
specified temperature boundary conditions
can be expressed as
1T)t,0(T =
2T)t,L(T =
P.Talukdar/Mech-IITD
2)(
Specified Heat Flux Boundary
C di iCondition
The sign of the specified heat flux isThe sign of the specified heat flux is
determined by inspection: positive if
the heat flux is in the positive
direction of the coordinate a is anddirection of the coordinate axis, and
negative if it is in the opposite
direction.
Note that it is extremely important to
have the correct sign for the specifiedhave the correct sign for the specified
heat flux since the wrong sign will
invert the direction of heat transfer
and cause the heat gain to be
P.Talukdar/Mech-IITD
and cause the heat gain to be
interpreted as heat loss
For a plate of thickness L subjected to heat flux of 50 W/m2 into theFor a plate of thickness L subjected to heat flux of 50 W/m into the
medium from both sides, for example, the specified heat flux boundary
conditions can be expressed as
50
x
)t,0(T
k =
∂
∂
− 50
x
)t,L(T
k −=
∂
∂
−and
Special Case: Insulated Boundary
0
x
)t,0(T
k =
∂
∂
0
x
)t,0(T
=
∂
∂or
P.Talukdar/Mech-IITD
Another Special CaseAnother Special Case
• Thermal SymmetryThermal Symmetry
t,
2
L
T ⎟
⎠
⎞
⎜
⎝
⎛
∂
0
x
2
=
∂
⎠⎝
PTalukdar/Mech-IITD
Example Problem
P.Talukdar/Mech-IITD
Comments
P.Talukdar/Mech-IITD
P.Talukdar/Mech-IITD

Weitere ähnliche Inhalte

Was ist angesagt?

Ch2 Heat transfer - conduction
Ch2 Heat transfer - conductionCh2 Heat transfer - conduction
Ch2 Heat transfer - conduction
eky047
 

Was ist angesagt? (20)

Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
 
Finite difference equation
Finite difference equationFinite difference equation
Finite difference equation
 
Chapter 1 INTRODUCTION AND BASIC CONCEPTS
Chapter 1INTRODUCTION AND BASIC CONCEPTSChapter 1INTRODUCTION AND BASIC CONCEPTS
Chapter 1 INTRODUCTION AND BASIC CONCEPTS
 
Chapter 1 introduction of heat transfer
Chapter 1 introduction of heat transferChapter 1 introduction of heat transfer
Chapter 1 introduction of heat transfer
 
Chapter 2 HEAT CONDUCTION EQUATION
Chapter 2HEAT CONDUCTION EQUATIONChapter 2HEAT CONDUCTION EQUATION
Chapter 2 HEAT CONDUCTION EQUATION
 
Uppload chap 5 convection heat trasnfer
Uppload chap  5 convection heat trasnferUppload chap  5 convection heat trasnfer
Uppload chap 5 convection heat trasnfer
 
Ch2 Heat transfer - conduction
Ch2 Heat transfer - conductionCh2 Heat transfer - conduction
Ch2 Heat transfer - conduction
 
Classification Of Heat Exchanger
Classification Of Heat ExchangerClassification Of Heat Exchanger
Classification Of Heat Exchanger
 
Heat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutionsHeat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutions
 
TWO DIMENSIONAL STEADY STATE HEAT CONDUCTION
TWO DIMENSIONAL STEADY STATE HEAT CONDUCTIONTWO DIMENSIONAL STEADY STATE HEAT CONDUCTION
TWO DIMENSIONAL STEADY STATE HEAT CONDUCTION
 
Numerical methods- Steady-state-1D-and-2D-Part- I
Numerical methods- Steady-state-1D-and-2D-Part- INumerical methods- Steady-state-1D-and-2D-Part- I
Numerical methods- Steady-state-1D-and-2D-Part- I
 
Solution Manual – Heat and Mass Transfer: Fundamentals and Application, 5th e...
Solution Manual – Heat and Mass Transfer: Fundamentals and Application, 5th e...Solution Manual – Heat and Mass Transfer: Fundamentals and Application, 5th e...
Solution Manual – Heat and Mass Transfer: Fundamentals and Application, 5th e...
 
Lec03
Lec03Lec03
Lec03
 
conduction
conductionconduction
conduction
 
Basic of thermodynamics section a
Basic of thermodynamics  section aBasic of thermodynamics  section a
Basic of thermodynamics section a
 
heat conduction equations
heat conduction equationsheat conduction equations
heat conduction equations
 
Transient heat conduction
Transient heat conductionTransient heat conduction
Transient heat conduction
 
Heat 4e chap08_lecture
Heat 4e chap08_lectureHeat 4e chap08_lecture
Heat 4e chap08_lecture
 
Si heat 4e_chap01_lecture
Si heat 4e_chap01_lectureSi heat 4e_chap01_lecture
Si heat 4e_chap01_lecture
 
Transient heat-conduction-Part-I
Transient heat-conduction-Part-ITransient heat-conduction-Part-I
Transient heat-conduction-Part-I
 

Andere mochten auch

project ppt of critical thickness by emam raza khan
project  ppt of critical thickness by emam raza khanproject  ppt of critical thickness by emam raza khan
project ppt of critical thickness by emam raza khan
EMAM RAZA KHAN
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat Transfer
VJTI Production
 
Simple machines powerpoint
Simple machines powerpointSimple machines powerpoint
Simple machines powerpoint
guest1fcb38dc
 

Andere mochten auch (20)

Rayonnement thermique
Rayonnement thermiqueRayonnement thermique
Rayonnement thermique
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
project ppt of critical thickness by emam raza khan
project  ppt of critical thickness by emam raza khanproject  ppt of critical thickness by emam raza khan
project ppt of critical thickness by emam raza khan
 
Fabrication and determination of critical thickness of spherical objects
Fabrication and determination of critical      thickness of spherical objectsFabrication and determination of critical      thickness of spherical objects
Fabrication and determination of critical thickness of spherical objects
 
(6 7)-1-d-ss-conduction-part2
(6 7)-1-d-ss-conduction-part2(6 7)-1-d-ss-conduction-part2
(6 7)-1-d-ss-conduction-part2
 
Chapter 24 Conduction
Chapter 24 ConductionChapter 24 Conduction
Chapter 24 Conduction
 
Heat conduction equation
Heat conduction equationHeat conduction equation
Heat conduction equation
 
Radiation ppt by iit professor
Radiation ppt by iit professorRadiation ppt by iit professor
Radiation ppt by iit professor
 
11 Heat Transfer
11 Heat Transfer11 Heat Transfer
11 Heat Transfer
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat Transfer
 
Simple machines powerpoint
Simple machines powerpointSimple machines powerpoint
Simple machines powerpoint
 
Presentation.natural disater
Presentation.natural disaterPresentation.natural disater
Presentation.natural disater
 
Temperature Measurment
Temperature MeasurmentTemperature Measurment
Temperature Measurment
 
Koya
KoyaKoya
Koya
 
Heat Transfer
Heat TransferHeat Transfer
Heat Transfer
 
PRODUCTION OF METHYL TERTIARY BUTYL ETHER (MTBE)
PRODUCTION OF METHYL TERTIARY BUTYL ETHER (MTBE)PRODUCTION OF METHYL TERTIARY BUTYL ETHER (MTBE)
PRODUCTION OF METHYL TERTIARY BUTYL ETHER (MTBE)
 
Gas hydrate formation and prevention
Gas hydrate formation and preventionGas hydrate formation and prevention
Gas hydrate formation and prevention
 
First Law of Thermodynamics: Energy Conservation For Mechanical and Industria...
First Law of Thermodynamics: Energy Conservation For Mechanical and Industria...First Law of Thermodynamics: Energy Conservation For Mechanical and Industria...
First Law of Thermodynamics: Energy Conservation For Mechanical and Industria...
 
95396211 heat-transfer-lab-manual
95396211 heat-transfer-lab-manual95396211 heat-transfer-lab-manual
95396211 heat-transfer-lab-manual
 
Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)
 

Ähnlich wie (3) heat conduction equation [compatibility mode]

lecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdflecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdf
AtmacaDevrim
 
Conduction equation cartesian, Cylindrical, spherical (7).pptx
Conduction equation  cartesian, Cylindrical, spherical (7).pptxConduction equation  cartesian, Cylindrical, spherical (7).pptx
Conduction equation cartesian, Cylindrical, spherical (7).pptx
YaredAssefa10
 
Thermal and electrical conductivity of metals
Thermal and electrical conductivity of metalsThermal and electrical conductivity of metals
Thermal and electrical conductivity of metals
krsuhas
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
056JatinGavel
 
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
RaviShankar269655
 

Ähnlich wie (3) heat conduction equation [compatibility mode] (20)

Conducción de calor en estado estacionario
Conducción de calor en estado estacionarioConducción de calor en estado estacionario
Conducción de calor en estado estacionario
 
lecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdflecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdf
 
Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008
 
mel242-8.ppt
mel242-8.pptmel242-8.ppt
mel242-8.ppt
 
UNIT-1 CONDUCTION
UNIT-1 CONDUCTIONUNIT-1 CONDUCTION
UNIT-1 CONDUCTION
 
Mel242 6
Mel242 6Mel242 6
Mel242 6
 
Thermal diffusivity
Thermal diffusivityThermal diffusivity
Thermal diffusivity
 
heat cond electrical.pdf
heat cond electrical.pdfheat cond electrical.pdf
heat cond electrical.pdf
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Conduction equation cartesian, Cylindrical, spherical (7).pptx
Conduction equation  cartesian, Cylindrical, spherical (7).pptxConduction equation  cartesian, Cylindrical, spherical (7).pptx
Conduction equation cartesian, Cylindrical, spherical (7).pptx
 
bahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .pptbahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .ppt
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDM
 
2. Conduction Equations
2. Conduction Equations2. Conduction Equations
2. Conduction Equations
 
Determination of transient thermal characteristics for thermal electric behav...
Determination of transient thermal characteristics for thermal electric behav...Determination of transient thermal characteristics for thermal electric behav...
Determination of transient thermal characteristics for thermal electric behav...
 
Lec11 lumped h capacity no mark.pdf
Lec11 lumped h capacity no mark.pdfLec11 lumped h capacity no mark.pdf
Lec11 lumped h capacity no mark.pdf
 
Thermal and electrical conductivity of metals
Thermal and electrical conductivity of metalsThermal and electrical conductivity of metals
Thermal and electrical conductivity of metals
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
 
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
 
Lecture Week # 2.pdf
Lecture Week # 2.pdfLecture Week # 2.pdf
Lecture Week # 2.pdf
 

Kürzlich hochgeladen

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 

Kürzlich hochgeladen (20)

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 

(3) heat conduction equation [compatibility mode]

  • 1. HEAT CONDUCTION EQUATION Prabal TalukdarPrabal Talukdar Associate Professor Department of Mechanical EngineeringDepartment of Mechanical Engineering IIT Delhi E-mail: prabal@mech.iitd.ac.inp
  • 2. Heat TransferHeat Transfer Heat transfer has direction as well as magnitude, and thus it is a vector quantity P.Talukdar/Mech-IITD
  • 3. Coordinate SystemCoordinate System The various distances and angles involved when describing the location of a point in different coordinate systems P.Talukdar/Mech-IITD location of a point in different coordinate systems.
  • 4. Fourier’s law of heat conduction for one-dimensional heat conduction: )Watt( dx dT kAQcond −=& If n is the normal of the isothermal surface at point P, the rate of heat conduction at that point can be expressed by Fourier’s law as The heat transfer vector is )Watt( n T kAQn ∂ ∂ −=& always normal to an isothermal surface and can be resolved into its components like any other vectorother vector kQjQiQQ zyxn r & r & r & r & ++= P.Talukdar/Mech-IITD x T kAQ xx ∂ ∂ −=& y T kAQ yy ∂ ∂ −=& z T kAQ zz ∂ ∂ −=&
  • 5. Steady versus Transient Heat Transfer • The term steady implies noy p change with time at any point within the medium, while transient implies variationtransient implies variation with time or time dependence. Therefore, the temperature or heat flux remains unchanged with time during steady heat transfer through a medium atg any location, although both quantities may vary from one location to anotherlocation to another P.Talukdar/Mech-IITD
  • 6. Multidimensional Heat Transfer • Heat transfer problems are also classified as being one-p g dimensional, two-dimensional, or three-dimensional, depending on the relative magnitudes of heat transfer rates in different directions and the level of accuracy desireddifferent directions and the level of accuracy desired Ex: 1‐D heat transfer: Heat transfer through the glass of a  i d b id d t bwindow can be considered to be one‐ dimensional since heat transfer through  the glass will occur predominantly in one  direction (the direction normal to the ( surface of the glass) and heat transfer in  other directions (from one side edge to the other and from the top edge  to the bottom) is negligible P.Talukdar/Mech-IITD to the bottom) is negligible
  • 7. Heat GenerationHeat Generation • A medium through which heat is conducted may involve the conversion of electrical nuclear or chemical energy into heatconversion of electrical, nuclear, or chemical energy into heat (or thermal) energy. In heat conduction analysis, such conversion processes are characterized as heat generation. • Heat generation is a volumetric phenomenon. That is, it occurs throughout the body of a medium. Therefore, the rate of heat generation in a medium is usually specified per unit volumegeneration in a medium is usually specified per unit volume whose unit is W/m3 The rate of heat generation in a medium may vary with time as wellmedium may vary with time as well as position within the medium. When the variation of heat generation with position is known, ∫= V dVgG && Watt P.Talukdar/Mech-IITD g p the total rate of heat generation in a medium of volume V can be determined from V
  • 8. 1-D Heat Conduction Equationq Assume the density of the wall is ρ, the specific heat is C, and the area of the wall normal to the direction of heat transfer is A. An energy balance on this thin element during a small time interval t can be expressed asa small time interval t can be expressed as EΔ P.Talukdar/Mech-IITD t E GQQ element elementxxx Δ Δ =+− Δ+ &&&
  • 9. )TT(x.A.C)TT(mCEEE tttttttttelement −Δρ=−=−=Δ Δ+Δ+Δ+ x.A.gVgG elementelement Δ== &&& E GQQ elementΔ + &&& t GQQ element elementxxx Δ =+− Δ+ )TT( ACAQQ ttt − ΔΔ Δ+ &&& Dividing by t )( x.A.Cx.A.gQQ ttt xxx Δ Δρ=Δ+− Δ+ Δ+ & TTQQ1 −− &&g y AΔx gives t TT Cg x QQ A 1 tttxxx Δ ρ=+ Δ − Δ+Δ+ & Taking the limit as Δx → 0 and Δt → 0 yields and since from Fourier’s Law: ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ − ∂ ∂ = ∂ ∂ = Δ −Δ+ →Δ x T kA xx Q x QQ xxx 0x lim &&& TT1 ∂⎞⎛ ∂∂ P.Talukdar/Mech-IITD ⎠⎝→Δ 0x t T Cg x T kA xA 1 ∂ ∂ ρ=+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ &
  • 10. Plane wall: A is constant TT ∂⎞⎛ ∂∂ Variable conductivity: t T Cg x T k x ∂ ∂ ρ=+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ & T1gT2 ∂∂ & Constant conductivity: where the property k/ρC is the thermal t T1 k g x T 2 ∂ ∂ α =+ ∂ ∂ diffusivity P.Talukdar/Mech-IITD
  • 11. Heat Conduction Equation in a L C li d C id thi li d i l h ll l t f Long Cylinder Consider a thin cylindrical shell element of thickness r in a long cylinder The area of the cylinder normal to they direction of heat transfer at any location is A = 2πrL where r is the value of the radius at that location. Note that the heat transfer area A depends on r in this case and thus it varies withdepends on r in this case, and thus it varies with location. E lΔ&&& P.Talukdar/Mech-IITD t E GQQ element elementrrr Δ Δ =+− Δ+
  • 12. )TT(r.A.C)TT(mCEEE tttttttttelement −Δρ=−=−=Δ Δ+Δ+Δ+ r.A.gVgG elementelement Δ== &&& )TT( −&& t )TT( r.A.Cr.A.gQQ ttt rrr Δ Δρ=Δ+− Δ+ Δ+ &&& TTQQ1 && dividing by AΔr gives t TT Cg r QQ A 1 tttrrr Δ − ρ=+ Δ − − Δ+Δ+ & ⎟ ⎞ ⎜ ⎛ ∂∂∂−Δ+ T kA QQQ li &&& ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ − ∂ ∂ = ∂ ∂ = Δ Δ+ →Δ r T kA rr Q r QQ rrr 0r lim T C T kA 1 ∂ +⎟ ⎞ ⎜ ⎛ ∂∂ & P.Talukdar/Mech-IITD t Cg r kA rA ∂ ρ=+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂∂
  • 13. Different ExpressionsDifferent Expressions Variable conductivity: T Cg T kr 1 ∂ ρ+⎟ ⎞ ⎜ ⎛ ∂∂ &Variable conductivity: t Cg r .k.r rr ∂ ρ=+⎟ ⎠ ⎜ ⎝ ∂∂ T1gT1 ∂ ⎟ ⎞ ⎜ ⎛ ∂∂ & Constant Conductivity: t T1 k g r T r rr 1 ∂ ∂ α =+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ 0 gdTd1 ⎟ ⎞ ⎜ ⎛ & 0 k g rd r drr =+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ t T1 r T r rr 1 ∂ ∂ α =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ trrr ∂α⎠⎝ ∂∂ 0 rd dT r dr d =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ P.Talukdar/Mech-IITD
  • 14. Heat Conduction Eq in a SphereHeat Conduction Eq. in a Sphere A = 4πr2 Variable conductivity: t T Cg r T .k.r rr 1 2 2 ∂ ∂ ρ=+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ & Constant Conductivity: t T1 k g r T r rr 1 2 2 ∂ ∂ α =+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ & P.Talukdar/Mech-IITD Combined One‐Dimensional Heat Conduction Equation t T Cg r T .k.r rr 1 n n ∂ ∂ ρ=+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ &
  • 15. General Heat Conduction E iEquation E lΔ&&&&&&& P.Talukdar/Mech-IITD t E GQQQQQQ element elementzzyyxxzyx Δ Δ =+−−−++ Δ+Δ+Δ+
  • 16. )TT.(z.y.x.C)TT(mCEEE tttttttttelement −ΔΔΔρ=−=−=Δ Δ+Δ+Δ+ z.y.x.gVgG elementelement ΔΔΔ== &&& t E GQQQQQQ element elementzzyyxxzyx Δ Δ =+−−−++ Δ+Δ+Δ+ &&&&&&& t TT z.y.x.Cz.y.x.gQQQQQQ ttt zzyyxxzyx Δ − ΔΔΔρ=ΔΔΔ+−−−++ Δ+ Δ+Δ+Δ+ &&&&&&& TT Cg QQ1QQ1QQ1 tttzzzyyyxxx − ρ=+ −−− Δ+Δ+Δ+Δ+ & &&&&&& t Cg zy.xyz.xxz.y Δ ρ=+ ΔΔΔ − ΔΔΔ − ΔΔΔ − P.Talukdar/Mech-IITD
  • 17. TT C QQ1QQ1QQ1 tttzzzyyyxxx −−−− Δ+Δ+Δ+Δ+ & &&&&&& t Cg z QQ y.xyz.xx QQ z.y tttzzzyyyxxx Δ ρ=+ ΔΔΔ − ΔΔΔ − ΔΔΔ − Δ+Δ+Δ+Δ+ ⎞⎛ ∂∂⎞⎛ ∂∂∂ TT1Q1QQ1 &&& ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ − ∂ ∂ =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ΔΔ− ∂ ∂ ΔΔ = ∂ ∂ ΔΔ = Δ − ΔΔ Δ+ →Δ x T k xx T z.y.k xz.y 1 x Q z.y 1 x QQ z.y 1 lim xxxx 0x ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ − ∂ ∂ =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ ΔΔ− ∂ ∂ ΔΔ = ∂ ∂ ΔΔ = Δ − ΔΔ Δ+ →Δ y T k yy T z.x.k yzx 1 y Q zx 1 y QQ zx 1 lim yyyy 0y &&& ⎠⎝ ∂∂⎠⎝ ∂∂ΔΔ∂ΔΔΔΔΔ→Δ yyyyz.xyz.xyz.x0y ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ − ∂ ∂ =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ΔΔ− ∂ ∂ ΔΔ = ∂ ∂ ΔΔ = Δ − ΔΔ Δ+ →Δ z T k zz T y.x.k zy.x 1 z Q y.x 1 z QQ y.x 1 lim zzzz 0z &&& t T Cg z T k zy T k yx T k x ∂ ∂ ρ=+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ & Under what condition? T1gTTT 222 ∂∂∂∂ & P.Talukdar/Mech-IITD t T1 k g z T y T x T 222 ∂ ∂ α =+ ∂ ∂ + ∂ ∂ + ∂ ∂
  • 19. Cylindrical and SphericalCylindrical and Spherical T Cg T k T rk 1T rk 1 ∂ ρ=+⎟ ⎞ ⎜ ⎛ ∂∂ +⎟⎟ ⎞ ⎜⎜ ⎛ ∂∂ +⎟ ⎞ ⎜ ⎛ ∂∂ & t Cg z .k z r.k rr r.k rr 2 ∂ ρ=+⎟ ⎠ ⎜ ⎝ ∂∂ +⎟⎟ ⎠ ⎜⎜ ⎝ φ∂φ∂ +⎟ ⎠ ⎜ ⎝ ∂∂ T Cg T sink 1T k 1T rk 1 2 ∂ ρ=+⎟ ⎞ ⎜ ⎛ ∂ θ ∂ +⎟⎟ ⎞ ⎜⎜ ⎛ ∂∂ +⎟ ⎞ ⎜ ⎛ ∂∂ & P.Talukdar/Mech-IITD t Cgsin.k sinr k sinrr r.k rr 2222 ∂ ρ=+⎟ ⎠ ⎜ ⎝ θ∂ θ θ∂θ +⎟⎟ ⎠ ⎜⎜ ⎝ φ∂φ∂θ +⎟ ⎠ ⎜ ⎝ ∂∂
  • 20. Boundary and Initial Conditions • The temperature distribution in a medium depends on the conditions at the boundaries of the medium as well as the heat transfer mechanism inside the medium. To describe a heat transfer problem completely, two boundary conditions must be given for each direction of the coordinate system along whichgiven for each direction of the coordinate system along which heat transfer is significant. Th f d ifTherefore, we need to specify two boundary conditions for one-dimensional problems, four boundary conditions for two dimensional problems and sixtwo-dimensional problems, and six boundary conditions for three-dimensional problems P.Talukdar/Mech-IITD
  • 21. • A diti hi h i ll ifi d t ti t 0 i ll d• A condition, which is usually specified at time t = 0, is called the initial condition, which is a mathematical expression for the temperature distribution of the medium initially. )z,y,x(f)0,z,y,x(T = • Note that under steady conditions, the heat conduction equation does not involve any time derivatives, and thus we do not need to specify an initial conditionp y The heat conduction equation is first order in time, and thus the initial condition cannot involve any derivatives (it is limited to a specified temperature). However, the heat conduction equation is second order in space coordinates, and thus a boundary condition may involve first d i ti t th b d i ll ifi d l f t t P.Talukdar/Mech-IITD derivatives at the boundaries as well as specified values of temperature
  • 22. Specified Temperature Boundary C di iCondition The temperature of an exposed surface can usually be measured directly and easily. Therefore, one of the easiest ways toy specify the thermal conditions on a surface is to specify the temperature. For one- dimensional heat transfer through a plane wall of thickness L, for example, the specified temperature boundary conditions can be expressed as 1T)t,0(T = 2T)t,L(T = P.Talukdar/Mech-IITD 2)(
  • 23. Specified Heat Flux Boundary C di iCondition The sign of the specified heat flux isThe sign of the specified heat flux is determined by inspection: positive if the heat flux is in the positive direction of the coordinate a is anddirection of the coordinate axis, and negative if it is in the opposite direction. Note that it is extremely important to have the correct sign for the specifiedhave the correct sign for the specified heat flux since the wrong sign will invert the direction of heat transfer and cause the heat gain to be P.Talukdar/Mech-IITD and cause the heat gain to be interpreted as heat loss
  • 24. For a plate of thickness L subjected to heat flux of 50 W/m2 into theFor a plate of thickness L subjected to heat flux of 50 W/m into the medium from both sides, for example, the specified heat flux boundary conditions can be expressed as 50 x )t,0(T k = ∂ ∂ − 50 x )t,L(T k −= ∂ ∂ −and Special Case: Insulated Boundary 0 x )t,0(T k = ∂ ∂ 0 x )t,0(T = ∂ ∂or P.Talukdar/Mech-IITD
  • 25. Another Special CaseAnother Special Case • Thermal SymmetryThermal Symmetry t, 2 L T ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ 0 x 2 = ∂ ⎠⎝ PTalukdar/Mech-IITD