SlideShare ist ein Scribd-Unternehmen logo
1 von 12
Introduction to Complex Variables
Dr.M.Sheela
Assistant Professor of Mathematics
1
ComPlex Analysis
Some Applications of Complex Variables
2
 Phasor-domain analysis in physics and engineering
 Laplace and Fourier transforms
 Evaluation of integrals
 Asymptotics (method of steepest descent)
 Conformal Mapping (solution of Laplace’s equation)
 Radiation physics (branch cuts, poles)
A complex number z may be thought of simply as an ordered pair of real
numbers (x, y) with rules for addition, multiplication, etc.
   
 
2 2
1
( ) 1, Re , Im
cos sin
arg
ar
,
g tan
i
z x iy i j x z y z
r i
z
re
r
z z
r z x y
x
z
z
x
y
y

 

 
      
 

 
 
   
 
   
 
 
(from figure)
(Euler formula (not yet proven!))
(angle notation)
(angle notation)
magnitude of
argument or phase
cos , sin
z
x r y r  
of
z
x
y

r
Argand diagram
(polar form)
z
3
Note: In Euler's formula, the
angle  must be in radians.
Note: Usually we will use i to denote the square- root of -1.
However, we will often switch to using j when we are doing an engineering example.
   
   
1 2 1 1 2 2
1 2 1 2
z z x iy x iy
x x i y y
    
   
Addition / subtraction:
4
Geometrically, this works the same way and adding and subtracting two-
dimensional vectors:
  
   
  
    1 21 2
2 2
2 2
1 2 1 2 1
1
1 2 1 1 2 2
1 2 1 2 1 2 2 1
2
2
1 2 1 2 1 2
1 1
1 2
2 2
1 2 1 2 1 2 2 1
2 2
22 2
2 2
2
1
0 1 0 1 1
/
/
(
,
)
ii i
z z x iy x iy
y
x x y y i x y x y
i i i
z z re r e rr
x iy
x iy
x x yx y
e
x iy
z z
x iy
x x y y i y y x
x y
z z
x y
   

  
   
     

 





 



 


64 7 48
Multiplication:
Division:
     1 21 2
2 2 1
2 2
1
1 2 1 2
2
2 2
/ /
ii i r
z z re
x
r e e
r
y x
x y
    

 
 
 






5
Multiplication and division are easier in polar form
6
 We can multiply and divide complex numbers. We cannot divide two-
dimensional vectors.
 We can, however, multiply two-dimensional vectors in two different ways
(dot product and cross product).
Important points:
 
  
*
* *
1 2 1 2
1 2 2*
2 2 2
2 2 *
/
i i
z x iy
z z z z
z z
z z z
r z x y z z re re 
 
 
    
Note :
Conjugation:
Magnitude :
z
x
y

r
z

r
z*
7
Euler’s Formula
 
2 3
0
2 3
0
2 4 3 5
0
1
2! 3! !
1
2! 3! !
1
! 2! 4! 3! 5!
cos sin
n
x
n
n
z
n
n
i
n
i
x x x
e x
n
x z x iy
z z z
e z
n
i
e i
n
i
e
z


    

 






     
  
     
 
          
 
 




L
L
L L
Recall:
Define extension to a complex variable ( ):
(converges for all )
cos sin cos sin
cos sin cos sin
cos sin
2 2
i
iz iz
iz iz iz iz
i e i
e z i z e z i z
e e e e
z z
i

   

 



  
  
 
 
More generally,
8
   cos cosh , sin sinh
2 2 2
z z z z z z
e e e e e e
iz z iz i i z
i
  
  
     
Application to Trigonometric Identities
     
2
2 22 2 2
cos2 sin 2
cos sin cos sin 2cos sin
i
i i
e i
e e i i

 
 
     
 
     
W
Many trigonometric identities follow from a simple application of Euler's formula :
On the other hand,
Equatingreal andimaginary parts of t
 
   
 
  
 
1 2
1 2 1 2
2 2
1 2 1 2
1 1 2 2
1 2 1 2 1 2 1
cos2 cos sin
sin 2 2cos sin
cos sin
cos sin cos sin
cos cos sin sin sin cos cos
i
i i i
e i
e e e
i i
i
 
   
  
  
   
   
      

 
 

   

  
  
W
m
he two expressions yields identities:
On the other hand,
two
 
 
 
2
1 2 1 2 1 2
1 2 1 2 1 2
sin
cos cos cos sin sin
sin sin cos cos sin

     
     
 
  
m
Equatingreal andimaginary parts yields :
9
DeMoivre’s Theorem
10

2 k 
2 k 
x
y
z
z
   
   
   
2 2
cos sin
cos 2 sin 2
co
nn i n in n
n
i k i n knn n
n
z re r e r n i n
n
re r e r n kn i n kn k
r
 
   
 

   
 
   
           

W
W
(DeMoivre's Theorem)
Note that for aninteger, the result is of how is measured
( aninteger)
independent
 s sin
n
n i n
z
 

Roots of a Complex Number
   cos sin
nn i n in n
th
z re r e r n i n
n
n
 
 

   W
W
(DeMoivre's Theorem)
Applies also for not aninteger,but in this case, the result
is independent of how is measu
m
no red.
root ofp a cx om: pl
t
ea xE m l nue
   
   
 
22
22
6 32
1
1 1 1
1
31
3
2 2cos sin , 0,1,2, 1
2 2
8 8 2 2 cos sin , 0,1,2
6 3 6 3
2 cos
6
k
n nii k
ki ii i k
n
n
n n n k k
n n n nz re r e r i k n
k k
i e e i k
  
  
   
   


  
           
      
             
     

 


 
 
6 44 7 4 48
L
roots
ber :
e.g.,
   sin 2 cos 30 sin 30 2
6
i i
   
               
   
3
2
1
2
i
   
   
3 ,
2 2
2 cos sin 2 cos 90 sin 90 2 ,
6 3 6 3
4 4
2 cos sin 2 cos 210 sin 210 3 ,
6 3 6 3
i
i i i
i i i
   
   
 
  
 
    
                 
    
    
                   
    
11
Roots of a Complex Number (cont.)
 
   
1
3
222
1
1 1 1
3 ,
8 2 ,
3
k
n
k
n n n
ik
z
ii i
n
n
n n n
i
i i
i
n z
e
n
z re r e r e
   
 

  

 
    
 
 1 2 3
W
"principal" throot
of unityroot of
Note that the throot of can also be expressedin terms
of the :th root of unity
 {  
11 22 2 2
1 cos sin , 0,1, , 1n
k
nn ii k
n
k k
e ie k n
n n
   
     
1 2 3
L
throot
of unity
where
z
x
y
8i
u
v
w
 
1/31/3
8w z i  
Re
Im
1 0 
1 120 
1 240 
Cube root
of unity
12
w u iv 
Example (cont.)

Weitere ähnliche Inhalte

Was ist angesagt?

mathemathics + Straight line equation
mathemathics + Straight line equationmathemathics + Straight line equation
mathemathics + Straight line equation
eme87
 
Geovanni contreras garcia...calculo vectorial 6 ejercicios
Geovanni contreras garcia...calculo vectorial 6 ejerciciosGeovanni contreras garcia...calculo vectorial 6 ejercicios
Geovanni contreras garcia...calculo vectorial 6 ejercicios
Adilene Contreras Garcia
 
End of module 3 review
End of module 3 reviewEnd of module 3 review
End of module 3 review
mlabuski
 

Was ist angesagt? (19)

Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
mathemathics + Straight line equation
mathemathics + Straight line equationmathemathics + Straight line equation
mathemathics + Straight line equation
 
Geovanni contreras garcia...calculo vectorial 6 ejercicios
Geovanni contreras garcia...calculo vectorial 6 ejerciciosGeovanni contreras garcia...calculo vectorial 6 ejercicios
Geovanni contreras garcia...calculo vectorial 6 ejercicios
 
Math34 Trigonometric Formulas
Math34 Trigonometric  FormulasMath34 Trigonometric  Formulas
Math34 Trigonometric Formulas
 
Equation of a straight line y b = m(x a)
Equation of a straight line y   b = m(x a)Equation of a straight line y   b = m(x a)
Equation of a straight line y b = m(x a)
 
Distance between two points
Distance between two pointsDistance between two points
Distance between two points
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
Alexus johnson
Alexus johnsonAlexus johnson
Alexus johnson
 
3 1 exit slip
3 1 exit slip3 1 exit slip
3 1 exit slip
 
Practice for Square Root Graph & Transformations
Practice for Square Root Graph & TransformationsPractice for Square Root Graph & Transformations
Practice for Square Root Graph & Transformations
 
End of module 3 review
End of module 3 reviewEnd of module 3 review
End of module 3 review
 
Class notes for discovering transformation of the parent graph for the square...
Class notes for discovering transformation of the parent graph for the square...Class notes for discovering transformation of the parent graph for the square...
Class notes for discovering transformation of the parent graph for the square...
 
Solutions of Maxwell Equation for a Lattice System with Meissner Effect
Solutions of Maxwell Equation for a Lattice System with Meissner EffectSolutions of Maxwell Equation for a Lattice System with Meissner Effect
Solutions of Maxwell Equation for a Lattice System with Meissner Effect
 
Distance formula
Distance formulaDistance formula
Distance formula
 
Math34 Trigonometric Formulas
Math34 Trigonometric  FormulasMath34 Trigonometric  Formulas
Math34 Trigonometric Formulas
 
Math34 Trigonometric Formulas
Math34 Trigonometric  FormulasMath34 Trigonometric  Formulas
Math34 Trigonometric Formulas
 
Distance formula
Distance formulaDistance formula
Distance formula
 
Determinantes 2 ano
Determinantes 2 anoDeterminantes 2 ano
Determinantes 2 ano
 
The straight line
The straight lineThe straight line
The straight line
 

Ähnlich wie M.sheela complex ppt

Ähnlich wie M.sheela complex ppt (20)

presentation.pptx
presentation.pptxpresentation.pptx
presentation.pptx
 
Lecture 23 loop transfer function
Lecture 23 loop transfer functionLecture 23 loop transfer function
Lecture 23 loop transfer function
 
17330361.ppt
17330361.ppt17330361.ppt
17330361.ppt
 
Finite difference & interpolation
Finite difference & interpolationFinite difference & interpolation
Finite difference & interpolation
 
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
 
Ch02 se
Ch02 seCh02 se
Ch02 se
 
Linear equations in two variables
Linear equations in two variablesLinear equations in two variables
Linear equations in two variables
 
A03401001005
A03401001005A03401001005
A03401001005
 
1. introduction to complex numbers
1. introduction to complex numbers1. introduction to complex numbers
1. introduction to complex numbers
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
D41024030
D41024030D41024030
D41024030
 
B02404014
B02404014B02404014
B02404014
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
 
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with RefugeThe Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
Notes 7 6382 Power Series.pptx
Notes 7 6382 Power Series.pptxNotes 7 6382 Power Series.pptx
Notes 7 6382 Power Series.pptx
 
A Numerical Solution for Sine Gordon Type System
A Numerical Solution for Sine Gordon Type SystemA Numerical Solution for Sine Gordon Type System
A Numerical Solution for Sine Gordon Type System
 

Kürzlich hochgeladen

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Kürzlich hochgeladen (20)

ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 

M.sheela complex ppt

  • 1. Introduction to Complex Variables Dr.M.Sheela Assistant Professor of Mathematics 1 ComPlex Analysis
  • 2. Some Applications of Complex Variables 2  Phasor-domain analysis in physics and engineering  Laplace and Fourier transforms  Evaluation of integrals  Asymptotics (method of steepest descent)  Conformal Mapping (solution of Laplace’s equation)  Radiation physics (branch cuts, poles)
  • 3. A complex number z may be thought of simply as an ordered pair of real numbers (x, y) with rules for addition, multiplication, etc.       2 2 1 ( ) 1, Re , Im cos sin arg ar , g tan i z x iy i j x z y z r i z re r z z r z x y x z z x y y                                   (from figure) (Euler formula (not yet proven!)) (angle notation) (angle notation) magnitude of argument or phase cos , sin z x r y r   of z x y  r Argand diagram (polar form) z 3 Note: In Euler's formula, the angle  must be in radians. Note: Usually we will use i to denote the square- root of -1. However, we will often switch to using j when we are doing an engineering example.
  • 4.         1 2 1 1 2 2 1 2 1 2 z z x iy x iy x x i y y          Addition / subtraction: 4 Geometrically, this works the same way and adding and subtracting two- dimensional vectors:
  • 5.               1 21 2 2 2 2 2 1 2 1 2 1 1 1 2 1 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 1 2 1 1 1 2 2 2 1 2 1 2 1 2 2 1 2 2 22 2 2 2 2 1 0 1 0 1 1 / / ( , ) ii i z z x iy x iy y x x y y i x y x y i i i z z re r e rr x iy x iy x x yx y e x iy z z x iy x x y y i y y x x y z z x y                                    64 7 48 Multiplication: Division:      1 21 2 2 2 1 2 2 1 1 2 1 2 2 2 2 / / ii i r z z re x r e e r y x x y                   5 Multiplication and division are easier in polar form
  • 6. 6  We can multiply and divide complex numbers. We cannot divide two- dimensional vectors.  We can, however, multiply two-dimensional vectors in two different ways (dot product and cross product). Important points:
  • 7.      * * * 1 2 1 2 1 2 2* 2 2 2 2 2 * / i i z x iy z z z z z z z z z r z x y z z re re           Note : Conjugation: Magnitude : z x y  r z  r z* 7
  • 8. Euler’s Formula   2 3 0 2 3 0 2 4 3 5 0 1 2! 3! ! 1 2! 3! ! 1 ! 2! 4! 3! 5! cos sin n x n n z n n i n i x x x e x n x z x iy z z z e z n i e i n i e z                                                     L L L L Recall: Define extension to a complex variable ( ): (converges for all ) cos sin cos sin cos sin cos sin cos sin 2 2 i iz iz iz iz iz iz i e i e z i z e z i z e e e e z z i                      More generally, 8    cos cosh , sin sinh 2 2 2 z z z z z z e e e e e e iz z iz i i z i            
  • 9. Application to Trigonometric Identities       2 2 22 2 2 cos2 sin 2 cos sin cos sin 2cos sin i i i e i e e i i                    W Many trigonometric identities follow from a simple application of Euler's formula : On the other hand, Equatingreal andimaginary parts of t              1 2 1 2 1 2 2 2 1 2 1 2 1 1 2 2 1 2 1 2 1 2 1 cos2 cos sin sin 2 2cos sin cos sin cos sin cos sin cos cos sin sin sin cos cos i i i i e i e e e i i i                                             W m he two expressions yields identities: On the other hand, two       2 1 2 1 2 1 2 1 2 1 2 1 2 sin cos cos cos sin sin sin sin cos cos sin                   m Equatingreal andimaginary parts yields : 9
  • 10. DeMoivre’s Theorem 10  2 k  2 k  x y z z             2 2 cos sin cos 2 sin 2 co nn i n in n n i k i n knn n n z re r e r n i n n re r e r n kn i n kn k r                                 W W (DeMoivre's Theorem) Note that for aninteger, the result is of how is measured ( aninteger) independent  s sin n n i n z   
  • 11. Roots of a Complex Number    cos sin nn i n in n th z re r e r n i n n n         W W (DeMoivre's Theorem) Applies also for not aninteger,but in this case, the result is independent of how is measu m no red. root ofp a cx om: pl t ea xE m l nue           22 22 6 32 1 1 1 1 1 31 3 2 2cos sin , 0,1,2, 1 2 2 8 8 2 2 cos sin , 0,1,2 6 3 6 3 2 cos 6 k n nii k ki ii i k n n n n n k k n n n nz re r e r i k n k k i e e i k                                                                    6 44 7 4 48 L roots ber : e.g.,    sin 2 cos 30 sin 30 2 6 i i                         3 2 1 2 i         3 , 2 2 2 cos sin 2 cos 90 sin 90 2 , 6 3 6 3 4 4 2 cos sin 2 cos 210 sin 210 3 , 6 3 6 3 i i i i i i i                                                                          11
  • 12. Roots of a Complex Number (cont.)       1 3 222 1 1 1 1 3 , 8 2 , 3 k n k n n n ik z ii i n n n n n i i i i n z e n z re r e r e                      1 2 3 W "principal" throot of unityroot of Note that the throot of can also be expressedin terms of the :th root of unity  {   11 22 2 2 1 cos sin , 0,1, , 1n k nn ii k n k k e ie k n n n           1 2 3 L throot of unity where z x y 8i u v w   1/31/3 8w z i   Re Im 1 0  1 120  1 240  Cube root of unity 12 w u iv  Example (cont.)