Chi-square tests are great to show if distributions differ or if two variables interact in producing outcomes. What are some examples of variables that you might want to check using the chi-square tests? What would these results tell you? DataSee comments at the right of the data set.IDSalaryCompaMidpointAgePerformance RatingServiceGenderRaiseDegreeGender1Grade8231.000233290915.80FAThe ongoing question that the weekly assignments will focus on is: Are males and females paid the same for equal work (under the Equal Pay Act)? 10220.956233080714.70FANote: to simplfy the analysis, we will assume that jobs within each grade comprise equal work.11231.00023411001914.80FA14241.04323329012160FAThe column labels in the table mean:15241.043233280814.90FAID – Employee sample number Salary – Salary in thousands 23231.000233665613.31FAAge – Age in yearsPerformance Rating – Appraisal rating (Employee evaluation score)26241.043232295216.21FAService – Years of service (rounded)Gender: 0 = male, 1 = female 31241.043232960413.90FAMidpoint – salary grade midpoint Raise – percent of last raise35241.043232390415.31FAGrade – job/pay gradeDegree (0= BS\BA 1 = MS)36231.000232775314.31FAGender1 (Male or Female)Compa - salary divided by midpoint37220.956232295216.21FA42241.0432332100815.70FA3341.096313075513.60FB18361.1613131801115.61FB20341.0963144701614.81FB39351.129312790615.51FB7411.0254032100815.70FC13421.0504030100214.71FC22571.187484865613.80FD24501.041483075913.81FD45551.145483695815.20FD17691.2105727553130FE48651.1405734901115.31FE28751.119674495914.41FF43771.1496742952015.51FF19241.043233285104.61MA25241.0432341704040MA40251.086232490206.30MA2270.870315280703.90MB32280.903312595405.60MB34280.903312680204.91MB16471.175404490405.70MC27401.000403580703.91MC41431.075402580504.30MC5470.9794836901605.71MD30491.0204845901804.30MD1581.017573485805.70ME4661.15757421001605.51ME12601.0525752952204.50ME33641.122573590905.51ME38560.9825745951104.50ME44601.0525745901605.21ME46651.1405739752003.91ME47621.087573795505.51ME49601.0525741952106.60ME50661.1575738801204.60ME6761.1346736701204.51MF9771.149674910010041MF21761.1346743951306.31MF29721.074675295505.40MF Week 1Week 1.Measurement and Description - chapters 1 and 21Measurement issues. Data, even numerically coded variables, can be one of 4 levels - nominal, ordinal, interval, or ratio. It is important to identify which level a variable is, asthis impact the kind of analysis we can do with the data. For example, descriptive statistics such as means can only be done on interval or ratio level data.Please list under each label, the variables in our data set that belong in each group.NominalOrdinalIntervalRatiob.For each variable that you did not call ratio, why did you make that decision?2The first step in analyzing data sets is to find some summary descriptive statistics for key variables.For salary, compa, age, performance rating, and service; find the mean, standard deviation, and range for 3 groups: ...