SlideShare ist ein Scribd-Unternehmen logo
1 von 75
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP
----------------------------------
LUẬN VĂN THẠC SĨKỸ THUẬT
NGÀNH: TỰ ĐỘNG HOÁ
NGHIÊN CỨU THIẾT KẾ BỘ ĐIỀU
KHIỂN PID MỜ
NGUYỄN VĂN THIỆN
THÁI NGUYÊN
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐHKT CÔNG NGHIỆP
CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM
Độc lập - Tự do - Hạnh phúc
THUYẾT MINH
LUẬN VĂN THẠC SĨKỸ THUẬT
ĐỀ TÀI:
“NGHIÊN CỨU THIẾT KẾ BỘ ĐIỀU KHIỂN PID MỜ” .
Ngành:
Học viên:
TỰ ĐỘNG HOÁ.
NGUYỄN VĂN THIỆN
Người hướng dẫn Khoa học: TS. NGUYỄN VĂN VỲ
NGƯỜI HƯỚNG DẪN KHOA HỌC
TS. Nguyễn Văn Vỳ
BAN GIÁM HIỆU
HỌC VIÊN
Nguyễn Văn Thiện
KHOA ĐT SAU ĐẠI HỌC
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
3
LỜI CAM ĐOAN
Tôi xin cam đoan luận văn này là công trình do tôi
tổng hợp và nghiên cứu. Trong lụân văn có sử dụng một số
tài liệu tham khảo như đã nêu trong phần tài liệu tham khảo.
Tác giả luận văn
NguyễnVăn Thiện
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
4
LỜI NÓI ĐẦU
Ngày nay với sự phát triển của khoa học kỹ thuật việc ứng dụng lý
thuyết điều khiển hiện đại vào thực tế đang ngày càng phát triển mạnh mẽ
trong đó có lý thuyết điều khiển mờ. Trong công nghiệp hiện nay đến 90%
các bộ điều khiển trong thực tế là dựa trên luật điều khiển PID, để bộ điều
khiển PID phát huy tốt hiệu quả của nó là thì việc xác định và hiệu chỉnh các
tham số của nó là rất quan trọng tuy nhiên việc hiệu chỉnh các tham số của bộ
điều khiển PID còn thụ động. Vì vậy việc nghiên cứu ứng dụng lý thuyết mờ
để xác định và hiệu chỉnh tham số cho bộ điều khiển PID cho phù hợp với các
trạng thái làm việc là cần thiết và hiện nay đang được nghiên cứu và phát triển
mạnh mẽ .
Với đề tài “Nghiên cứu thiết kế bộ điều khiển PID mờ” được chia làm
3 chương như sau:
Chương I
Chương II
Chương III
: Tổng quan về bộ điều khiển PID
: Bộ điều khiển mờ
: Thiết kế bộ điều khiển PID mờ
Lĩnh vực nghiên cứu ứng dụng lý thuyết mờ để xác định và hiệu chỉnh
tham số cho bộ điều khiển PID là một lĩnh vực khá phức tạp mặt khác do trình
độ và thời gian có hạn nên bản than luận văn của em không tránh khỏi những
thiếu sót. Em rất mong được sự đóng góp ý kiến của các thầy, cô để bản than
luận văn của em được hoàn thiện hơn tạo tiền đề cho những bước nghiên cứu
tiếp theo.
Em xin gửi lời cám ơn chân thành đến thầy Ts. Nguyễn Văn Vỵ đã tận
tình giúp đỡ cho em hoàn thành luận văn đúng thời hạn . Em xin chân thành
cám ơn các thầy cô của khoa Điện, trường đại học Thái Nguyên đã trang bị
cho em những kiến thức cần thiết để hoàn thành bản luận văn này cũng như
quá trình công tác sau này.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
5
MỤC LỤC
Lời cam đoan
Lời nói đầu
Danh mục các chữ viết tắt, các kí hiệu
Danh mục các bảng
Danh mục các hình vẽ, đồ thị
MỞ ĐẦU.........................................................................................................14
1. Lý do chọn đề tài ...................................................................................144
2. Ý nghĩa khoa học và thực tiễn ...............................................................144
2.1. Ý nghĩa khoa học.............................................................................144
2.2. Ý nghĩa thực tiễn.............................................................................144
Chương 1.TỔNG QUAN VỀ BỘ ĐIỀU KHIỂN PID....................................15
1.1. CẤU TRÚC CHUNG CỦA HỆ ĐIỀU KHIỂN...................................15
1.2.CÁC CHỈ TIÊU ĐÁNH GIÁ CHẤT LƯỢNG HỆ ĐIỀU KHIỂN .......... 15
1.2.1. Chỉ tiêu chất lượng tĩnh..................................................................15
1.2.2. Chỉ tiêu chất lượng động................................................................16
1.2.2.1. Lượng quá điều chỉnh..............................................................16
1.2.2.2. Thời gian quá độ......................................................................17
1.2.2.3. Số lần dao động........................................................................17
1.3. CÁC LUẬT ĐIỀU KHIỂN .................................................................................... 17
1.3.1. Quy luật điều chỉnh tỷ lệ (P) ..........................................................17
1.3.2. Quy luật điều chỉnh tích phân (I) ...................................................18
1.3.3. Quy luật điều chỉnh tỷ lệ vi phân (PD) ..........................................19
1.3.4. Quy luật điều chỉnh tỷ lệ tích phân (PI).........................................20
1.3.5. Quy luật điều chỉnh tỷ lệ vi tích phân (PID)..................................22
1.4. CÁC PHƯƠNG PHÁP XÁC ĐỊNH THAM SỐ PID..........................24
1.4.1. Phương pháp Ziegler - Nichols ......................................................26
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
6
1.4.2. Phương pháp Chien – Hrones – Reswick.......................................29
1.4.3. Phương pháp tổng T của Kuhn ......................................................31
1.4.4. Phương pháp tối ưu ........................................................................32
1.4.4.1. Phương pháp tối ưu độ lớn ......................................................32
1.4.4.2. Phương pháp tối ưu đối xứng ..................................................39
1.4.5. Xác định tham số PID dựa trên quá trình tối ưu trên máy tính.......44
1.5. KẾT LUẬN CHƯƠNG 1.....................................................................45
Chương 2. BỘ ĐIỀU KHIỂN MỜ..................................................................47
2.1. LỊCH SỬ PHÁT TRIỂN CỦA LOGIC MỜ........................................47
2.2. MỘT SỐ KHÁI NIỆM CƠ BẢN VỀ LOGIC MỜ..............................47
2.2.1. Định nghĩa tập mờ..........................................................................47
2.2.2. Các hàm liên thuộc thường được sử dụng .....................................49
2.2.3. Biến ngôn ngữ và giá trị của biến ngôn ngữ ..................................49
2.3. BỘ ĐIỀU KHIỂN MỜ .........................................................................50
2.3.1. Khâu mờ hóa ..................................................................................51
2.3.2. Khâu thực hiện luật hợp thành .......................................................52
2.3.3. Khâu giải mờ..................................................................................55
2.4. BỘ ĐIỀU KHIỂN MỜ TĨNH...............................................................59
2.4.1. Khái niệm.......................................................................................59
2.4.2. Thuật toán tổng hợp một bộ điều khiển mờ tĩnh............................59
2.4.3. Tổng hợp bộ điều khiển mờ tuyến tính từng đoạn.........................60
2.5. BỘ ĐIỀU KHIỂN MỜ ĐỘNG.............................................................61
2.6. BỘ ĐIỀU KHIỂN MỜ LAI PID ..........................................................64
2.6.1. Giới thiệu chung.............................................................................64
2.6.2. Bộ điều khiển mờ lai kinh điển ......................................................65
2.6.3. Bộ điều khiển mờ lai cascade.........................................................65
2.6.4. Bộ điều khiển mờ chỉnh định tham số bộ điều khiển PID.............66
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
7
2.6.5. Bộ điều khiển mờ tự chỉnh cấu trúc ...............................................66
2.7. KẾT LUẬN CHƯƠNG 2.....................................................................67
Chương 3. THIẾT KẾ BỘ ĐIỀU KHIỂN PID MỜ .......................................68
3.1. ĐẶT VẤN ĐỀ ......................................................................................68
3.2. THIẾT KẾ BỘ ĐIỀU KHIỂN MỜ CHỈNH ĐỊNH THAM SỐ PID.........70
3.2.1. Cấu trúc bộ điều khiển ...................................................................70
3.2.2. Thiết kế bộ điều khiển....................................................................70
3.2.3. Kết quả mô phỏng ..........................................................................77
3.3. ỨNG DỤNG PID MỜ ĐIỀU KHIỂN HỆ TRUYỆN ĐỘNGT-D.......78
3.3.1. Các yêu cầu đối với hệ truyền động T-D.......................................78
3.3.2.Tổng hợp mạch vòng điều chỉnh dòng điện RI ...............................80
3.3.3.Tổng hợp mạch vòng điều chỉnh tốc độ..........................................82
3.3.3.1. Điều chỉnh tốc độ dùng bộ điều chỉnh tốc độ tỷ lệ..................82
3.3.3.2. Điều chỉnh tốc độ dùng bộ điều chỉnh tốc độ tích phân tỷ lệ PI..85
3.3.4. Bài toán ứng dụng cụ thể................................................................86
3.3.4.1. Tính toán tham số mạch vòng dòng điện.................................88
3.3.4.2. Tính toán tham số bộ điều khiển tốc độ PI..............................89
3.3.5. Thiết kế hệ điều khiển mờ lai.........................................................90
3.3.5.1. Xác định các biến vào ra..........................................................91
3.3.5.2. Xác định giá trị cho các biến vào và ra....................................92
3.3.6. Mô phỏng đánh giá chất lượng ......................................................99
3.3.6.1. Xây dựng sơ đồ mô phỏng.......................................................99
3.3.6.2. Kết quả mô phỏng..................................................................100
3.4. KẾT LUẬN CHƯƠNG 3...................................................................106
TÀI LIỆU THAM KHẢO.............................................................................109
TÓM TẮT .....................................................................................................110
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
8
DANH MỤC CÁC CHỮ VIẾT TẮT, CÁC KÍ HIỆU
STT Kí hiệu Diễn giải
1 ĐTĐT Đối tượng điều khiển
2 TBĐK Thiết bị điều khiển
3 TBĐL - CĐTH Thiết bị đo lường và chuyển đổi tín hiệu
4 exl Sai số xác lập
5 δmax Lượng quá điều chỉnh
6 tqd Thời gian quá độ
7 n Số lần dao động
8 K Hệ số khuếch đại
9 TI Hằng số thời gian tích phân
10 Td Hằng số thời gian vi phân
11 L Hằng số thời gian trễ
12 T Hằng số thời gian quán tính
13 Δh Độ quá điều chỉnh
14 e(t) Tín hiệu đầu vào
15 u(t) Tín hiệu đầu ra
16 T-D Hệ truyền động máy phát động cơ
17 Đ Động cơ một chiều
18 BĐ Bộ biến đổi xoay chiều - một chiều có điều khiển
19 RI Bộ điều chỉnh dòng điện
20 Rω Bộ điều chỉnh tốc độ
21 Si Xenxơ dòng điện
22 F Mạch lọc tín hiệu
23 Tf Hằng số thời gian của mạch lọc
24 Tvo Hằng số thời gian sự chuyển mạch chỉnh lưu
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
9
25 Tđk Hằng số thời gian mạch điều khiển chỉnh lưu
26 Tu Hằng số thời gian mạch phần ứng
27 Ti Hằng số thời gian xenxơ dòng điện
28 Ru Điện trở mạch phần ứng
29 Mc Mômen tải
30 Tω Hằng số thời gian mạch lọc
31 Lư Điện cảm mạch phần ứng
32 Icp Dòng điện cho phép lớn nhất
33 KFi Từ thông định mức
34 J Mômen quán tính
35 CL Chỉnh lưu
36 KCL Hệ số chỉnh lưu
37 Urcm Biên độ máy phát xung răng cưa
38 Kbd Tỷ số biến đổi dòng
39 FT Máy phát tốc
40 E Sức điện động của động cơ điện một chiều
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
10
DANH MỤC CÁC BẢNG
STT Kí hiệu Diễn giải
1 Bảng 3.1 Luật điều khiển cho hệ số Kp’
2 Bảng 3.2 Luật điều khiển cho hệ số Kd’
3 Bảng 3.3 Luật điều khiển cho hệ số α
4 Bảng 3.4 Hàm liên thuộc của biến đầu vào
5 Bảng 3.5 Hàm liên thuộc của biến đầu ra
6 Bảng 3.6 Luật điều khiển cho HsKP
7 Bảng 3.7 Luật điều khiển cho HsKI
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
11
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ
STT Kí hiệu Diễn giải tên hình vẽ
1 Hình1.1 Cấu trúc hệ thống điều khiển
2 Hình1.2 Thể hiện đặc tính của sai số xác lập
3 Hình1.3 Thể hiện đặc tính của lượng quá điều chỉnh
4 Hình1.4 Thể hiện đặc tính của thời gian quá độ
5 Hình1.5 Thể hiện đặc tính của số lần dao động
6 Hình1.6 Các đặc tính của quy luật điều chỉnh tỷ lệ vi phân
7 Hình1.7 Các đặc tính của quy luật điều chỉnh tỷ lệ tích phân
8 Hình1.8 Các đặc tính của quy luật điều chỉnh tỷ lệ tích phân
9 Hình1.9 Điều khiển với bộ điều khiển PID
10 Hình1.10 Nhiệm vụ của bộ điều khiển PID
11 Hình1.11 Xác định tham số cho mô hình xấp xỉ
12 Hình1.12 Xác định hằng số khuếch đại tới hạn
13 Hình1.13 Hàm quá độ đối tượng thích hợp cho phương pháp Chien -
Hrones - Reswick
14 Hình1.14 Quan hệ giữa diện tích và tổng các hằng số thời gian
15 Hình1.15 Dải tần số mà ở đó có biên độ hàm đặt tính bằng 1, càng rộng
càng tốt
16 Hình1.16 Điều khiên khâu quán tính bậc nhất
17 Hình1.17 Minh hoạ tư tưởng thiết kế bộ điều khiển PID tối ưu đối xứng
18 Hình2.1 Mờ hoá biến “Tốc độ”
19 Hình2.2 Sơ đồ khối của bộ điều khiển mờ
20 Hình2.3 Hàm liên thuộc của luật hợp thành
21 Hình2.4 Giải mờ bằng phương pháp cực đại
22 Hình2.5 Giải mờ theo nguyên lý trung bình
23 Hình2.6 Giải mờ theo nguyên lý cận trái
24 Hình2.7 Giải mờ theo nguyên lý cận phải
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
12
25 Hình2.8 Giải mờ theo phương pháp điểm trọng tâm
26 Hình2.9 Đặc tính vào – ra cho trước
27 Hình2.10 Hàm liên thuộc của các biến ngôn ngữ vào ra
28 Hình2.11 Hệ điều khiển mờ theo luật PI
29 Hình2.12 Hệ điều khiển mờ theo luật PD
30 Hình2.13 Hệ điều khiển mờ theo luật PID
31 Hình2.14 Mô hình bộ điều khiển mờ lai kinh điển
32 Hình2.15 Cấu trúc hệ mờ lai Cascade
33 Hình3.1 Hệ điều khiển với bộ điều khiển PID mờ
34 Hình3.2 Cấu trúc bộ điều khiển
35 Hình3.3 Cấu trúc bộ điều khiển PID mờ
36 Hình3.4 Hàm liên thuộc của e(t) và de(t)/dt
37 Hình3.5 Hàm liên thuộc của biến K’p, K’d
38 Hình3.6 Hàm liên thuộc của biến α
39 Hình3.7 Đặc tính quá độ thường gặp của hệ điều khiển dùng PID
40 Hình3.8 Giao diện mô phỏng mờ
41 Hình3.9 Hàm liên thuộc của tín hiệu e(t) và de/dt
42 Hình3.10 Hàm liên thuộc của biến Kp’, Kd’
43 Hình3.11 Hàm liên thuộc của biến α
44 Hình3.12 Đặc tính điều chỉnh PID tối ưu với đối tượng bậc hai
45 Hình3.13 Đặc tính điều chỉnh PID mờ (K’p= 20.1; K’d = 20.1; Ki=8.6)
so với đặc tính PID tối ưu
46 Hình3.14 Sơ đồ khối của hệ truyền động T-D
47 Hình3.15 Cấu trúc mạch vòng điều chỉnh dòng điện.
48 Hình3.16 Sơ đồ khối của mạch vòng dòng điện.
49 Hình3.17 Sơ đồ khối hệ điều chỉnh tốc độ
50 Hình3.18 Sơ đồ khối của hệ điều chỉnh tốc độ
51 Hình3.19 Quá trình dòng điện và tốc độ khi có nhiễu tải
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
13
52 Hình3.20 Sơ đồ cấu trúc hệ truyền động T- D một chiều
53 Hình3.21 Sơ đồ cấu trúc mạch vòng điều chỉnh dòng điện.
54 Hình3.22 Cấu trúc mạch vòng điều chỉnh tốc độ.
55 Hình3.23 Cấu trúc bên trong bộ chỉnh định mờ
56 Hình3.24 Mô hình cấu trúc hệ điều khiển chỉnh định mờ tham số bộ
điều khiển PI
57 Hình3.25 Cấu trúc bộ chỉnh định mờ
58 Hình3.26 Xác định tập mờ cho biến vào ERROR
59 Hình3.27 Xác định tập mờ cho biến vào dw/dt
60 Hình3.28 Xác định tập mờ cho biến ra HsKP
61 Hình3.29 Xác định tập mờ cho biến ra HsKI
62 Hình3.30 Đặc tính quá độ thường gặp của hệ điều khiển dùng PID
63 Hình3.31 Các luật hợp thành.
64 Hình3.32 Cấu trúc của hệ điều khiển mờ lai PI
65 Hình3.33 Cấu trúc của khâu mờ
66 Hình3.34 Cấu trúc của bộ điều khiển PI
67 Hình3.35 Cấu trúc của đối tượng
68 Hình3.36 Đặc tính của bộ điều khiển PI khi mômen tải hăng số
69 Hình3.37 Đặc tính của bộ điều khiển PI-mờ khi mômen tải hằng số
70 Hình3.38 Đặc tính của bộ điều khiển PI-mờ so với bộ điều khiển PI khi
mômen tải hằng số
71 Hình3.39 Đặc tính của bộ điều khiển PI khi mômen tải thay đổi
72 Hình3.40 Đặc tính của bộ điều khiển PI- mờ khi mômen tải thay đổi
73 Hình3.41 Đặc tính của các bộ điều khiển khi mômen tải thay đổi
74 Hình3.42 Đặc tính của bộ điều khiển PI khi tốc độ đặt thay đổi
75 Hình3.43 Đặc tính của bộ điều khiển PI-mờ khi tốc độ đặt thay đổi
76 Hình3.44 Đặc tính của các bộ điều khiển khi tốc độ đặt thay đổi
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
14
MỞ ĐẦU
1. Lý do chọn đề tài
Hiện nay đến 90% các bộ điều khiển trong thực tế là dựa trên luật điều
khiển PID. Sự thông dụng của bộ điều khiển PID là ở chỗ: đơn giản trong
thiết kế và tính toán tham số cũng như quan điểm đánh giá tham số. Thuật
toán PID được xây dựng từ nhiều hướng như theo kinh nghiệm hoặc phân
tích. Tuy nhiên việc hiệu chỉnh các tham số của bộ điều khiển PID còn thụ
động. Vì vậy việc nghiên cứu ứng dụng lý thuyết Mờ để xác định và hiệu
chỉnh tham số cho bộ điều khiển PID cho phù hợp với các trạng thái làm việc
là cần thiết và cần được tập trung giải quyết. Do vậy tôi đã lựa chọn đề tài “
Nghiên cứu thiết kế bộ điều khiển PID mờ ”.
2. Ý nghĩa khoa học và thực tiễn
2.1. Ý nghĩa khoa học
Khắc phục được nhược điểm của hệ PID khi xác định các tham số.
Làm tăng khả năng ứng dụng vào thực tiễn của lý thuyết Mờ.
Nâng cao chất lượng của hệ điều khiển tự động.
2.2. Ý nghĩa thực tiễn
Đáp ứng được yêu cầu của các hệ thực đòi hỏi chất lượng điều chỉnh cao.
Đáp ứng được yêu cầu của thực tiễn là cần xác định tham số của PID.
Đề tài góp phần trong việc nghiên cứu nâng cao chất lượng hệ thống
điều khiển khi kết hợp sử dụng bộ điều khiển mờ lai. Nó thích hợp cho hệ
thống điều khiển tốc độ thông dụng, hệ thống tuỳ động và cả những hệ thống
phản hồi tương tự.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
15
Chương 1
TỔNG QUAN VỀ BỘ ĐIỀU KHIỂN PID
1.1. CẤU TRÚC CHUNG CỦA HỆ ĐIỀU KHIỂN
Cấu trúc chung của hệ thống điều khiển tự động như Hình1.1.
Trong đó:
ĐTĐT
TBĐK
TBĐL - CĐTH
: Đối tượng điều khiển.
: Thiết bị điều khiển.
: Thiết bị đo lường và chuyển đổi tín hiệu.
U(t) e(t) x(t) y(t)
TBĐK ĐTĐK
Z(t)
TBĐL
CĐTH
Hình1.1: Cấu trúc hệ thống điều khiển
U(t) : Là tín hiệu vào của hệ thống - còn gọi là tín hiệu đặt hay lượng
chủ đạo để xác định điểm làm việc của hệ thống.
y(t) : Tín hiệu đầu ra của hệ thống. Đây chính là đại lượng được điều chỉnh.
x(t) : Là tín hiệu điều khiển tác động lên đối tượng.
e(t) : Là sai lệch điều khiển.
Z(t) : Là tín hiệu phản hồi.
Thiết bị điều khiển là thành phần quan trọng nhất duy trì chế độ làm
việc cho cả hệ thống điều khiển.
1.2. CÁC CHỈ TIÊU ĐÁNH GIÁ CHẤT LƯỢNG HỆ ĐIỀU KHIỂN
1.2.1. Chỉ tiêu chất lượng tĩnh
Chỉ tiêu chất lượng tĩnh được đánh giá bằng sai số xác lập (sai lệch tĩnh):
là sai lệch của lượng ra so với yêu cầu khi quá trình điều khiển đã kết thúc.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
t s
16
Sai số xác lập : Là sai số của hệ thống khi thời gian tiến đến vô cùng
exl = lime(t) ↔ exl = limsE(s) (1.1)
cht(t)
r(t) exl
R(s) E(s)
G(s)
C(s)
H(s)
e(t) exl t
0
Hình1.2: Thể hiện đặc tính của sai số xác lập
1.2.2. Chỉ tiêu chất lượng động
Chất lượng động của hệ thống được đánh giá qua 3 chỉ tiêu cơ bản :
- Lượng quá điều chỉnh.
- Thời gian quá độ.
- Số lần dao động.
1.2.2.1. Lượng quá điều chỉnh
Lượng quá điều chỉnh: Là lượng sai lệch của đáp ứng của hệ thống so
với giá trị xác lập của nó.
c(t)
cmax
δmax
cxl
cxl
t
0
Hình1.3: Thể hiện đặc tính của lượng quá điều chỉnh
Lượng quá điều chỉnh δmax ( Percent of Overshoot – POT ) được tính
bằng công thức :
δmax =
cmax  cxl
x100%
xl
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
(1.2)
http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
17
1.2.2.2. Thời gian quá độ
Thời gian quá độ ( tqd) : Là thời gian kể từ khi có tác động vào hệ thống
(khởi động hệ thống) cho đến khi sai lệch của quá trình điều khiển nằm trong
giới hạn cho phép ε % . ε % thường chọn là 2% (0.02) hoặc 5% (0.05)
y(t)
yxl
t
0
tqd
Hình1.4: Thể hiện đặc tính của thời gian quá độ
1.2.2.3. Số lần dao động
n là số lần dao động của y(t) xung quanh giá trị yxl
y(t)
n
yxl
0
Hình1.5: Thể hiện đặc tính của
t
số lần dao động
Giá trị n càng nhỏ càng tốt. Giá trị n do yêu cầu thiết kế đặt ra, thường n ≤ 3
1.3. CÁC LUẬT ĐIỀU KHIỂN
1.3.1. Quy luật điều chỉnh tỷ lệ (P)
Trong quy luật điều chỉnh tỷ lệ tác động điều chỉnh được xác định theo
công thức:
U = K.e (1.3)
Trong đó, K là tham số điều chỉnh gọi là hệ số khuếch đại. Hàm truyền
đạt của bộ điều chỉnh tỷ lệ có dạng:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
1
1
1
e 2
18
W(p) = K (1.4)
- Hàm truyền tần số của nó là : W(jω) = K.
- Đặc tính pha tần số : φ(ω) = 0
Từ các đặc tính trên ta thấy quy luật tỷ lệ phản ứng như nhau đối với tín
hiệu ở mọi tần số. Góc lệch pha giữa tín hiệu ra và tín hiệu vào bằng không.
Vì vậy, tín hiệu điều khiển sẽ xuất hiện ngay khi có tín hiệu sai lệch. Giá trị
và tốc độ thay đổi của tín hiệu điều khiển U tỷ lệ với giá trị và tốc độ thay đổi
của tín hiệu vào
Ưu điểm cơ bản của quy luật tỷ lệ là tốc độ tác động nhanh. Hệ thống điều
chỉnh sử dụng quy luật tỷ lệ có tính ổn định cao, thời gian điều chỉnh ngắn.
Nhược điểm cơ bản của quy luật tỷ lệ là không có khả năng triệt tiêu sai
lệch tĩnh.
1.3.2. Quy luật điều chỉnh tích phân (I)
Quy luật điều chỉnh tích phân được mô tả bởi phương trình vi phân :
U =
1
TI
edt hoặc
dt
= K.e (1.5)
Trong đó, TI =
K
là hằng số thời gian tích phân
- Hàm truyền đạt có dạng: W(p) =
TI .p
- Hàm truyền tần số: W(jω) =
Tj
= -j
T
=
- Đặc tính biên độ tần số: A(ω) =
T

- Đặc tính pha tần số: φ(ω) = -
2
1 -j
T
Rõ ràng quy luật tích phân phản ứng kém với tín hiệu có tần số cao.
Trong cả dải tần số tín hiệu ra chậm pha so với tín hiệu vào một góc bằng
2
,
như vậy quy luật tích phân phản ứng chậm.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
e


)
19
Ưu điểm cơ bản của quy luật điều chỉnh tích phân là có khả năng triệt
tiêu sai lệch dư vì quy luật điều chỉnh (I) chỉ ngừng tác động khi sai lệch e = 0
Nhược điểm cơ bản của quy luật tích phân là tốc độ tác động chậm nên
hệ thống điều chỉnh tự động sử dụng quy luật tích phân sẽ kém ổn định. Thời
gian điều khiển kéo dài. Trong thực tế, quy luật điều chỉnh tích phân chỉ sử
dụng cho các đối tượng có độ trễ và hằng số thời gian nhỏ.
1.3.3. Quy luật điều chỉnh tỷ lệ vi phân (PD)
Là quy luật điều chỉnh được mô tả bởi phương trình vi phân:
U = K1.e + K2
dt
= Km

e  Td
dt 
(1.6)
Trong đó, Km = K1 là hệ số khuếch đại
Td =
K2
là hằng số thời gian vi phân
1
Các tham số hiệu chỉnh của quy luật PD là Km và Td
- Hàm quá độ : h(t) = Km[ 1(t) + Td.∂(t)]
- Hàm truyền đạt của quy luật PD có dạng : W(p) = Km(1+Td.p)
- Hàm truyền tần số : W(jω) = Km(1+jTd.ω) = A(ω).ejφ(ω)
Với A(ω) = 1(Td )2
và φ(ω) = arctgTdω như vậy 0 <φ(ω) <
2
Các đặc tính của quy luật điều chỉnh tỷ lệ vi phân được mô tả trên Hình1.6.
A(ω) φ(ω
BT / 2 PT
ω ω
I(ω)
TB ω → ∞
P
ω = 0 ω
h(t)
Km
t
Km
Hình1.6: Các đặc tính của quy luật điều chỉnh tỷ lệ vi phân
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864



m 

m 

m 

m 

T
20
Quy luật PD có hai tham số hiệu chỉnh là Km và Td. Nếu Td = 0 thì quy
luật PD trở thành quy luật tỷ lệ, nếu Km = 0 thì quy luật PD trở thành quy luật
vi phân.
Trong toàn dải tần số, tín hiệu ra luôn luôn vượt trước tín hiệu vào nên
quy luật PD tác động nhanh hơn quy luật tỷ lệ nhưng quá trình điều chỉnh vẫn
không có khả năng triệt tiêu sai lệch dư giống như quy luật tỷ lệ. Phần tử vi
phân tăng tốc độ tác động nhưng đồng thời cũng rất nhạy cảm với nhiễu ở tần
số cao. Vì vậy, trong công nghiệp, quy luật tỷ lệ vi phân chỉ sử dụng khi quy
trình công nghệ cho phép có sai lệch dư và đòi hỏi tốc độ tác động rất nhanh.
1.3.4. Quy luật điều chỉnh tỷ lệ tích phân (PI)
Quy luật PI là sự kết hợp của hai quy luật P và I được mô tả bằng
phương trình vi phân sau :
U = K1
.e + K2
∫edt = Kme 
T edt (1.7)
Trong đó, Km = K1 là hệ số khuếch đại của PI.
TI =
K1
là hằng số thời gian tích phân.
2
Thời gian tích phân là khoảng thời gian cần thiết để cho tác động tích
phân bằng tác động tỷ lệ, vì vậy nó còn được gọi là thời gian gấp đôi. Hàm
truyền đạt và hàm truyền tần số của quy luật tỷ lệ tích phân có dạng:
- Hàm quá độ của quy luật PI:
h(t) = K 1(t) 
1
1(t)dt
 I 


= K 1
1
t
 I 
- Hàm truyền đạt: W(p) = K 1
1

 I 

- Hàm truyền tần số: W(jω) = K 1j
1

 I 

- Đặc tính biên độ tần số: A(ω) =
Km
I
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
(TI )2
1
http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
21
- Đặc tính pha tần số: φ(ω) = - arctg 1
I
Như vậy, 0 > φ(ω) > - / 2
Từ các đặc tính trên ta thấy: Khi tần số tín hiệu thấp, tác động của phần
tích phân là lớn nên biên độ lớn. Tần số càng tăng tác động của tích phân càng
giảm xuống, còn tác động của tỷ lệ tăng lên, góc lệch pha giữa tín hiệu ra và
tín hiệu vào giảm xuống.
Quy luật PI có hai tham số hiệu chỉnh là Km và TI. Khi TI = ∞ thì quy
luật PI trở thành quy luật P, khi Km = 0, quy luật PI trở thành I. Khi tần số
biến thiên từ 0 đến ∞, góc lệch pha giữa tín hiệu ra so với tín hiệu vào biến
thiên trong khoảng -/ 2 đến 0. Do đó, quy luật PI tác động nhanh hơn quy
luật tích phân song chậm hơn quy luật tỷ lệ.
Các đặc tính của quy luật điều chỉnh tỷ lệ tích phân được mô tả trên
Hình1.7.
A(ω) φ(ω)
BT PT ω
Km
ω
/ 2
R(ω) TBP
K I(ω)
h(t)
ω → ∞
K
ω = 0 ω t
TI
Hình1.7: Các đặc tính của quy luật điều chỉnh tỷ lệ tích phân
Ưu điểm của quy luật tỷ lệ tích phân là tác động nhanh do có thành
phần tỷ lệ và có khả năng triệt tiêu sai lệch tĩnh do có thành phần tích phân.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
de



m 

m 

m 
T


22
Nếu ta chọn được tham số Km, TI thích hợp thì quy luật điều chỉnh PI có thể
áp dụng cho phần lớn các đối tượng trong công nghiệp.
Nhược điểm của quy luật tích phân là tốc độ tác động nhỏ hơn quy luật
tỷ lệ. Vì vậy, nếu đối tượng yêu cầu tốc độ tác động nhanh do nhiễu thay đổi
liên tục thì quy luật tích phân không đáp ứng được yêu cầu.
1.3.5. Quy luật điều chỉnh tỷ lệ vi tích phân (PID)
Quy luật điều chỉnh tỷ lệ vi tích phân được mô tả bởi phương trình:
U = K1
.e + K2
∫edt +K3
dt
= Km

e 
TI
edt TD
dt 
(1.8)
Trong đó, Km = K1 là hệ số khuếch đại của PI.
TI =
K1
là hằng số thời gian tích phân
2
TD =
K3
là hằng số thời gian vi phân
1
- Hàm quá độ: h(t) = K 1
1
t  T (t)
 I 

- Hàm truyền đạt: W(p) = K 1
1
 T p
 I 

- Hàm truyền tần số: W(jω) = K 1j(T 
1
)

 I 

- Đặc tính biên độ tần số: A(ω) =
Km
(TI)2
(TDTI2
1)2
I
- Đặc tính pha tần số: φ(ω) = arctgT 
1

 I 

Như vậy, / 2 0 < φ(ω) < /2
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
1
23
Các đặc tính của quy luật điều chỉnh PID được mô tả trên Hình1.8.
A(ω)
BT
Km ω0 =
TITD
ω
φ(ω)
/ 2
/ 2
PT
ω
I(ω)
TBP
ω → ∞
h(t)
Km
R(ω) Km
*
* t
ω = 0 TI
Hình1.8: Các đặc tính của quy luật điều chỉnh tỷ lệ tích phân
Ta nhận thấy ở dải tần số thấp đặc tính của quy luật PID gần giống với
quy luật PI, ở dải tần số cao PID gần giống với quy luật PD, tại ω0 =
PID mang đặc tính của P.
1
TITD
Quy luật PID có ba tham số hiệu chỉnh Km, TI, TD. Xét ảnh hưởng của
ba tham số ta thấy:
- Khi TD = 0 và TI = ∞ quy luật PID trở thành quy luật P
- Khi TD = 0 quy luật PID trở thành quy luật PI
- Khi TI = ∞ quy luật PID trở thành quy luật PD
Ưu điểm của quy luật PID là tốc độ tác động nhanh và có khả năng triệt
tiêu sai lệch tĩnh. Về tốc độ tác động, quy luật PID còn có thể nhanh hơn cả
quy luật tỷ lệ. Điều đó phụ thuộc vào thông số TI, TD.
Nếu ta chọn được tham số tối ưu thì quy luật PID sẽ đáp ứng được mọi
yêu cầu về điều chỉnh chất lượng của các quy trình công nghệ. Tuy nhiên,
việc chọn được bộ ba thông số tối ưu là rất khó khăn. Do đó trong công
nghiệp, quy luật PID thường chỉ được sử dụng khi đối tượng điều chỉnh có
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
24
nhiều thay đổi liên tục và quy trình công nghệ đòi hỏi độ chính xác cao mà
quy luật PI không đáp ứng được.
1.4. CÁC PHƯƠNG PHÁP XÁC ĐỊNH THAM SỐ PID
Tên gọi PID là chữ viết tắt của ba thành phần cơ bản có trong bộ điều
khiển Hình1.9a gồm khâu khuếch đại (P), khâu tích phân (I), và khâu vi phân
(D). Nguời ta vẫn thường nói rằng PID là một tập thể hoàn hảo bao gồm ba
tính cách khác nhau:
- Phục tùng và thực hiện chính xác nhiệm vụ được giao (tỷ lệ)
- Làm việc và có tích luỹ kinh nghiệm để thực hiện tốt nhiệm vụ (tích phân).
- Luôn có sang kiến và phản ứng nhanh nhạy với sự thay đổi tình
huống trong quá trình thực hiện nhiệm vụ (vi phân).
e kp
up
1 u ω
TI s uI
e
_ PID
u Đối tượng
y
điều khiển
TDs
a)
uD
b)
Hình1.9: Điều khiển với bộ điều khiển PID
Bộ điều khiển PID được sử dụng khá rộng rãi để điều khiển đối tượng
SISO theo nguyên lý hồi tiếp Hình1.9b. Lý do bộ PID được sử dụng rộng rãi
là tính đơn giản của nó cả về cấu trúc lẫn nguyên lý làm việc. Bộ PID có
nhiệm vụ đưa sai lệch e(t) của hệ thống về 0 sao cho quá trình quá độ thỏa
mãn các yêu cầu cơ bản về chất lượng:
- Nếu sai lệch e(t) càng lớn thì thông qua thành phần up(t), tín hiệu điều
chỉnh u(t) càng lớn (vai trò của khuếch đại kp).
- Nếu sai lệch e(t) chưa bằng 0 thì thông qua thành phần uI(t), PID vẫn
còn tồn tại tín hiệu điều chỉnh (vai trò của tích phân TI).
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
t
25
- Nếu sự thay đổi của sai lệch e(t) càng lớn thì thông qua thành phần
uD(t), phản ứng thích hợp của u(t) sẽ càng nhanh (vai trò của vi phân)
Bộ điều khiển PID được mô tả bằng mô hình vào ra:
u(t) = kp[ e(t) + 1
I
e(t)d + TD
de(t)
] (1.9)
0
Trong đó e(t) là tín hiệu đầu vào, u(t) là tín hiệu đầu ra, kp được gọi là
hệ số khuếch đại, TI là hằng số tích phân, TD là hằng số vi phân.
Từ mô hình vào ra trên ta có được hàm truyền đạt của bộ điều khiển PID:
R(s) = kp(1+
TI s
+ TDs ) (1.10)
Chất lượng hệ thống phụ thuộc vào các tham số kp, TI, TD. Muốn hệ
thống có được chất lượng như mong muốn thì phải phân tích đối tượng rồi
trên cơ sở đó chọn các tham số cho phù hợp. Hiện có khá nhiều các phương
pháp xác định các tham số kp, TI, TD cho bộ điều khiển PID, song tiện ích hơn
cả trong ứng dụng vẫn là:
- Phương pháp Ziegler – Nichols.
- Phương pháp Chien – Hrones – Reswick.
- Phương pháp tổng T của Kuhn.
- Phương pháp tối ưu độ lớn và phương pháp tối ưu đối xứng.
Một điều cần nói thêm là không phải mọi trường hợp ứng dụng đều
phải xác định cả ba tham số kp, TI, TD. Chẳng hạn, khi bản thân đối tượng đã
có thành phần tích phân thì trong bộ điều khiển ta không cần có thêm khâu
tích phân mới làm cho sai lệch tĩnh bằng 0, hay nói cách khác, khi đó ta chỉ
cần sử dụng bộ điều khiển PD.
R(s) = kp(1 + TDs ) (1.11)
là đủ (TI = ∞) hoặc khi tín hiệu trong hệ thống thay đổi tương đối chậm và bản
thân bộ điều khiển không cần phải có phản ứng thật nhanh với sự thay đổi của
sai lệch e(t) thì ta chỉ cần sử dụng bộ điều khiển PI (TD = 0) có hàm truyền đạt:
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
lim
26
R(s) = kp( 1 +
TI s
) (1.12)
1.4.1. Phương pháp Ziegler - Nichols
Ziegler và Nichols đã đưa ra hai phương pháp thực nghiệm để xác định
tham số bộ điều khiển PID. Trong khi phương pháp thứ nhất sử dụng dạng mô
hình xấp xỉ quán tính bậc nhất có trễ của đối tượng điều khiển:
S(s) =
keLs
1 Ts
( 1.13)
thì phương pháp thứ hai nổi trội hơn ở chổ hoàn toàn không cần đến mô hình
toán học của đối tượng. Tuy nhiên, nó có hạn chế là chỉ áp dụng được cho
một lớp các đối tượng nhất định.
Phương pháp Ziegler – Nichols thứ nhất:
Phương pháp thực nghiệm này có nhiệm vụ xác định các tham số kp, TI,
TD cho bộ điều khiển PID trên cơ sở xấp xỉ hàm truyền đạt S(s) của đối tượng
thành dạng (1.13), để hệ kín nhanh chóng trở về chế độ xác lập và độ quá điều
chỉnh Δh không vượt quá một giới hạn cho phép, khoảng 40% so với h∞ =
t
h(t), tức là có h
h
≤ 0,4. h(t)
ω e
_
40%
PID
u
S(s)
y 1
t
a)
b)
Hình1.10: Nhiệm vụ của bộ điều khiển PID
Ba tham số L (hằng số thời gian trễ), k (hệ số khuếch đại) và T (hằng số
thời gian quán tính) của mô hình xấp xỉ (1.13) có thể được xác định gần đúng
từ đồ thị hàm quá độ h(t) của đối tượng. Nếu đối tượng có hàm quá độ dạng
như Hình1.11a thì từ đồ thị hàm h(t) đó ta đọc ra được ngay:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
lim
lim
27
h(t) h(t)
k k
t t
L T a) L T b)
Hình1.11: Xác định tham số cho mô hình xấp xỉ
- L là khoản thời gian đầu ra h(t) chưa có phản ứng ngay với kích thích
1(t) tại đầu vào.
- k là giá trị giới hạn h∞ = t
h(t)
- Gọi A là điểm kết thúc thời gian trễ, tức là điểm trên trục hoành có
hoành độ bằng L. Khi đó T là khoảnh thời gian cần thiết sau L để tiếp tuyến
của h(t) tại A đạt giá trị k.
Trường hợp hàm quá độ h(t) không có dạng lý tưởng như ở Hình1.11a,
song có dạng gần giống là hình chữ S của khâu quán tính bậc hai hoặc bậc n
như ở Hình1.11b mô tả, thì ba tham số k, L, T của mô hình (1.13) được xác
định xấp xỉ như sau:
- k là giá trị giới hạn h∞ = t
h(t).
- Kẻ đường tiếp tuyến của h(t) tại điểm uốn của nó. Khi đó L sẽ là
hoành độ giao điểm của tiếp tuyến với trục hoành và T là khoảng thời gian
cần thiết để đường tiếp tuyến đi được từ giá trị 0 đến giá trị k.
Như vậy ta có thể thấy, điều kiện để áp dụng được phương pháp xấp xỉ
mô hình bậc nhất có trễ của đối tượng là đối tượng đã phải ổn định, không có
giao động và ít nhất hàm quá độ của nó phải có dạng chữ S.
Sau khi đã có các tham số cho mô hình xấp xỉ (1.13) của đối tượng
Ziegler – Nichols đã đề nghị sử dụng các tham số kp, TI, TD cho bộ điều
khiển như sau:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
kL
I
2
Hình1 12: Xác định hằng số khuếch đại tới hạn
28
- Nếu chỉ sử dụng bộ điều khiển khuếch đại R(s) = kp, thì chọn kp =
kL
- Nếu sử dụng bộ PI với R(s)=kp( 1+
TI s
) thì chọn kp= 0,9T
và TI =10
L
- NếusửdụngPIDcóR(s)= kp(1+
TI s
+TDs)thìchọnkp =1,2T
, T =2L,TD= L
Phương pháp Ziegler – Nichols thứ hai.
Phương pháp thực nghiệm thứ hai này có đặc điểm là không sử dụng
mô hình toán học của đối tượng, ngay cả mô hình xấp xỉ gần đúng (1.13)
Phương pháp Ziegler – Nichols thứ hai có nội dung như sau:
- Thay bộ điều khiển PID trong hệ kín Hình1.12a bằng bộ khuếch đại. Sau
đó tăng hệ số khuếch đại tới giá trị tới hạn kth để hệ kín ở biên giới ổn định, tức là
h(t) có dạng dao động điều hoà Hình1.12b xác định chu kỳ Tth của dao động...
ω e
_ kth
y
Đối tượng
điều khiển
h(t)
2
1,5 Tth
1
0,5
t
1 2 3 5 7 9
a) b)
- Xác định tham
.
số cho bộ điều khiển P, PI hay PID như sau:
+ Nếu sử dụng R(s) = kp thì chọn kp =
2
kth
+ Nếu sử dụng R(s) =kp(1 +
TI s
) thì chọn kp=0,45kth và TI = 0,85Tth
+ Nếu sử dụng PID thì chọn kp = 0,6kth , TI = 0,5Tth , TD = 0,12Tth
Phương pháp thực nghiệm thứ hai có một nhược điểm là chỉ áp dụng
được cho những đối tượng có được chế độ biên giới ổn định khi hiệu chỉnh
hằng số khuếch đại trong hệ kín.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864

lim
29
1.4.2. Phương pháp Chien – Hrones – Reswick
Về mặt nguyên lý phương pháp Chien – Hrones – Reswick gần giống
với phương pháp thứ nhất của Ziegler – Nichols. Song nó không sử dụng mô
hình tham số (1.13) gần đúng dạng quán tính bậc nhất có trễ cho đối tượng mà
thay vào đó là trực tiếp dạng hàm quá độ h(t) của nó.
Phương pháp Chien – Hrones – Reswick cũng phải có giả thiết rằng đối
tượng là ổn định, hàm quá độ h(t) không giao động và có dạng hình chữ S
Hình1.13 tức là luôn có đạo hàm không âm: dh(t)
= g(t) ≥ 0 .
Tuy nhiên, phương pháp này thích ứng với những đối tượng bậc cao
như quán tính bậc n:
S(s) =
1sTn
Và có hàm quá độ h(t) thoả mãn:
a
> 0
Trong đó a là hoành độ giao điểm tiếp tuyến của h(t) tại điểm uốn U
với trục thời gian Hình1.13 và b là khoảng thời gian cần thiết để tiếp tuyến đó
đi được từ 0 tới giá trị xác lập k = t
h(t).
h(t)
k
U a
>3
t
a b
Hình1.13: Hàm quá độ cho phương pháp Chien – Hrones – Reswick
Từ dạng hàm quá độ h(t) đối tượng với hai tham số a, b thoả mãn,
Chien – Hrones – Reswick đã đưa bốn cách bốn cách xác định tham số bộ
điều khiển cho bốn yêu cầu chất lượng như sau:
- Yêu cầu tối ưu theo nhiễu (giảm ảnh hưởng nhiễu) và hệ kín không có
độ quá điều chỉnh.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
lim
10
3b
lim
6b
20 100
30
+ Bộ điều khiển P : Chọn kp =
10ak
+ Bộ điều khiển PI : Chọn kp =
10ak
và TI = 4a
+ Bộ điều khiển PID : Chọn kp = 19b
, TI = 12a
và TD = 21a
- Yêu cầu tối ưu theo nhiễu (giảm ảnh hưởng nhiễu) và hệ kín có độ quá
điều chỉnh Δh không vượt quá 20% so với h∞ = t
h(t).
+ Bộ điều khiển P : Chọn kp =
10ak
+ Bộ điều khiển PI : Chọn kp =
10ak
và TI = 23a
+ Bộ điều khiển PID : Chọn kp =
20ak
, TI = 2a và TD =
50
- Yêu cầu tối ưu theo tín hiệu đặt trước (giảm sai lệch bám) và hệ kín
không có độ quá điều chỉnh Δh.
+ Bộ điều khiển P : Chọn kp =
10ak
+ Bộ điều khiển PI : Chọn kp =
20ak
và TI =
5
+ Bộ điều khiển PID : Chọn kp =
5ak
, TI = b và TD = a
- Yêu cầu tối ưu theo tín hiệu đặt trước (giảm sai lệch bám) và hệ kín
có độ quá điều chỉnh Δh không vượt quá 20% so với h∞ = t
h(t):
+ Bộ điều khiển P : Chọn kp =
10ak
+ Bộ điều khiển PI : Chọn kp =
5ak
và TI = b
+ Bộ điều khiển PID : Chọn kp = 19b
, TI = 27b
và TD = 47a
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
S(s) = k ,
1 1
1 1
lim
gian
31
1.4.3. Phương pháp tổng T của Kuhn
Cho đối tượng có hàm truyền đạt
(1T t
1s)(1T t
2s).......(1T t
m s) -sT
(1T m
1s)(1 T m
2 s).......(1 T m
n s)
( m< n ) (1.14 )
Giả thiết rằng hàm quá độ h(t) của nó có dạng hình chữ S như mô tả ở
Hình1.14, vậy thì (1.14) phải thoả mãn định lý.
Giao điểm của đường quỹ đạo biên pha A(jω) của đa thức Hurwitz A(s)
với trục thực phải nằm xen kẽ giữa những giao điểm của nó với trục ảo.
Giá trị tại hai giao điểm kề nhau của A(jω) với trục thực của đa thức
Hurwitz A(s) phải trái dấu nhau.
Giá trị tại hai giao điểm kề nhau A(jω) với trục ảo của đa thức Hurwitz
A(s) phải trái dấu nhau.
Tức là các hằng số ở tử số Ti
t
phải được giả thiết là nhỏ hơn hằng số thời
gian tương ứng với nó ở mẫu số Tj
m
. Nói cách khác nếu như đã có sự sắp xếp:
T
t
 T2
t
 ...  Tm
t
và T
m
 T2
m
 ...  Tn
m
thì cũng phải có.
T
t
 T
m
, T2
t
 T2
m
, … , Tm
t
Tm
m
Ở đây các chữ cái t và m trong Ti
t
,Tj
m
. không có ý nghĩa luỹ thừa mà chỉ là
ký hiệu nói rằng nó thuộc về đa thức tử số hay mẫu số trong hàm truyền đạt S(s).
h(t
k
)
A
t
Hình1.14: Quan hệ giữa diện tích và tổng các hằng số thời
Gọi A là diện tích bao bởi đường cong h(t) và k = t
h(t) vậy thì ta sẽ có.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
n m
i
j1 i1
lim
32
Kết luận 1:
Giữa diện tích A và các hằng số thời gian Ti
t
, Tj
m
, T của (1.14) có mối
quan hệ:
A = kT= k Tj
m
 T
t
T (1.15)
T

Kết luận 1 chỉ ra rằng Tcó thể dễ dàng được xác định từ hàm quá độ
h(t) dạng hình chữ S và đi từ 0 của đối tượng ổn định, không dao động, bằng
cách ước lượng diện tích A cũng như:
k = t
h(t), T=
A
k
(1.16)
Trên cơ sở hai giá trị k, T đã có của đối tượng. Kuhn đề ra phương pháp
tổng T xác định tham số kp, TI, TD cho bộ điều khiển PID sao cho hệ hồi tiếp có
quá trình quá độ ngắn hơn và độ quá điều chỉnh Δh không vượt quá 25%.
Phương pháp tổng T của Kuhn bao gồm hai bước sau:
- Xác định k, T, có thể từ hàm truyền đạt S(s) cho trong (1.14) nhờ kết
luận 1 và công thức (1.16) hoặc bằng thực nghiệm từ hàm quá độ h(t) đi từ 0
và có dạng hình chữ S của đối tượng theo (1.16).
- Xác định tham số:
+ Nếu sử dụng bộ điều khiển PI: chọn kp =
2k
và TI =
2
+ Nếu sử dụng bộ điều khiển PID: chọn kp=
k
và TI=
2T
và TD=0,167T∑
1.4.4. Phương pháp tối ưu
1.4.4.1. Phương pháp tối ưu độ lớn
Một trong những yêu cầu chất lượng đối với hệ thống điều khiển kín
Hình1.15 mô tả bởi hàm truyền đạt G(s).
G(s) =
1SR
Số hóa bởi Trung tâm
Học liệu – Đại học Thái
Nguyên
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
(1.17)
http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
33
ω e
_ R(s)
u
S(s)
y
L(ω)
Càng rộng càng tốt
0
-20
- 40
0,1ω ω
a) b)
10ωc
ω
Hình1.15: Dải tần số mà ở đó có biên độ hàmđặt tính bằng 1, càng rộng càng tốt
Là hệ thống luôn có được đáp ứng y(t) giống như tín hiệu lệch được
đưa ra ở đầu vào ω(t) tại mọi điểm tần số hoặc ít ra thời gian quá độ để y(t)
bám được vào ω(t) càng ngắn càng tốt. Nói cách khác, bộ điều khiển lý tưởng
R(s) cần phải mang đến cho hệ thống khả năng:
G( j) = 1 với mọi ω (1.18)
Nhưng trong thực tế, vì nhiều lý do mà yêu cầu R(s) thoã mãn (1.18) khó
được đáp ứng. Chẳng hạn như vì hệ thống thực luôn chứa trong nó bản chất
quán tính, tính “cưỡng lại lệch’’ tác động từ ngoài vào. Song “tính xấu” đó của
hệ thống lại được giảm bớt một cách tự nhiên ở chế độ làm việc có tần số lớn,
nên người ta thường đã thoả mãn với bộ điều khiển R(s) khi nó mang lại được
cho hệ thống tính chất (1.18) trong một dải tần số rộng lân cận thuộc 0.
Bộ điều khiển R(s) thoả mãn:
G( j) ≈ 1 (1.19)
trong dải tần số tần số có độ rộng lớn được gọi là bộ điều khiển tối ưu độ lớn.
Hình1.15 là ví dụ minh hoạ cho nguyên tắc điều khiển tối ưu độ lớn. Bộ điều
khiển R(s) cần phải được chọn sao cho miền tần số của biểu đồ Bole hàm
truyền hệ kín G(s) thoả mãn:
L(ω) = 20lg G( j) ≈ 0
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
1
1
34
là lớn nhất. Dải tần số này càng lớn, chất lượng hệ kín theo nghĩa (1.19) càng cao.
Một điều cần thiết nói thêm là tên gọi tối ưu độ lớn được dùng ở đây
không mang ý nghĩa chặt chẽ về mặt toán học cho một bài toán tối ưu, tức là
ở đây không có phiếm hàm đánh giá chất lượng nào được sử dụng. Do đó,
cũng không xác định cụ thể là với bộ điều khiển R(s) phiếm hàm có giá trị lớn
nhất hay không. Thuần tuý tên gọi này chỉ mang tính định tính rằng dải tần số
ω, mà ở đó G(s) thoả mãn (1.19), càng rộng càng tốt.
Phương pháp tố ưu độ lớn được xây dụng chủ yếu chỉ phục vụ việc
chọn tham số bộ điều khiển PID để điều khiển các đối tượng S(s) có hàm
truyền đạt dạng:
- Quán tính bậc nhất: S(s) =
1Ts
- Quán tính bậc hai:
- Quán tính bậc ba:
S(s) =
(1 T s)(1 T2 s)
S(s) =
(1 T s)(1 T2 s)(1 T3s)
Tuy nhiên, cho các lớp đối tượng có dạng hàm truyền đạt phức tạp hơn,
chẳng hạn như (1.14), ta vẫn có thể sử dụng được phương pháp chọn tham số
PID theo tối ưu độ lớn bằng cách xấp xỉ chúng về một trong ba dạng cơ bản
trên nhờ phương pháp tổng T của Kuhn hoặc phương pháp tổng các hằng số
thời gian nhỏ sẽ được trình bày dưới đây:
Điều khiển đối tượng quán tính bậc nhất.
Cho hệ kín có sơ đồ khối như Hình1.16
Trong đó:
- Bộ điều khiển là khâu tích phân: R(s) =
TI s
(1.20)
- Đối tượng là khâu quán tính bậc nhất: S(s) =
1 Ts
(1.21)
Như vậy ta sẽ có:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864

k
35
- Hàm truyền đạt hệ kín: G(s) =
TR s(1 Ts) k
với TR =
TI
p
- Hàm truyền đạt hệ hở: Gh(s) = R(s)S(s) =
Suy ra:
k
TR (1 Ts)
(1.22)
G( j) =
k
k TRT2
2
 TR 2
↔ G( j)
2
=
k 2
 (TR
2
 2kTRT)2
 TR
2
T 2
4
L(ω)
ω e
_ R(s)
u
S(s)
y 0
-20
-40
ω
a) b)
Hình1.16: Điều khiên khâu quán tính bậc nhất
Và điều kiện (1.20) được thoả mãn trong một dải tần số thấp có độ rộng
lớn, tất nhiên người ta có thể chọn TR sao cho:
TR
2
– 2kTRT = 0 ↔ TR =
TI
= 2kT
p
Khi đó hệ kín có biểu đồ Bole cho ở Hình1.16b với hàm truyền đạt
G(s) =
2kTs(1Ts)  k
=
Kết luận 2:
2
n
s2
2Dn s  n
2
với ωn =
1
2T
và D =
1
2
Nếu đối tượng điều khiển là khâu quán tính bậc nhất (1.21), thì bộ điều
khiển tích phân (1.20) với tham số
TI
= 2kT sẽ là bộ điều khiển tối ưu độ lớn.
p
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
1
1 1 1
n
T
n
T
1
36
Nếu đối tượng S(s) có dạng:
S(s) =
(1T s)(1T2 s)...(1 Tn s)
(1.23)
để áp dụng được kết luận trên với bộ điều khiển tối ưu độ lớn là khâu tích
phân (1.20) thì ta phải tìm cách chuyển mô hình (1.23) về dạng xấp xỉ khâu
quán tính bậc nhất.
Phương pháp xấp xỉ mô hình (1.23) thành (1.21) sau đây là phương
pháp tổng các hằng số thời gian nhỏ. Nó được sử dụng chủ yếu cho các hàm
truyền S(s) kiểu (1.23) có T1, T2,….Tn rất nhỏ.
Sử dụng công thức khai khiển Vieta cho đa thức mẫu số trong (1.23) được.
S(s) =
k
1 (T  T2 ... Tn )s  (T T2 T T3 ...)s2
....
Do đó ở những tần số thấp, tức là khi s nhỏ, ta có thể bỏ qua thành phần
bậc cao của s và thu được công thức xấp xỉ (1.21) có:
T = i
i1
Ta đi đến
Kết luận 3:
Nếu đối tượng điều khiển (1.23) có các hằng số thời gian T1, T2,….Tn
rất nhỏ thì bộ điều khiển tích phân (1.20) với tham số
điều khiển tối ưu độ lớn.
Điều khiển đối tượng quán tính bậc hai.
TI
kp
= 2ki sẽ là bộ
i1
Xét bài toán chọn tham số bộ điều khiển PID cho đối tưọng quán tính
bậc hai.
S(s) =
(1 T s)(1 T2 s)
( 1.24)
Khi đó để hàm truyền đạt hệ hở Gh(s) lại có dạng (1.22), và do đó sẽ sử
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
=
1
1
k(1 T s)
T
1
37
dụng được kết luận 1 ta chọn bộ điều khiển PI thay vì bộ điều khiển I như đã
làm với đối tượng bậc nhất:
R(s) = kp(1+
TI s
) =
kp (
1
TI s) (1 TI s)
TR s
, TR =
TI
kp
( 1.25)
→ Gh(s) = R(s)S(s) =
TR s(1 T s)(1 T2 s)
( 1.26)
nhằm thực hiện việc bù hằng số thời gian T1 của biểu thức (1.24) theo nghĩa
TI = T1
với cách chọn tham số TI này, hàm truyền đạt hệ hở (1.26) trở thành.
Gh(s) =
TR s(1
T
2 s)
Và nó hoàn toàn giống (1.22) tức là ta lại có được TR theo kết luận 1:
TR =
Vậy:
TI
kp
= 2kT2 ↔ kp =
TI
2kT2
= 1
2kT2
Kết luận 4:
Nếu đối tượng điều khiển là khâu quán tính bậc hai (1.24), thì bộ điều khiển
PI (1.25) với các tham số TI = T1, kp =
2kT2
thì sẽ là bộ điều khiển tối ưu độ lớn.
Nếu đối tượng không phải là khâu quán tính bậc hai mà lại có hàm
truyền đạt S(s) dạng (1.23) với các hằng số thời gian T2, T3,….Tn rất nhỏ so
với T1 thì do nó cỏ thể xấp xỉ bằng:
S(s) =
(1 T s)(1 Ts)
trong đó T =
i2
i
nhờ phương pháp tổng các hằng số thời gian nhỏ ta còn có:
Kết luận 5:
Nếu đối tượng điều khiển (1.23) có một hằng số thời gian T1 lớn vượt
trội và các hằng số thời gian còn lại T2, T3,….Tn rất nhỏ, thì bộ điều khiển PI
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
i
1
T s
R
1
=
1
1
38
(1.25) có các tham số TI = T1 , kp = n
sẽ là bộ điều khiển tối ưu độ lớn.
2k T
i2
Điều khiển đối tượng quán tính bậc ba.
Đối tượng là khâu quán tính bậc ba:
S(s) =
(1 T s)(1 T2 s)(1 T3s)
Ta sẽ sử dụng bộ điều khiển PID
R(s) = kp(1+
TI s
+TDs) =
(1 TAs)(1 TB s)
với : TA+TB = TI và TATB = TITD
(1.27)
TR =
TI
(1.28)
p
Khi đó hàm truyền đạt hệ hở sẽ trở về dạng (1.22) nếu ta chọn.
TA = T1, TB = T2 ↔ TI = T1 + T2 , TD =
T
T
 T2
Suy ra :
TR =
TI
= 2kT3
p
↔ kp =
2kT3
T  T2
2kT3
Vậy ta được kết luận tiếp theo.
Kết luận 6:
Nếu đối tượng điều khiển là khâu quán tính bậc ba (1.27) thì bộ điều
khiển PID (1.28) với các tham số TI = T1 + T2, TD =
T
T
 T2
, kp =
T
2kT3
2
sẽ là
bộ điều khiển tối ưu độ lớn.
Trong trường hợp đối tượng lại có dạng hàm truyền đạt (1.23) nhưng
các hằng số thời gian T3, T4, ... Tn rất nhỏ so với hai hằng số còn lại T1, T2 thì
khi sử dụng phương pháp tổng các hằng số thời gian nhỏ, để xấp xỉ nó về
dạng quán tính bậc ba:
S(s) =
(1 T s)(1 T2 s)(1 Ts)
trong đó T =
i3
i
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
T
i
39
Ta sẽ áp dụng được kết luận 6 với:
TI = T1 + T2, TD = 1T2
, kp =
T T2
1 2
2k T
i3
1.4.4.2. Phương pháp tối ưu đối xứng
Ta có thể thấy ngay được sự hạn chế của phương pháp thiết kế PID tối
ưu độ lớn là đối tượng S(s) phải ổn định, hàm quá độ h(t) của nó phải đi từ 0
và có dạng hình chữ S.
Phương pháp chọn tham số PID theo nguyên tắc tối ưu đối xứng được
xem như là một sự bù đắp cho điều khiếm khuyến trên của tối ưu độ lớn.
Trước tiên, ta xét hệ kín cho ở Hình1.17. Gọi Gh(s) = R(s)S(s) là hàm
truyền đạt của hệ hở. Khi đó hệ kín có hàm truyền đạt:
G(s) =
1 Gh (s)
↔ Gh(s) =
1 Gh (s)
và giống với phương pháp tối ưu độ lớn, để có G( j) ≈ 1 trong dải tần số
thấp thì phải có:
G( j) >> 1 trong dải tần số ω nhỏ (1.29)
Hình1.17b là biểu đồ Bole mong muốn của hàm truyền hệ hở Gh(s) gồm
Lh(ω ) và φh(ω ). Dải tần số ω trong biểu đồ Bole được chia ra làm ba vùng:
- Vùng I là vùng tần số thấp. Điều kiện (1.29) được thể hiện rõ nét ở
vùng I là hàm đặc tính tần hệ hở Gh(jω) phải có biên độ rất lớn, hay Lh(ω)>>0.
Vùng này đại diện cho chất lượng hệ thống ở chế độ xác lập hoặc tĩnh (tần số
nhỏ). Sự ảnh hưởng của nó tới tính động học của hệ kín là có thể bỏ qua.
- Vùng II là vùng tần số trung bình và cao. Vùng này mang thông tin
đặc trưng của tính động học hệ kín. Sự ảnh hưởng của vùng này tới tính chất
hệ kín ở dải tần số thấp (tĩnh) hoặc rất cao là có thể bỏ qua. Vùng II được đặc
trưng bởi điểm tần số cắt Lh(ωc ) = 0 hay Gh ( jc ) = 1. Mong muốn rằng hệ
kín không có cấu trúc phức tạp nên hàm Gh(jω) cũng được giả thiết chỉ có một
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
1
k 
_
40
tần số cắt ωc. Đường đồ thị biên độ Bole Lh(ω) sẽ thay đổi độ nghiên một giá
trị 20db/dec tại điểm tần số gãy ωI của đa thức tử số và -20db/dec tại điểm tần
số gãy ωT của đa thức mẫu số. Nếu khoảng cách độ nghiêng đủ dài thì thường
φh(jω) sẽ thay đổi một giá trị là 900
tại ωI và -900
tại ωT. Ngoài ra, hệ kín sẽ
ổn định nếu tại tần số cắt đó hệ hở có góc pha φh(ωc) lớn hơn – П. Bởi vậy,
tính ổn định hệ kín được đảm bảo nếu trong vùng I đã có Gh ( jc ) >> 1 và ở
vùng II này, xung quanh điểm tần số cắt, biểu đồ Bole Lh(ω) có độ dốc là
-20db/dec cũng như độ dốc khoảng cách đó là đủ lớn.
- Vùng III là vùng tần số rất cao. Vùng này mang ít, có thể bỏ qua được
những thông tin về chất lượng của hệ thống. Để hệ thống không bị ảnh hưởng
bởi nhiễu tần số rất cao, tức là khi ở tần số rất cao G(s) cần có biên độ rất nhỏ,
thì trong vùng này hàm Gh(jω) nên có giá trị tiến đến 0.
e
R(s) S(s)
y
R(s S(s)
Hình1.17: Minh hoạ tư tưởng thiết kế
bộ điều khiển PID tối ưu đối xứng
Lh(ω
)
I
φh(ω
)
II
III
ω
ω1 ωC
Ta có thể thấy ngay được rằng, nếu ký hiệu:
TI = ωI
-1
, Tc = ωc
-1
, T1 = ω1
-1
thì hệ hở Gh(s) mong muốn với biểu đồ Bole cho trong Hình1.18b phải là:
Gh(s) = R(s)S(s) =
s
h
(1sT )
(1.30)
Điều khiển đối tượng tích phân – quán tính bậc nhất.
Từ (1.30) thấy được, khi đối tượng S(s) có hàm truyền đạt dạng khâu
tích phân – quán tính bậc nhất:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
1
1
1
T
T
2
41
S(s) =
s(1 T s)
(1.31)
thì với bộ điều khiển PI:
R(s) = kp(1+
TI s
) (1.32)
hệ hở sẽ có hàm truyền đạt giống như (1.30) là:
Gh(s) = R(s)S(s) =
kp k(1 TI s)
TI s2
(1sT )
(1.33)
Rõ ràng là trong vùng I, hàm Gh(s) theo (1.33) thoả mãn (1.29). Để ở
vùng II, biểu đồ biên độ Bole của Gh(s) có độ nghiêng -20db/dec xung quanh
điểm tần số cắt ωc thì phải có:
ωI =
1
< ω1 =
1
→ TI > T1 (1.34)
I 1
và
Gh ( jI ) > Gh ( jc ) = 1 > Gh ( j1 ) (1.35)
Từ mô hình (1.33) của hệ hở ta có góc pha
φh(ω) = arcGh(jω) = arctan(ωTI) - arctan(ωT1)- Л
Nhằm nâng cao độ dự trữ ổn định cho hệ kín, các tham số bộ điều
khiển cần phải được chọn sao cho tại tần số cắt ωc góc pha φh(ωc) là lớn nhất
điều này dẫn đến:
dh (c )
d

→ ωc =
= 0 →
1(cTI )2
-
1 (c 1 )2
= 0
1
TI 1
→ lg(ωc) =
lg(I ) lg(1 )
(1.36)
Kết quả (1.36) này nói rằng trong biểu đồ Bole, điểm tần số cắt ωc cần
phải nằm giữa hai tần số gãy ωI và ω1. Đó cũng là lý do tại sao phương pháp
có tên là đối xứng.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
↔
1
1
1
→ a =
42
Gọi khoảng cách giữa ωI và ω1 đo trong hệ trục tọa độ biểu đồ Bole là a,
ta có:
lga = lgω1 -lgωI = lg
TI
→ a =
TI
(1.37)
1 1
Như vậy, rõ ràng sẽ có (1.34) nếu có a>1
Thay ωc cho trong (1.36) vào (1.35) ta sẽ có với (1.33) và (1.37):
Gh ( jc ) = 1
kp k 1 (TI C )2
TI 2
C 1(T C )2
= 1
↔ kp =
kT
1
a
(1.38)
Nói cách khác nếu đã có a>1 và ( 1.38) thì cũng có (1.35)
Khoảng cách a giữa ωI và ω1 còn là một đại lượng đặc trưng cho độ quá
điều chỉnh Δh của hệ kín nếu hệ có dao động. Cụ thể là a càng lớn, độ quá
điều chỉnh Δh càng nhỏ. Điều này ta thấy được như sau:
Trong vùng II, hàm truyền đạt hệ hở Gh(s) được thay thế gần đúng bằng:
Gh(s) ≈
TC s(1 T s)
với TC =
C
Khi đó hệ kín sẽ có hàm truyền đạt.
G(s) =
1 Gh (s)
≈
1
1 TC s  TCT s2
=
12DTs  (Ts)2
với T = TC 1 và 2D = TC
1
→ lg2D = (lgTC – lgT1) = lga
(vì tính chất đỗi xứng của ωC)
→ D =
2
< 1 nếu 4>a>1
Vậy trong vùng II, hàm quá độ hệ kín có dạng dao động tắt dần khi
4>a>1. Độ quá điều chỉnh của hàm quá độ hệ kín sẽ là.
Δh =
exp
D  4ln2
(h)
1D2
2
 ln2
(h)
(1.39)
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
1
= .
= vớ k =
~
43
Công thức (1.39) xác định điều khẳng định là Δh nghịch biến với a.
Ngoài ra, nó còn chỉ rằng Δh chỉ phụ thuộc vào a do đó sẽ được sử dụng để
xác định a từ yêu cầu chất lượng hệ kín về Δh.
Tóm lại, nếu đối tượng là khâu tích phân - quán tính bậc nhất (1.31) thì bộ điều
khiển tối ưuđốixứngsẽlà bộ điềukhiển PI(1.32)với các thamsố xácđịnhnhưsau:
- Xác định a từ độ quá điều chỉnh Δh cần có của hệ kín theo (1.39)
hoặc tự chọn a > 1 từ yêu cầu chất lượng đề ra. Giá trị a được chọn càng lớn,
độ quá điều chỉnh càng nhỏ. Nếu a ≤ 1, hệ kín sẽ không ổn định.
- Tính TI theo (1.37) tức là TI = aT1
- Tính kp theo (1.38) tức là kp =
kT
1
a
Điều khiển đối tượng tích phân – quán tính bậc hai.
Để điều khiển đối tượng là khâu tích phân – quán tính bậc hai:
S(s) =
s(1 T s)(1 T2 s)
(1.40)
Ta sử dụng bộ điều khiển PID
R(s) = kp(1+
TI s
+TDs) =
kp (1 TA
s
)(1 TB s)
(1.41)
Có các tham số TA+TB = TI, TATB = TITD và TA = TI (1.42)
Vì với nó hệ hở cũng sẽ có hàm truyền đạt dạng (1.30) và (1.33):
Gh(s) = R(s)S(s) =
kp k(1 TB s)
TI s2
(1T2s)
kpTB k(1 TB s
TI TB s2
(1 T2 s)
~ k(1 TB s) ~ kpTB
p
TB s2
(1 T2 s)
p
TI
(1.43)
Do hàm truyền đạt (1.43) giống gần như hoàn toàn so với (1.33) của bài
toán điều khiển đối tượng tích phân – quán tính bậc nhất (chỉ có một điểm
khác biệt duy nhất là kp được thay bởi kp =
kpTB
, nên ta cũng có ngay được I
các thông số tối ưu đối xứng của bộ điều khiển PID (1.41).
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
~
~
T
~

44
TB = aT2 và kp =
kT2 a
(1.44)
Suy ra, các tham số tối ưu đối xứng của bộ điều khiển PID(1.41) sẽ
được chọn như sau:
- Chọn TA = T1
- Xác định 4>a>1 từ độ quá điều chỉnh Δh cần có của hệ kín, hoặc chọn
a>1 từ yêu cầu chất lượng đề ra. Giá trị a được chọn càng lớn, độ quá điều
chỉnh càng nhỏ. Để hệ kín không có giao động thì chọn a≥ 4. Hệ kín sẽ không
ổn định với a ≤ 1.
- Tính TB = aT2. Từ đó suy ra TI = TA+TB và TD =
TATB
I
- Tính kp =
kT2 a
rồi suy ra kp =
kpTI
B
1.4.5. Xác định tham số PID dựa trên quá trình tối ưutrên máy tính
Qua phân tích ở trên thì ta có thể thực hiện phép thử nhiều lần để đạt
được đáp ứng tốt hơn nhưng sẽ mất nhiều thời gian. Để giải quyết vấn đề này
thì nên áp dụng phương pháp tính toán trên máy tính nhờ công cụ Matlab.
Thông thường các bộ điều khiển PID được đưa ra như sau:
Gc(s) = K
s a2
= K
s2
2as a2

(1.45)
 
Điều này có nghĩa là phải tìm sự phù hợp giữa K và a để hệ vòng kín là
ổn định dao động và độ quá điều chỉnh trong đáp ứng trước bước nhẩy là nhỏ
hơn 10% và lớn hơn 5%, để tránh quá mất ổn định dao động hoặc gần với mất
ổn định đáp ứng.
Để giải quyết vấn đề này cần tìm sự kết hợp giữa K và a mà thoả mãn
yêu cầu. Ví dụ vùng của K và a được bao bởi thông số sau:
n ≤ K ≤ l ; p ≤ a ≤ q (1.46)
n, l là giải lựa chọn tham số K. p, q là giải lựa chọn của tham số a.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
45
Để tránh khối lượng tính toán quá lớn ta phải chọn bước tính toán cho
phù hợp, ví dụ chọn bước tính là 0,2 cho cả tham số K và a.
Quá trình thực hiện trên máy tính được mô tả bằng cách sử dụng hai
vòng lặp FOR, bắt đầu là điều chỉnh giá trị K ở vòng lặp ngoài sau đó thì điều
chỉnh giá trị a ở vòng lặp trong tiếp đó định nghĩa hàm truyền hệ thống và đáp
ứng bước nhẩy. Định nghĩa độ quá điều chỉnh trong đáp ứng: Nếu điều kiện m
< 1.1 và m > 1.05 thì đạt yêu cầu và tiến hành ngắt vòng điều chỉnh trong và
ngoài, thoát khỏi chương trình. Việc xác định K, a, m được thực hiện tự động
nhờ công thức: SOL = [ K ; a ; m ].
1.5. KẾT LUẬN CHƯƠNG 1
Nội dung của chương 1, tập trung nghiên cứu các bộ điều khiển P, I, PI,
PD, PID. Tập trung nghiên cứu, cấu trúc, nguyên lý làm việc, phạm vi ứng
dụng và các phương pháp xác định, hiệu chỉnh tham số bộ điều khiển PID
theo các phương pháp khác nhau. Dựa vào tính năng, phạm vị ứng dụng ,
trên cơ so sánh đặc điểm của đối tượng cần điều khiển, chúng ta sẽ lựa chọn
được bộ điều khiển tương ứng là P, PI, PD hay PID phù hợp.Trên cơ sở của
yêu cầu chất lượng điều khiển chúng ta sẽ tính toán được các tham số của bộ
điều khiển bằng các phương pháp khác nhau như đã trình bày trong 1.4.
Bộ điều khiển PID hiện nay vẫn còn được sử dụng khá rộng rãi để điều
khiển đối tượng SISO theo nguyên lý hồi tiếp. Lý do bộ PID được sử dụng
rộng rãi là tính đơn giản của nó cả về cấu trúc lẫn nguyên lý làm việc, tin cậy
trong điều khiển và đáp ứng được yêu cầu chất lượng điều khiển trong giới hạn
nhất định. Tuy nhiên bộ điều khiển PID cũng còn tồn tại nhược điểm là trong
quá trình làm việc khi tham số của hệ thống thay đổi hoặc hệ chịu nhiễu tác
động thì tính bền vững của hệ không được đảm bảo, chất lượng ra bị thay đổi.
Các hệ cần điều khiển trong thực tế chủ yếu là các hệ phi tuyến có chưa
các tham số (có thể có tham số không biết trước) thay đổi khi làm việc. Ngoài
ra trong quá trình làm việc hệ còn chịu nhiễu tác động từ môi trường. Điều
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
46
khiển các hệ thống nói trên với các chỉ tiêu chất lượng cao các bộ điều khiển
PID thông thường nói chung không đáp ứng được.
Để điều khiển các hệ phi tuyến mạnh, hoặc các hệ có phần tử không mô
hình hoá được, các tham số không biết trước và chịu ảnh hưởng của nhiễu từ
môi trường, thường được thiết kế theo hai hướng: hướng thứ nhất Sử dụng
các bộ điều khiển hiện đại như : Điều khiển tối ưu, điều khiển bền vững, điều
khiển mờ, điều khiển thích nghi….Hướng thứ 2 là sử dụng các bộ điều khiển
lai để tận dụng ưu điểm của các bộ điều khiển như điều khiển thích nghi bền
vững, PID mờ …..
Trong luận văn tác giả sẽ lự chon phương pháp điều khiển PID mờ để
xử lý các tồn tại của bộ điều khiển PID.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
47
Chương 2
BỘ ĐIỀU KHIỂN MỜ
2.1. LỊCH SỬ PHÁT TRIỂN CỦA LOGIC MỜ
Lịch sử của điều khiển mờ bắt đầu từ năm 1965, khi đó giáo sư Lofti A
Zadeh ở trường đại học California - Mỹ đưa ra khái niệm về lý thuyết tập mờ
(Fuzzy set theory). Từ đó trở đi các nghiên cứu lý thuyết và ứng dụng tập mờ
phát triển một cách mạnh mẽ. Với những thời điểm đáng chú ý sau:
- Năm 1972, các giáo sư Terano và Asai đã thiết lập ra cơ sở nghiên
cứu hệ thống điều khiển mờ ở Nhật.
- Năm 1974, Mamdani đã nghiên cứu điều khiển mờ cho lò hơi.
- Năm 1980, hãng Smidth Co. đã nghiên cứu điều khiển mờ cho lò xi măng.
- Năm 1983, hãng Fuji Electric nghiên cứu ứng dụng mờ cho nhà máy
sử lý nước.
- Năm 1984, Hiệp hội hệ thống mờ quốc tế (IFSA) được thành lập.
- Năm 1989, phòng thí nghiệm quốc tế nghiên cứu ứng dụng kỹ thuật
mờ đầu tiên được thành lập.
Cho đến nay, hệ thống điều khiển mờ được các nhà khoa học, các kỹ sư
và sinh viên trong mọi lĩnh vực khoa học kỹ thuật đặc biệt quan tâm và ứng
dụng trong sản xuất và đời sống, đã có rất nhiều tài liệu nghiên cứu lý thuyết
và các kết qủa ứng dụng logic mờ trong điều khiển hệ thống. Tuy nhiên logic
mờ vẫn đang hứa hẹn phát triển mạnh mẽ.
2.2. MỘT SỐ KHÁI NIỆM CƠ BẢN VỀ LOGIC MỜ
2.2.1. Định nghĩa tập mờ
Logic mờ bắt đầu với khái niệm tập mờ.
Khái niệm về tập hợp đã được hình thành trên nền tảng logic và được
định nghĩa như một sự xếp đặt chung các vật, các đối tượng có cùng chung
một tính chất, được gọi là phần tử của tập hợp đó. Ý nghĩa logic của khái
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
48
niệm tập hợp được xác định ở chỗ một vật hoặc một đối tượng bất kỳ chỉ có
thể có hai khả năng hoặc là phần tử của tập đang xét hoặc không.
Xét tập hợp A ở trên. Ánh xạ A {0,1} định nghĩa trên tập A như sau:
A(x) = 0 nếu x A và
A(x) = 1 nếu x A (2.1)
Được gọi là hàm liên thuộc của tập hợp A. Một tập X luôn có X(x)=1,
với mọi x được gọi là không gian nền (tập nền).
Một tập hợp A có dạng A = {xX x} thỏa mãn một số tính chất nào
đó thì được gọi là có tập nền X, hay được định nghĩa trên tập nền X.
Như vậy trong lý thuyết kinh điển, hàm liên thuộc hoàn toàn tương
đương với định nghĩa một tập hợp. Từ định nghĩa về một tập hợp A bất kỳ ta
có thể xác định được hàm liên thuộc μA(x) cho tập hợp đó và ngược lại từ
hàm liên thuộc μA(x) của tập hợp A cũng hoàn toàn suy ra được định nghĩa
cho tập hợp A.
Tuy nhiên, cách biểu diễn hàm liên thuộc như vậy không phù hợp với
những tập hợp được mô tả “mờ” như tập B gồm các số thực nhỏ hơn nhiều so
với 6: B = {x R x << 6}; hoặc tập C gồm các số thực xấp xỉ bằng 3:
C={xR x 3}.
Lý do là với những tập mờ như vậy chưa đủ để xác định được x = 3,5
có thuộc tập B hoặc x = 2,5 có thuộc tập C hay không. Nếu đã không khẳng
định được x = 3,5 có thuộc tập B hay không thì cũng không thể khẳng định
được x = 3,5 không thuộc tập B. Vậy x = 3,5 thuộc tập B bao nhiêu phần
trăm. Giả sử tồn tại câu trả lời thì hàm liên thuộc B(x) tại điểm x = 3,5 phải
có một giá trị trong khoảng [0,1], tức là: 0 B(x) 1 . Nói cách khác hàm
B(x) không còn là hàm hai giá trị như đối với tập hợp kinh điển nữa mà là
một ánh xạ: B: R [0,1].
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
49
Như vậy, khác với tập hợp kinh điển A, từ “định nghĩa kinh điển” của
tập “mờ” B hoặc C không suy ra được hàm liên thuộc B(x) hoặc C(x) của
chúng. Do đó, ta có định nghĩa về tập mờ như sau:
Tập mờ F xác định trên tập kinh điển X là một tập mà mỗi phần tử của
nó là một cặp các giá trị (x, F(x) trong đó x  X và F là ánh xạ.
F:X[0,1].
Ánh xạ F được gọi là hàm liên thuộc của tập mờ F. Tập kinh điển X
được gọi là tập nền (hay vũ trụ) của tập mờ F.
2.2.2. Các hàm liên thuộc thường được sử dụng
Hàm liên thuộc được xây dựng dựa trên các đường thẳng : Dạng này có
ưu điểm là đơn giản. Chúng gồm hai dạng chính là: tam giác và hình thang.
Hàm liên thuộc được xây dựng dựa trên đường cong phân bố Gauss:
kiểu thứ nhất là đường cong Gauss dạng đơn giản và kiểu thứ hai là sự kết
hợp hai đường cong Gauss khác nhau ở hai phía. Cả hai đường cong này đều
có ưu điểm là trơn và không gẫy ở mọi điểm nên chúng là phương pháp phổ
biến để xác định tập mờ.
Ngoài ra, hàm liên thuộc còn có thể có một số dạng ít phổ biến (chỉ
được sử dụng trong một số ứng dụng nhất định). Đó là các dạng sigma và
dạng đường cong Z, Pi và S.
2.2.3. Biến ngôn ngữ và giá trị của biến ngôn ngữ
Một biến có thể gán bởi các từ trong ngôn ngữ tự nhiên làm giá trị của
nó gọi là biến ngôn ngữ.
Một biến ngôn ngữ thường bao gồm 4 thông số: X, T, U, M với :
+ X : Tên của biến ngôn ngữ.
+ T : Tập của các giá trị ngôn ngữ.
+ U : Không gian nền mà trên đó biến ngôn ngữ X nhận các giá trị rõ.
+ M : Chỉ ra sự phân bố của T trên U
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864

50
Ví dụ: biến ngôn ngữ “Tốc độ xe” có tập các giá trị ngôn ngữ là rất
chậm, chậm, trung bình, nhanh, rất nhanh, không gian nền của biến là tập các
số thực dương. Vậy biến tốc độ xe có 2 miền giá trị khác nhau:
- Miền các giá trị ngôn ngữ N: [rất chậm, chậm, trung bình, nhanh, rất nhanh]
- Miền các giá trị vật lý V = {x R (x≥0 )}
Mỗi giá trị ngôn ngữ (mỗi phần tử của N) có tập nền là miền giá trị vật
lý V. Từ một giá trị vật lý của biến ngôn ngữ ta có được một véc tơ μ gồm các
độ phụ thuộc của x: X → μT
= [ μrất chậm μ chậm μtrung binh μnhanh μrất nhanh ]
ánh xạ trên được gọi là quá trình Fuzzy hoá giá trị rõ x.
Ví dụ : Ứng với tốc độ 50 km/h ta có.
0
0,5
Véc tơ μ(50) = 0,5
0
0
2.3. BỘ ĐIỀU KHIỂN MỜ
μ
1
μRC μC μTB μNH μRN
Tốc độ
50
Hình2.1: Mờ hoá biến “Tốc độ”
Sơ đồ khối của bộ điều khiển mờ trên Hình2.2. bao gồm 4 khối:
- Khối mờ hóa (fuzzifiers).
- Khối hợp thành.
- Khối luật mờ.
- Khối giải mờ (defuzzifiers).
Đầu vào
x
Khối mờ hóa
(fuzzifiers)
Khối hợp
thành
Đầu ra
Giải mờ y
Khối luật mờ
Hình2.2: Sơ đồ khối của bộ điều khiển mờ.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
A
A
A
51
2.3.1. Khâu mờ hóa
Khâu mờ hóa có nhiệm vụ chuyển một giá trị rõ hóa đầu vào x0 thành
một vector gồm các độ phụ thuộc của các giá trị rõ đó theo các giá trị mờ
(tập mờ) đã định nghĩa cho biến ngôn ngữ đầu vào.
Mờ hoá được định nghĩa như sự ánh xạ từ tập các giá trị thực (giá trị
rõ) x*
U Rn
thành lập các giá trị mờ
'
~ ở trong U. Hệ thống mờ như là
một bộ xấp xỉ vạn năng. Nguyên tắc chung việc thực hiện mờ hoá là:
- Từ tập giá trị thực x đầu vào sẽ tạo ra tập mờ
có giá trị đủ rộng tại các điểm rõ x*.
A'
~ với hàm liên thuộc
- Nếu có nhiễu ở đầu vào thì viêc mờ hoá sẽ góp phần khử nhiễu.
- Việc mờ hoá phải tạo điều kiện đơn giản cho tính toán sau này.
Thông thường có 3 phương pháp mờ hóa: Mờ hóa đơn trị, mờ hóa
Gaus (Gaussian fuzzifier) và mờ hóa hình tam giác (Triangular fuzzifier).
Thường sử dụng mờ hóa Gaus hoặc mờ hóa hình tam giác vì hai phương
pháp này không những cho phép tính toán tương đối đơn giản mà còn đồng
thời có thể khử nhiễu đầu vào.
Mờ hoá đơn trị (Singleton fuzzifier): Mờ hoá đơn trị là từ các điểm giá trị
thực x*
U lấy các giá trị đơn trị của tập mờ ~
'
, nghĩa là hàm liên thuộc dạng:
μA’(x) =
0
nếu x = x*
nếu ở các chỗ khác
(2.2)
Mờ hoá Gaus (Gaussian Fuzzifier) : Mờ hoá Gaus là từ các điểm giá trị
thực x* U lấy các giá trị trong tập mờ ~
'
với hàm liên thuộc Gaus.
Mờ hoá hình tam giác (Triangular Fuzzifier) : Mờ hoá hình tam giác là
từ các điểm giá trị thực x* U lấy các giá trị trong tập mờ
A'
~ với hàm liên
thuộc dạng hình tam giác, hoặc hình thang.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
52
Ta thấy mờ hoá đơn trị cho phép tính toán về sau rất đơn giản nhưng
không khử được nhiễu đầu vào, mờ hoá Gaus hoặc mờ hoá hình tam giác
không những cho phép tính toán về sau tương đối đơn giản mà còn đồng thời
có thể khử nhiễu đầu vào.
2.3.2. Khâu thực hiện luật hợp thành
Khâu thực hiện luật hợp thành gồm 2 khối đó là khối luật mờ và khối
hợp thành.
Khối luật mờ (suy luận mờ) bao gồm tập các luật “Nếu … Thì” dựa vào
các luật mờ cơ sở được người thiết kế viết ra cho thích hợp với từng biến và
giá trị của các biến ngôn ngữ theo quan hệ mờ Vào/Ra.
Khối hợp thành dùng để biến đổi các giá trị mờ hoá của biến ngôn ngữ
đầu vào thành các giá trị mờ của biến ngôn ngữ đầu ra theo các luật hợp thành
nào đó.
Khâu thực hiện luật hợp thành, có tên gọi là thiết bị hợp thành, xử lý
vector và cho giá trị mờ B’ của tập biến đầu ra.
Cho hai biến ngôn ngữ và . Nếu biến nhận giá trị (mờ) A với hàm
liên thuộc A(x) và nhận giá trị (mờ) B với hàm liên thuộc B(y) thì biểu thức:
= A được gọi là mệnh đề điều kiện và = B được gọi là mệnh đề kết luận.
Nếu ký hiệu mệnh đề  = A là p và mệnh đề  = B là q thì mệnh đề hợp thành:
p q (từ p suy ra q) (2.3)
hoàn toàn tương đương với luật điều khiển:
Nếu = A thì = B (2.4)
Mệnh đề hợp thành trên là một ví dụ đơn giản về bộ điều khiển mờ. Nó
cho phép từ một giá trị đầu vào xo hay cụ thể là từ độ phụ thuộc A(xo) đối với
tập mờ A của giá trị đầu vào xo xác định được hệ số thỏa mãn mệnh đề kết
luận q của giá trị đầu ra y. Hệ số thỏa mãn mệnh đề kết luận này được gọi là
giá trị của mệnh đề hợp thành khi đầu vào bằng A và giá trị của mệnh đề hợp
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
53
thành (2.3) là một giá trị mờ. Biểu diễn giá trị mờ đó là tập hợp C thì mệnh đề
hợp thành mờ (2.4) chính là một ánh xạ:
A(xo) C(y)
Ta có công thức xác định hàm liên thuộc cho mệnh đề hợp thành
B’=AB.
B'(y) = min{A, B(y)}, được gọi là quy tắc hợp thành MIN
B'(y) = A.B(y), được gọi là quy tắc hợp thành PROD
Đây là hai quy tắc hợp thành thường được dùng trong lý thuyết điều
khiển mờ để mô tả mệnh đề hợp thành A B.
Hàm liên thuộc AB(y) của mệnh đề hợp thành A B sẽ được ký hiệu là
R. Ta có luật hợp thành là tên chung gọi mô hình R biểu diễn một hay nhiều hàm
liên thuộc cho một hay nhiều mệnh đề hợp thành, nói cách khác luật hợp thành
được hiểu là một tập hợp của nhiều mệnh đề hợp thành. Một luật hợp thành chỉ có
một mệnh đề hợp thành được gọi là luật hợp thành đơn. Ngược lại nếu nó có
nhiều hơn một mệnh đề hợp thành ta sẽ gọi nó là luật hợp thành kép. Phần lớn các
hệ mờ trong thực tế đều có mô hình là luật hợp thành kép. Ngoài ra R còn có một
số tên gọi khác phụ thuộc vào cách kết hợp các mệnh đề hợp thành (max hay sum)
và quy tắc sử dụng trong từng mệnh đề hợp thành (MIN hay PROD):
- Luật hợp thành max-PROD, nếu các hàm liên thuộc thành phần được
xác định theo quy tắc hợp thành PROD và phép hợp giữa các mệnh đề hợp
thành được lấy theo luật max.
- Luật hợp thành max-MIN, nếu các hàm liên thuộc thành phần được
xác định theo quy tắc hợp thành MIN và phép hợp giữa các mệnh đề hợp
thành được lấy theo luật max.
- Luật hợp thành sum-MIN, nếu các hàm liên thuộc thành phần được
xác định theo quy tắc hợp thành MIN và phép hợp được lấy theo công thức
Lukasiewicz.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
μB(y)
μA=>B(y)
x0
54
- Luật hợp thành sum-PROD, nếu các hàm liên thuộc thành phần được
các định theo quy tắc hợp thành PROD và phép hợp được lấy theo công thức
Lukasiewicz.
μ μ
μA(x) μB(x)
x y
μ μ
μA(x)
x
x0
μB(x)
μA=>B(y)
y
μ μ
μA(x)
x
Hình2.3: Hàm liên thuộc của luật hợp thành : (a) Hàm liên thuộc A(x)
và B(y).(b) AB(y) xác định theo quy tắc min.(c) AB(y) xác định theo
quy tắc PROD.
Tổng quát, ta xét thuật toán xây dựng luật hợp thành có nhiều mệnh đề
hợp thành. Xét luật hợp thành gồm p mệnh đề hợp thành:
R1 : Nếu = A1 Thì = B1 hoặc
R2: Nếu = A2 Thì = B2 hoặc
. . .
RP: Nếu = AP, Thì = BP
Trong đó các giá trị mờ A1, A2,..., AP có cùng tập nền X và B1, B2,...,
BP có cùng tập nền Y.
Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com
Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx
Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx

Weitere ähnliche Inhalte

Ähnlich wie Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx

Đồ Án Tốt Nghiệp Về Đánh Giá Một Số Giao Thức Trong Mạng Cảm Nhận Không Dây B...
Đồ Án Tốt Nghiệp Về Đánh Giá Một Số Giao Thức Trong Mạng Cảm Nhận Không Dây B...Đồ Án Tốt Nghiệp Về Đánh Giá Một Số Giao Thức Trong Mạng Cảm Nhận Không Dây B...
Đồ Án Tốt Nghiệp Về Đánh Giá Một Số Giao Thức Trong Mạng Cảm Nhận Không Dây B...mokoboo56
 
KHÓA LUẬN TỐT NGHIỆP ĐTCNK).docx
KHÓA LUẬN TỐT NGHIỆP ĐTCNK).docxKHÓA LUẬN TỐT NGHIỆP ĐTCNK).docx
KHÓA LUẬN TỐT NGHIỆP ĐTCNK).docxkimpham15892
 
ỨNG DỤNG MÔ HÌNH GIẢ LẬP MONTE CARLO TRONG THẨM ĐỊNH DỰ ÁN ĐẦU TƯ TẠI NHTMCP ...
ỨNG DỤNG MÔ HÌNH GIẢ LẬP MONTE CARLO TRONG THẨM ĐỊNH DỰ ÁN ĐẦU TƯ TẠI NHTMCP ...ỨNG DỤNG MÔ HÌNH GIẢ LẬP MONTE CARLO TRONG THẨM ĐỊNH DỰ ÁN ĐẦU TƯ TẠI NHTMCP ...
ỨNG DỤNG MÔ HÌNH GIẢ LẬP MONTE CARLO TRONG THẨM ĐỊNH DỰ ÁN ĐẦU TƯ TẠI NHTMCP ...lamluanvan.net Viết thuê luận văn
 
Luận Văn Tìm Hiểu Và Thiết Kế Chương Trình Điều Khiển Hệ Thống Pha Trộn Dung ...
Luận Văn Tìm Hiểu Và Thiết Kế Chương Trình Điều Khiển Hệ Thống Pha Trộn Dung ...Luận Văn Tìm Hiểu Và Thiết Kế Chương Trình Điều Khiển Hệ Thống Pha Trộn Dung ...
Luận Văn Tìm Hiểu Và Thiết Kế Chương Trình Điều Khiển Hệ Thống Pha Trộn Dung ...sividocz
 
Phân Tích Và Thiết Kế Hệ Thống Thông Tin Về Đăng Ký Kinh Doanh Của Các Doanh ...
Phân Tích Và Thiết Kế Hệ Thống Thông Tin Về Đăng Ký Kinh Doanh Của Các Doanh ...Phân Tích Và Thiết Kế Hệ Thống Thông Tin Về Đăng Ký Kinh Doanh Của Các Doanh ...
Phân Tích Và Thiết Kế Hệ Thống Thông Tin Về Đăng Ký Kinh Doanh Của Các Doanh ...mokoboo56
 
Nghiên cứu điều chỉnh khoảng giãn cách sản phẩm trong các băng chuyền​
Nghiên cứu điều chỉnh khoảng giãn cách sản phẩm trong các băng chuyền​Nghiên cứu điều chỉnh khoảng giãn cách sản phẩm trong các băng chuyền​
Nghiên cứu điều chỉnh khoảng giãn cách sản phẩm trong các băng chuyền​Man_Ebook
 
CƠ HỘI VÀ THÁCH THỨC ĐỐI VỚI NGÀNH CÔNG NGHIỆP ĐIỆN TỬ VIỆT NAM KHI THAM GIA ...
CƠ HỘI VÀ THÁCH THỨC ĐỐI VỚI NGÀNH CÔNG NGHIỆP ĐIỆN TỬ VIỆT NAM KHI THAM GIA ...CƠ HỘI VÀ THÁCH THỨC ĐỐI VỚI NGÀNH CÔNG NGHIỆP ĐIỆN TỬ VIỆT NAM KHI THAM GIA ...
CƠ HỘI VÀ THÁCH THỨC ĐỐI VỚI NGÀNH CÔNG NGHIỆP ĐIỆN TỬ VIỆT NAM KHI THAM GIA ...lamluanvan.net Viết thuê luận văn
 

Ähnlich wie Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx (20)

Luận văn thạc sĩ kỹ thuật - Thiết kế, chế tạo khóa tích hợp sử dụng trong két...
Luận văn thạc sĩ kỹ thuật - Thiết kế, chế tạo khóa tích hợp sử dụng trong két...Luận văn thạc sĩ kỹ thuật - Thiết kế, chế tạo khóa tích hợp sử dụng trong két...
Luận văn thạc sĩ kỹ thuật - Thiết kế, chế tạo khóa tích hợp sử dụng trong két...
 
Nghiên cứu ảnh hưởng của lượng hyđrô thêm vào đường nạp đến hiệu suất và phát...
Nghiên cứu ảnh hưởng của lượng hyđrô thêm vào đường nạp đến hiệu suất và phát...Nghiên cứu ảnh hưởng của lượng hyđrô thêm vào đường nạp đến hiệu suất và phát...
Nghiên cứu ảnh hưởng của lượng hyđrô thêm vào đường nạp đến hiệu suất và phát...
 
ĐỒ ÁN - Nghiên Cứu Thiết Kế Bộ Điều Khiển PID Mờ.doc
ĐỒ ÁN - Nghiên Cứu Thiết Kế Bộ Điều Khiển PID Mờ.docĐỒ ÁN - Nghiên Cứu Thiết Kế Bộ Điều Khiển PID Mờ.doc
ĐỒ ÁN - Nghiên Cứu Thiết Kế Bộ Điều Khiển PID Mờ.doc
 
Đồ Án Tốt Nghiệp Về Đánh Giá Một Số Giao Thức Trong Mạng Cảm Nhận Không Dây B...
Đồ Án Tốt Nghiệp Về Đánh Giá Một Số Giao Thức Trong Mạng Cảm Nhận Không Dây B...Đồ Án Tốt Nghiệp Về Đánh Giá Một Số Giao Thức Trong Mạng Cảm Nhận Không Dây B...
Đồ Án Tốt Nghiệp Về Đánh Giá Một Số Giao Thức Trong Mạng Cảm Nhận Không Dây B...
 
Nhân Tố Ảnh Hưởng Đến Sự Hữu Hiệu Của Hệ Thống Kiểm Soát Nội Bộ Tại Các Đơn V...
Nhân Tố Ảnh Hưởng Đến Sự Hữu Hiệu Của Hệ Thống Kiểm Soát Nội Bộ Tại Các Đơn V...Nhân Tố Ảnh Hưởng Đến Sự Hữu Hiệu Của Hệ Thống Kiểm Soát Nội Bộ Tại Các Đơn V...
Nhân Tố Ảnh Hưởng Đến Sự Hữu Hiệu Của Hệ Thống Kiểm Soát Nội Bộ Tại Các Đơn V...
 
Nghiên cứu ảnh hưởng của kết cấu hệ thống truyền lực đến động lực học theo ph...
Nghiên cứu ảnh hưởng của kết cấu hệ thống truyền lực đến động lực học theo ph...Nghiên cứu ảnh hưởng của kết cấu hệ thống truyền lực đến động lực học theo ph...
Nghiên cứu ảnh hưởng của kết cấu hệ thống truyền lực đến động lực học theo ph...
 
TỐI ƯU HÓA TOPOLOGY CHO MẠNG NGANG HÀNG CÓ CẤU TRÚC CHORD.doc
TỐI ƯU HÓA TOPOLOGY CHO MẠNG NGANG HÀNG CÓ CẤU TRÚC CHORD.docTỐI ƯU HÓA TOPOLOGY CHO MẠNG NGANG HÀNG CÓ CẤU TRÚC CHORD.doc
TỐI ƯU HÓA TOPOLOGY CHO MẠNG NGANG HÀNG CÓ CẤU TRÚC CHORD.doc
 
KHÓA LUẬN TỐT NGHIỆP ĐTCNK).docx
KHÓA LUẬN TỐT NGHIỆP ĐTCNK).docxKHÓA LUẬN TỐT NGHIỆP ĐTCNK).docx
KHÓA LUẬN TỐT NGHIỆP ĐTCNK).docx
 
ỨNG DỤNG MÔ HÌNH GIẢ LẬP MONTE CARLO TRONG THẨM ĐỊNH DỰ ÁN ĐẦU TƯ TẠI NHTMCP ...
ỨNG DỤNG MÔ HÌNH GIẢ LẬP MONTE CARLO TRONG THẨM ĐỊNH DỰ ÁN ĐẦU TƯ TẠI NHTMCP ...ỨNG DỤNG MÔ HÌNH GIẢ LẬP MONTE CARLO TRONG THẨM ĐỊNH DỰ ÁN ĐẦU TƯ TẠI NHTMCP ...
ỨNG DỤNG MÔ HÌNH GIẢ LẬP MONTE CARLO TRONG THẨM ĐỊNH DỰ ÁN ĐẦU TƯ TẠI NHTMCP ...
 
Luận Văn Tìm Hiểu Và Thiết Kế Chương Trình Điều Khiển Hệ Thống Pha Trộn Dung ...
Luận Văn Tìm Hiểu Và Thiết Kế Chương Trình Điều Khiển Hệ Thống Pha Trộn Dung ...Luận Văn Tìm Hiểu Và Thiết Kế Chương Trình Điều Khiển Hệ Thống Pha Trộn Dung ...
Luận Văn Tìm Hiểu Và Thiết Kế Chương Trình Điều Khiển Hệ Thống Pha Trộn Dung ...
 
Phân Tích Và Thiết Kế Hệ Thống Thông Tin Về Đăng Ký Kinh Doanh Của Các Doanh ...
Phân Tích Và Thiết Kế Hệ Thống Thông Tin Về Đăng Ký Kinh Doanh Của Các Doanh ...Phân Tích Và Thiết Kế Hệ Thống Thông Tin Về Đăng Ký Kinh Doanh Của Các Doanh ...
Phân Tích Và Thiết Kế Hệ Thống Thông Tin Về Đăng Ký Kinh Doanh Của Các Doanh ...
 
Nghiên cứu điều chỉnh khoảng giãn cách sản phẩm trong các băng chuyền​
Nghiên cứu điều chỉnh khoảng giãn cách sản phẩm trong các băng chuyền​Nghiên cứu điều chỉnh khoảng giãn cách sản phẩm trong các băng chuyền​
Nghiên cứu điều chỉnh khoảng giãn cách sản phẩm trong các băng chuyền​
 
Luận văn thạc sĩ - Điều khiển robot 5 bậc tự do bằng nhận dạng giọng nói.doc
Luận văn thạc sĩ - Điều khiển robot 5 bậc tự do bằng nhận dạng giọng nói.docLuận văn thạc sĩ - Điều khiển robot 5 bậc tự do bằng nhận dạng giọng nói.doc
Luận văn thạc sĩ - Điều khiển robot 5 bậc tự do bằng nhận dạng giọng nói.doc
 
Luận án: Nghiên cứu phát triển hệ thống định vị vô tuyến trong nhà sử dụng an...
Luận án: Nghiên cứu phát triển hệ thống định vị vô tuyến trong nhà sử dụng an...Luận án: Nghiên cứu phát triển hệ thống định vị vô tuyến trong nhà sử dụng an...
Luận án: Nghiên cứu phát triển hệ thống định vị vô tuyến trong nhà sử dụng an...
 
Nhận dạng tham số trong hệ thống điều khiển số tốc độ động cơ một chiều.doc
Nhận dạng tham số trong hệ thống điều khiển số tốc độ động cơ một chiều.docNhận dạng tham số trong hệ thống điều khiển số tốc độ động cơ một chiều.doc
Nhận dạng tham số trong hệ thống điều khiển số tốc độ động cơ một chiều.doc
 
CƠ HỘI VÀ THÁCH THỨC ĐỐI VỚI NGÀNH CÔNG NGHIỆP ĐIỆN TỬ VIỆT NAM KHI THAM GIA ...
CƠ HỘI VÀ THÁCH THỨC ĐỐI VỚI NGÀNH CÔNG NGHIỆP ĐIỆN TỬ VIỆT NAM KHI THAM GIA ...CƠ HỘI VÀ THÁCH THỨC ĐỐI VỚI NGÀNH CÔNG NGHIỆP ĐIỆN TỬ VIỆT NAM KHI THAM GIA ...
CƠ HỘI VÀ THÁCH THỨC ĐỐI VỚI NGÀNH CÔNG NGHIỆP ĐIỆN TỬ VIỆT NAM KHI THAM GIA ...
 
Luận Văn Tác Động Của Phát Triển Tài Chính Đến Tăng Trưởng Kinh Tế.doc
Luận Văn Tác Động Của Phát Triển Tài Chính Đến Tăng Trưởng Kinh Tế.docLuận Văn Tác Động Của Phát Triển Tài Chính Đến Tăng Trưởng Kinh Tế.doc
Luận Văn Tác Động Của Phát Triển Tài Chính Đến Tăng Trưởng Kinh Tế.doc
 
Hoàn thiện công tác kế toán chi phí và tính giá thành sản phẩm ta...
Hoàn thiện công tác kế toán chi phí và tính giá thành sản phẩm ta...Hoàn thiện công tác kế toán chi phí và tính giá thành sản phẩm ta...
Hoàn thiện công tác kế toán chi phí và tính giá thành sản phẩm ta...
 
Kế toán chi phí sản xuất và tính giá thành sản phẩm công ty nồi hơi
Kế toán chi phí sản xuất và tính giá thành sản phẩm công ty nồi hơiKế toán chi phí sản xuất và tính giá thành sản phẩm công ty nồi hơi
Kế toán chi phí sản xuất và tính giá thành sản phẩm công ty nồi hơi
 
Một Số Giải Pháp Hoàn Thiện Chuỗi Cung Ứng Thuốc Thú Y Tại Công Ty.doc
Một Số Giải Pháp Hoàn Thiện Chuỗi Cung Ứng Thuốc Thú Y Tại Công Ty.docMột Số Giải Pháp Hoàn Thiện Chuỗi Cung Ứng Thuốc Thú Y Tại Công Ty.doc
Một Số Giải Pháp Hoàn Thiện Chuỗi Cung Ứng Thuốc Thú Y Tại Công Ty.doc
 

Mehr von Dịch vụ viết thuê đề tài trọn gói 🥳🥳 Liên hệ ZALO/TELE: 0917.193.864 ❤❤

Mehr von Dịch vụ viết thuê đề tài trọn gói 🥳🥳 Liên hệ ZALO/TELE: 0917.193.864 ❤❤ (20)

Cơ sở lý luận về hợp đồng mua bán nhà ở.docx
Cơ sở lý luận về hợp đồng mua bán nhà ở.docxCơ sở lý luận về hợp đồng mua bán nhà ở.docx
Cơ sở lý luận về hợp đồng mua bán nhà ở.docx
 
Cơ sở lý luận và cơ sở pháp lý về tổ chức và hoạt động của chính quyền cấp xã...
Cơ sở lý luận và cơ sở pháp lý về tổ chức và hoạt động của chính quyền cấp xã...Cơ sở lý luận và cơ sở pháp lý về tổ chức và hoạt động của chính quyền cấp xã...
Cơ sở lý luận và cơ sở pháp lý về tổ chức và hoạt động của chính quyền cấp xã...
 
Cơ sở khoa học của quản lý nhà nước đối với hợp tác xã trong nông nghiệp.docx
Cơ sở khoa học của quản lý nhà nước đối với hợp tác xã trong nông nghiệp.docxCơ sở khoa học của quản lý nhà nước đối với hợp tác xã trong nông nghiệp.docx
Cơ sở khoa học của quản lý nhà nước đối với hợp tác xã trong nông nghiệp.docx
 
Cơ sở lý luận về động lực và tạo động lực làm việc cho công chức nữ.docx
Cơ sở lý luận về động lực và tạo động lực làm việc cho công chức nữ.docxCơ sở lý luận về động lực và tạo động lực làm việc cho công chức nữ.docx
Cơ sở lý luận về động lực và tạo động lực làm việc cho công chức nữ.docx
 
Cơ sở khoa học về quản lý nhà nước đối với dịch vụ công cộng.docx
Cơ sở khoa học về quản lý nhà nước đối với dịch vụ công cộng.docxCơ sở khoa học về quản lý nhà nước đối với dịch vụ công cộng.docx
Cơ sở khoa học về quản lý nhà nước đối với dịch vụ công cộng.docx
 
Cơ sở lý luận về quản lý nhà nước trong nông nghiệp.docx
Cơ sở lý luận về quản lý nhà nước trong nông nghiệp.docxCơ sở lý luận về quản lý nhà nước trong nông nghiệp.docx
Cơ sở lý luận về quản lý nhà nước trong nông nghiệp.docx
 
Cơ sở lý luận về phát triển đội ngũ giảng viên bậc đại học.docx
Cơ sở lý luận về phát triển đội ngũ giảng viên bậc đại học.docxCơ sở lý luận về phát triển đội ngũ giảng viên bậc đại học.docx
Cơ sở lý luận về phát triển đội ngũ giảng viên bậc đại học.docx
 
Cơ sở lý luận của thực hiện chính sách dân tộc.docx
Cơ sở lý luận của thực hiện chính sách dân tộc.docxCơ sở lý luận của thực hiện chính sách dân tộc.docx
Cơ sở lý luận của thực hiện chính sách dân tộc.docx
 
Cơ sở lý luận quản lý nhà nước về công tác dân tộc.docx
Cơ sở lý luận quản lý nhà nước về công tác dân tộc.docxCơ sở lý luận quản lý nhà nước về công tác dân tộc.docx
Cơ sở lý luận quản lý nhà nước về công tác dân tộc.docx
 
Cơ sở lý luận quản lý nhà nước về di tích lịch sử - văn hoá.docx
Cơ sở lý luận quản lý nhà nước về di tích lịch sử - văn hoá.docxCơ sở lý luận quản lý nhà nước về di tích lịch sử - văn hoá.docx
Cơ sở lý luận quản lý nhà nước về di tích lịch sử - văn hoá.docx
 
Cơ sở lý luận về vai trò của thanh tra nhà nước trong phòng, chống tham nhũng...
Cơ sở lý luận về vai trò của thanh tra nhà nước trong phòng, chống tham nhũng...Cơ sở lý luận về vai trò của thanh tra nhà nước trong phòng, chống tham nhũng...
Cơ sở lý luận về vai trò của thanh tra nhà nước trong phòng, chống tham nhũng...
 
Cơ sở lý luận về thu bảo hiểm xã hội và pháp luật về thu bảo hiểm xã hội.docx
Cơ sở lý luận về thu bảo hiểm xã hội và pháp luật về thu bảo hiểm xã hội.docxCơ sở lý luận về thu bảo hiểm xã hội và pháp luật về thu bảo hiểm xã hội.docx
Cơ sở lý luận về thu bảo hiểm xã hội và pháp luật về thu bảo hiểm xã hội.docx
 
Cơ sở lý luận hoàn thiện pháp luật về quản lý biên chế.docx
Cơ sở lý luận hoàn thiện pháp luật về quản lý biên chế.docxCơ sở lý luận hoàn thiện pháp luật về quản lý biên chế.docx
Cơ sở lý luận hoàn thiện pháp luật về quản lý biên chế.docx
 
CƠ SỞ LÝ LUẬN CHUNG VỀ BẢO HIỂM XÃ HỘI.docx
CƠ SỞ LÝ LUẬN CHUNG VỀ BẢO HIỂM XÃ HỘI.docxCƠ SỞ LÝ LUẬN CHUNG VỀ BẢO HIỂM XÃ HỘI.docx
CƠ SỞ LÝ LUẬN CHUNG VỀ BẢO HIỂM XÃ HỘI.docx
 
CƠ SỞ LÝ LUẬN VỀ DỊCH VỤ HÀNH CHÍNH CÔNG.docx
CƠ SỞ LÝ LUẬN VỀ DỊCH VỤ HÀNH CHÍNH CÔNG.docxCƠ SỞ LÝ LUẬN VỀ DỊCH VỤ HÀNH CHÍNH CÔNG.docx
CƠ SỞ LÝ LUẬN VỀ DỊCH VỤ HÀNH CHÍNH CÔNG.docx
 
CƠ SỞ LÝ LUẬN VỀ QUẢN TRỊ NGUỒN NHÂN LỰC.docx
CƠ SỞ LÝ LUẬN VỀ QUẢN TRỊ NGUỒN NHÂN LỰC.docxCƠ SỞ LÝ LUẬN VỀ QUẢN TRỊ NGUỒN NHÂN LỰC.docx
CƠ SỞ LÝ LUẬN VỀ QUẢN TRỊ NGUỒN NHÂN LỰC.docx
 
CƠ SỞ LÝ LUẬN VỀ ĐÁNH GIÁ VIÊN CHỨC NGÀNH Y TẾ.docx
CƠ SỞ LÝ LUẬN VỀ ĐÁNH GIÁ VIÊN CHỨC NGÀNH Y TẾ.docxCƠ SỞ LÝ LUẬN VỀ ĐÁNH GIÁ VIÊN CHỨC NGÀNH Y TẾ.docx
CƠ SỞ LÝ LUẬN VỀ ĐÁNH GIÁ VIÊN CHỨC NGÀNH Y TẾ.docx
 
CƠ SỞ LÝ LUẬN VỀ SỬA ĐỔI HIẾN PHÁP.docx
CƠ SỞ LÝ LUẬN VỀ SỬA ĐỔI HIẾN PHÁP.docxCƠ SỞ LÝ LUẬN VỀ SỬA ĐỔI HIẾN PHÁP.docx
CƠ SỞ LÝ LUẬN VỀ SỬA ĐỔI HIẾN PHÁP.docx
 
CƠ SỞ LÝ LUẬN QUẢN LÝ NHÀ NƯỚC VỀ DU LỊCH.docx
CƠ SỞ LÝ LUẬN QUẢN LÝ NHÀ NƯỚC VỀ DU LỊCH.docxCƠ SỞ LÝ LUẬN QUẢN LÝ NHÀ NƯỚC VỀ DU LỊCH.docx
CƠ SỞ LÝ LUẬN QUẢN LÝ NHÀ NƯỚC VỀ DU LỊCH.docx
 
Cơ sở lý luận về thực hiện pháp luật về dân chủ ở cơ sở.docx
Cơ sở lý luận về thực hiện pháp luật về dân chủ ở cơ sở.docxCơ sở lý luận về thực hiện pháp luật về dân chủ ở cơ sở.docx
Cơ sở lý luận về thực hiện pháp luật về dân chủ ở cơ sở.docx
 

Kürzlich hochgeladen

20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...Nguyen Thanh Tu Collection
 
các nội dung phòng chống xâm hại tình dục ở trẻ em
các nội dung phòng chống xâm hại tình dục ở trẻ emcác nội dung phòng chống xâm hại tình dục ở trẻ em
các nội dung phòng chống xâm hại tình dục ở trẻ emTrangNhung96
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdf
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdfxemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdf
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdfXem Số Mệnh
 
Trắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hội
Trắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hộiTrắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hội
Trắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hộiNgocNguyen591215
 
Giáo trình nhập môn lập trình - Đặng Bình Phương
Giáo trình nhập môn lập trình - Đặng Bình PhươngGiáo trình nhập môn lập trình - Đặng Bình Phương
Giáo trình nhập môn lập trình - Đặng Bình Phươnghazzthuan
 
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdfBỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdfNguyen Thanh Tu Collection
 
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...Nguyen Thanh Tu Collection
 
Bài học phòng cháy chữa cháy - PCCC tại tòa nhà
Bài học phòng cháy chữa cháy - PCCC tại tòa nhàBài học phòng cháy chữa cháy - PCCC tại tòa nhà
Bài học phòng cháy chữa cháy - PCCC tại tòa nhàNguyen Thi Trang Nhung
 
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...Nguyen Thanh Tu Collection
 
Đề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
Đề thi tin học HK2 lớp 3 Chân Trời Sáng TạoĐề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
Đề thi tin học HK2 lớp 3 Chân Trời Sáng Tạowindcances
 
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docxasdnguyendinhdang
 
xemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdf
xemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdfxemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdf
xemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdfXem Số Mệnh
 
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptx
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptxBài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptx
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptxDungxPeach
 
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdf
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdfSLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdf
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdfhoangtuansinh1
 
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdfGiáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf4pdx29gsr9
 
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...Nguyen Thanh Tu Collection
 
bài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hànhbài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hànhdangdinhkien2k4
 
Access: Chuong III Thiet ke truy van Query.ppt
Access: Chuong III Thiet ke truy van Query.pptAccess: Chuong III Thiet ke truy van Query.ppt
Access: Chuong III Thiet ke truy van Query.pptPhamThiThuThuy1
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 

Kürzlich hochgeladen (20)

20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
 
các nội dung phòng chống xâm hại tình dục ở trẻ em
các nội dung phòng chống xâm hại tình dục ở trẻ emcác nội dung phòng chống xâm hại tình dục ở trẻ em
các nội dung phòng chống xâm hại tình dục ở trẻ em
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdf
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdfxemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdf
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdf
 
Trắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hội
Trắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hộiTrắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hội
Trắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hội
 
Giáo trình nhập môn lập trình - Đặng Bình Phương
Giáo trình nhập môn lập trình - Đặng Bình PhươngGiáo trình nhập môn lập trình - Đặng Bình Phương
Giáo trình nhập môn lập trình - Đặng Bình Phương
 
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdfBỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
 
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...
 
Bài học phòng cháy chữa cháy - PCCC tại tòa nhà
Bài học phòng cháy chữa cháy - PCCC tại tòa nhàBài học phòng cháy chữa cháy - PCCC tại tòa nhà
Bài học phòng cháy chữa cháy - PCCC tại tòa nhà
 
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
 
Đề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
Đề thi tin học HK2 lớp 3 Chân Trời Sáng TạoĐề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
Đề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
 
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
 
xemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdf
xemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdfxemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdf
xemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdf
 
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptx
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptxBài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptx
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptx
 
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdf
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdfSLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdf
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdf
 
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdfGiáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
 
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...
 
bài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hànhbài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hành
 
Access: Chuong III Thiet ke truy van Query.ppt
Access: Chuong III Thiet ke truy van Query.pptAccess: Chuong III Thiet ke truy van Query.ppt
Access: Chuong III Thiet ke truy van Query.ppt
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 

Luận văn thạc sĩ kỹ thuật Nghiên cứu thiết kế bộ điều khiển PID mờ.docx

  • 1. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP ---------------------------------- LUẬN VĂN THẠC SĨKỸ THUẬT NGÀNH: TỰ ĐỘNG HOÁ NGHIÊN CỨU THIẾT KẾ BỘ ĐIỀU KHIỂN PID MỜ NGUYỄN VĂN THIỆN THÁI NGUYÊN Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
  • 2. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐHKT CÔNG NGHIỆP CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc THUYẾT MINH LUẬN VĂN THẠC SĨKỸ THUẬT ĐỀ TÀI: “NGHIÊN CỨU THIẾT KẾ BỘ ĐIỀU KHIỂN PID MỜ” . Ngành: Học viên: TỰ ĐỘNG HOÁ. NGUYỄN VĂN THIỆN Người hướng dẫn Khoa học: TS. NGUYỄN VĂN VỲ NGƯỜI HƯỚNG DẪN KHOA HỌC TS. Nguyễn Văn Vỳ BAN GIÁM HIỆU HỌC VIÊN Nguyễn Văn Thiện KHOA ĐT SAU ĐẠI HỌC
  • 3. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 3 LỜI CAM ĐOAN Tôi xin cam đoan luận văn này là công trình do tôi tổng hợp và nghiên cứu. Trong lụân văn có sử dụng một số tài liệu tham khảo như đã nêu trong phần tài liệu tham khảo. Tác giả luận văn NguyễnVăn Thiện Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 4. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 4 LỜI NÓI ĐẦU Ngày nay với sự phát triển của khoa học kỹ thuật việc ứng dụng lý thuyết điều khiển hiện đại vào thực tế đang ngày càng phát triển mạnh mẽ trong đó có lý thuyết điều khiển mờ. Trong công nghiệp hiện nay đến 90% các bộ điều khiển trong thực tế là dựa trên luật điều khiển PID, để bộ điều khiển PID phát huy tốt hiệu quả của nó là thì việc xác định và hiệu chỉnh các tham số của nó là rất quan trọng tuy nhiên việc hiệu chỉnh các tham số của bộ điều khiển PID còn thụ động. Vì vậy việc nghiên cứu ứng dụng lý thuyết mờ để xác định và hiệu chỉnh tham số cho bộ điều khiển PID cho phù hợp với các trạng thái làm việc là cần thiết và hiện nay đang được nghiên cứu và phát triển mạnh mẽ . Với đề tài “Nghiên cứu thiết kế bộ điều khiển PID mờ” được chia làm 3 chương như sau: Chương I Chương II Chương III : Tổng quan về bộ điều khiển PID : Bộ điều khiển mờ : Thiết kế bộ điều khiển PID mờ Lĩnh vực nghiên cứu ứng dụng lý thuyết mờ để xác định và hiệu chỉnh tham số cho bộ điều khiển PID là một lĩnh vực khá phức tạp mặt khác do trình độ và thời gian có hạn nên bản than luận văn của em không tránh khỏi những thiếu sót. Em rất mong được sự đóng góp ý kiến của các thầy, cô để bản than luận văn của em được hoàn thiện hơn tạo tiền đề cho những bước nghiên cứu tiếp theo. Em xin gửi lời cám ơn chân thành đến thầy Ts. Nguyễn Văn Vỵ đã tận tình giúp đỡ cho em hoàn thành luận văn đúng thời hạn . Em xin chân thành cám ơn các thầy cô của khoa Điện, trường đại học Thái Nguyên đã trang bị cho em những kiến thức cần thiết để hoàn thành bản luận văn này cũng như quá trình công tác sau này. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 5. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 5 MỤC LỤC Lời cam đoan Lời nói đầu Danh mục các chữ viết tắt, các kí hiệu Danh mục các bảng Danh mục các hình vẽ, đồ thị MỞ ĐẦU.........................................................................................................14 1. Lý do chọn đề tài ...................................................................................144 2. Ý nghĩa khoa học và thực tiễn ...............................................................144 2.1. Ý nghĩa khoa học.............................................................................144 2.2. Ý nghĩa thực tiễn.............................................................................144 Chương 1.TỔNG QUAN VỀ BỘ ĐIỀU KHIỂN PID....................................15 1.1. CẤU TRÚC CHUNG CỦA HỆ ĐIỀU KHIỂN...................................15 1.2.CÁC CHỈ TIÊU ĐÁNH GIÁ CHẤT LƯỢNG HỆ ĐIỀU KHIỂN .......... 15 1.2.1. Chỉ tiêu chất lượng tĩnh..................................................................15 1.2.2. Chỉ tiêu chất lượng động................................................................16 1.2.2.1. Lượng quá điều chỉnh..............................................................16 1.2.2.2. Thời gian quá độ......................................................................17 1.2.2.3. Số lần dao động........................................................................17 1.3. CÁC LUẬT ĐIỀU KHIỂN .................................................................................... 17 1.3.1. Quy luật điều chỉnh tỷ lệ (P) ..........................................................17 1.3.2. Quy luật điều chỉnh tích phân (I) ...................................................18 1.3.3. Quy luật điều chỉnh tỷ lệ vi phân (PD) ..........................................19 1.3.4. Quy luật điều chỉnh tỷ lệ tích phân (PI).........................................20 1.3.5. Quy luật điều chỉnh tỷ lệ vi tích phân (PID)..................................22 1.4. CÁC PHƯƠNG PHÁP XÁC ĐỊNH THAM SỐ PID..........................24 1.4.1. Phương pháp Ziegler - Nichols ......................................................26 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 6. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 6 1.4.2. Phương pháp Chien – Hrones – Reswick.......................................29 1.4.3. Phương pháp tổng T của Kuhn ......................................................31 1.4.4. Phương pháp tối ưu ........................................................................32 1.4.4.1. Phương pháp tối ưu độ lớn ......................................................32 1.4.4.2. Phương pháp tối ưu đối xứng ..................................................39 1.4.5. Xác định tham số PID dựa trên quá trình tối ưu trên máy tính.......44 1.5. KẾT LUẬN CHƯƠNG 1.....................................................................45 Chương 2. BỘ ĐIỀU KHIỂN MỜ..................................................................47 2.1. LỊCH SỬ PHÁT TRIỂN CỦA LOGIC MỜ........................................47 2.2. MỘT SỐ KHÁI NIỆM CƠ BẢN VỀ LOGIC MỜ..............................47 2.2.1. Định nghĩa tập mờ..........................................................................47 2.2.2. Các hàm liên thuộc thường được sử dụng .....................................49 2.2.3. Biến ngôn ngữ và giá trị của biến ngôn ngữ ..................................49 2.3. BỘ ĐIỀU KHIỂN MỜ .........................................................................50 2.3.1. Khâu mờ hóa ..................................................................................51 2.3.2. Khâu thực hiện luật hợp thành .......................................................52 2.3.3. Khâu giải mờ..................................................................................55 2.4. BỘ ĐIỀU KHIỂN MỜ TĨNH...............................................................59 2.4.1. Khái niệm.......................................................................................59 2.4.2. Thuật toán tổng hợp một bộ điều khiển mờ tĩnh............................59 2.4.3. Tổng hợp bộ điều khiển mờ tuyến tính từng đoạn.........................60 2.5. BỘ ĐIỀU KHIỂN MỜ ĐỘNG.............................................................61 2.6. BỘ ĐIỀU KHIỂN MỜ LAI PID ..........................................................64 2.6.1. Giới thiệu chung.............................................................................64 2.6.2. Bộ điều khiển mờ lai kinh điển ......................................................65 2.6.3. Bộ điều khiển mờ lai cascade.........................................................65 2.6.4. Bộ điều khiển mờ chỉnh định tham số bộ điều khiển PID.............66 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 7. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 7 2.6.5. Bộ điều khiển mờ tự chỉnh cấu trúc ...............................................66 2.7. KẾT LUẬN CHƯƠNG 2.....................................................................67 Chương 3. THIẾT KẾ BỘ ĐIỀU KHIỂN PID MỜ .......................................68 3.1. ĐẶT VẤN ĐỀ ......................................................................................68 3.2. THIẾT KẾ BỘ ĐIỀU KHIỂN MỜ CHỈNH ĐỊNH THAM SỐ PID.........70 3.2.1. Cấu trúc bộ điều khiển ...................................................................70 3.2.2. Thiết kế bộ điều khiển....................................................................70 3.2.3. Kết quả mô phỏng ..........................................................................77 3.3. ỨNG DỤNG PID MỜ ĐIỀU KHIỂN HỆ TRUYỆN ĐỘNGT-D.......78 3.3.1. Các yêu cầu đối với hệ truyền động T-D.......................................78 3.3.2.Tổng hợp mạch vòng điều chỉnh dòng điện RI ...............................80 3.3.3.Tổng hợp mạch vòng điều chỉnh tốc độ..........................................82 3.3.3.1. Điều chỉnh tốc độ dùng bộ điều chỉnh tốc độ tỷ lệ..................82 3.3.3.2. Điều chỉnh tốc độ dùng bộ điều chỉnh tốc độ tích phân tỷ lệ PI..85 3.3.4. Bài toán ứng dụng cụ thể................................................................86 3.3.4.1. Tính toán tham số mạch vòng dòng điện.................................88 3.3.4.2. Tính toán tham số bộ điều khiển tốc độ PI..............................89 3.3.5. Thiết kế hệ điều khiển mờ lai.........................................................90 3.3.5.1. Xác định các biến vào ra..........................................................91 3.3.5.2. Xác định giá trị cho các biến vào và ra....................................92 3.3.6. Mô phỏng đánh giá chất lượng ......................................................99 3.3.6.1. Xây dựng sơ đồ mô phỏng.......................................................99 3.3.6.2. Kết quả mô phỏng..................................................................100 3.4. KẾT LUẬN CHƯƠNG 3...................................................................106 TÀI LIỆU THAM KHẢO.............................................................................109 TÓM TẮT .....................................................................................................110 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 8. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 8 DANH MỤC CÁC CHỮ VIẾT TẮT, CÁC KÍ HIỆU STT Kí hiệu Diễn giải 1 ĐTĐT Đối tượng điều khiển 2 TBĐK Thiết bị điều khiển 3 TBĐL - CĐTH Thiết bị đo lường và chuyển đổi tín hiệu 4 exl Sai số xác lập 5 δmax Lượng quá điều chỉnh 6 tqd Thời gian quá độ 7 n Số lần dao động 8 K Hệ số khuếch đại 9 TI Hằng số thời gian tích phân 10 Td Hằng số thời gian vi phân 11 L Hằng số thời gian trễ 12 T Hằng số thời gian quán tính 13 Δh Độ quá điều chỉnh 14 e(t) Tín hiệu đầu vào 15 u(t) Tín hiệu đầu ra 16 T-D Hệ truyền động máy phát động cơ 17 Đ Động cơ một chiều 18 BĐ Bộ biến đổi xoay chiều - một chiều có điều khiển 19 RI Bộ điều chỉnh dòng điện 20 Rω Bộ điều chỉnh tốc độ 21 Si Xenxơ dòng điện 22 F Mạch lọc tín hiệu 23 Tf Hằng số thời gian của mạch lọc 24 Tvo Hằng số thời gian sự chuyển mạch chỉnh lưu Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 9. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 9 25 Tđk Hằng số thời gian mạch điều khiển chỉnh lưu 26 Tu Hằng số thời gian mạch phần ứng 27 Ti Hằng số thời gian xenxơ dòng điện 28 Ru Điện trở mạch phần ứng 29 Mc Mômen tải 30 Tω Hằng số thời gian mạch lọc 31 Lư Điện cảm mạch phần ứng 32 Icp Dòng điện cho phép lớn nhất 33 KFi Từ thông định mức 34 J Mômen quán tính 35 CL Chỉnh lưu 36 KCL Hệ số chỉnh lưu 37 Urcm Biên độ máy phát xung răng cưa 38 Kbd Tỷ số biến đổi dòng 39 FT Máy phát tốc 40 E Sức điện động của động cơ điện một chiều Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 10. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 10 DANH MỤC CÁC BẢNG STT Kí hiệu Diễn giải 1 Bảng 3.1 Luật điều khiển cho hệ số Kp’ 2 Bảng 3.2 Luật điều khiển cho hệ số Kd’ 3 Bảng 3.3 Luật điều khiển cho hệ số α 4 Bảng 3.4 Hàm liên thuộc của biến đầu vào 5 Bảng 3.5 Hàm liên thuộc của biến đầu ra 6 Bảng 3.6 Luật điều khiển cho HsKP 7 Bảng 3.7 Luật điều khiển cho HsKI Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 11. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 11 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ STT Kí hiệu Diễn giải tên hình vẽ 1 Hình1.1 Cấu trúc hệ thống điều khiển 2 Hình1.2 Thể hiện đặc tính của sai số xác lập 3 Hình1.3 Thể hiện đặc tính của lượng quá điều chỉnh 4 Hình1.4 Thể hiện đặc tính của thời gian quá độ 5 Hình1.5 Thể hiện đặc tính của số lần dao động 6 Hình1.6 Các đặc tính của quy luật điều chỉnh tỷ lệ vi phân 7 Hình1.7 Các đặc tính của quy luật điều chỉnh tỷ lệ tích phân 8 Hình1.8 Các đặc tính của quy luật điều chỉnh tỷ lệ tích phân 9 Hình1.9 Điều khiển với bộ điều khiển PID 10 Hình1.10 Nhiệm vụ của bộ điều khiển PID 11 Hình1.11 Xác định tham số cho mô hình xấp xỉ 12 Hình1.12 Xác định hằng số khuếch đại tới hạn 13 Hình1.13 Hàm quá độ đối tượng thích hợp cho phương pháp Chien - Hrones - Reswick 14 Hình1.14 Quan hệ giữa diện tích và tổng các hằng số thời gian 15 Hình1.15 Dải tần số mà ở đó có biên độ hàm đặt tính bằng 1, càng rộng càng tốt 16 Hình1.16 Điều khiên khâu quán tính bậc nhất 17 Hình1.17 Minh hoạ tư tưởng thiết kế bộ điều khiển PID tối ưu đối xứng 18 Hình2.1 Mờ hoá biến “Tốc độ” 19 Hình2.2 Sơ đồ khối của bộ điều khiển mờ 20 Hình2.3 Hàm liên thuộc của luật hợp thành 21 Hình2.4 Giải mờ bằng phương pháp cực đại 22 Hình2.5 Giải mờ theo nguyên lý trung bình 23 Hình2.6 Giải mờ theo nguyên lý cận trái 24 Hình2.7 Giải mờ theo nguyên lý cận phải Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 12. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 12 25 Hình2.8 Giải mờ theo phương pháp điểm trọng tâm 26 Hình2.9 Đặc tính vào – ra cho trước 27 Hình2.10 Hàm liên thuộc của các biến ngôn ngữ vào ra 28 Hình2.11 Hệ điều khiển mờ theo luật PI 29 Hình2.12 Hệ điều khiển mờ theo luật PD 30 Hình2.13 Hệ điều khiển mờ theo luật PID 31 Hình2.14 Mô hình bộ điều khiển mờ lai kinh điển 32 Hình2.15 Cấu trúc hệ mờ lai Cascade 33 Hình3.1 Hệ điều khiển với bộ điều khiển PID mờ 34 Hình3.2 Cấu trúc bộ điều khiển 35 Hình3.3 Cấu trúc bộ điều khiển PID mờ 36 Hình3.4 Hàm liên thuộc của e(t) và de(t)/dt 37 Hình3.5 Hàm liên thuộc của biến K’p, K’d 38 Hình3.6 Hàm liên thuộc của biến α 39 Hình3.7 Đặc tính quá độ thường gặp của hệ điều khiển dùng PID 40 Hình3.8 Giao diện mô phỏng mờ 41 Hình3.9 Hàm liên thuộc của tín hiệu e(t) và de/dt 42 Hình3.10 Hàm liên thuộc của biến Kp’, Kd’ 43 Hình3.11 Hàm liên thuộc của biến α 44 Hình3.12 Đặc tính điều chỉnh PID tối ưu với đối tượng bậc hai 45 Hình3.13 Đặc tính điều chỉnh PID mờ (K’p= 20.1; K’d = 20.1; Ki=8.6) so với đặc tính PID tối ưu 46 Hình3.14 Sơ đồ khối của hệ truyền động T-D 47 Hình3.15 Cấu trúc mạch vòng điều chỉnh dòng điện. 48 Hình3.16 Sơ đồ khối của mạch vòng dòng điện. 49 Hình3.17 Sơ đồ khối hệ điều chỉnh tốc độ 50 Hình3.18 Sơ đồ khối của hệ điều chỉnh tốc độ 51 Hình3.19 Quá trình dòng điện và tốc độ khi có nhiễu tải Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 13. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 13 52 Hình3.20 Sơ đồ cấu trúc hệ truyền động T- D một chiều 53 Hình3.21 Sơ đồ cấu trúc mạch vòng điều chỉnh dòng điện. 54 Hình3.22 Cấu trúc mạch vòng điều chỉnh tốc độ. 55 Hình3.23 Cấu trúc bên trong bộ chỉnh định mờ 56 Hình3.24 Mô hình cấu trúc hệ điều khiển chỉnh định mờ tham số bộ điều khiển PI 57 Hình3.25 Cấu trúc bộ chỉnh định mờ 58 Hình3.26 Xác định tập mờ cho biến vào ERROR 59 Hình3.27 Xác định tập mờ cho biến vào dw/dt 60 Hình3.28 Xác định tập mờ cho biến ra HsKP 61 Hình3.29 Xác định tập mờ cho biến ra HsKI 62 Hình3.30 Đặc tính quá độ thường gặp của hệ điều khiển dùng PID 63 Hình3.31 Các luật hợp thành. 64 Hình3.32 Cấu trúc của hệ điều khiển mờ lai PI 65 Hình3.33 Cấu trúc của khâu mờ 66 Hình3.34 Cấu trúc của bộ điều khiển PI 67 Hình3.35 Cấu trúc của đối tượng 68 Hình3.36 Đặc tính của bộ điều khiển PI khi mômen tải hăng số 69 Hình3.37 Đặc tính của bộ điều khiển PI-mờ khi mômen tải hằng số 70 Hình3.38 Đặc tính của bộ điều khiển PI-mờ so với bộ điều khiển PI khi mômen tải hằng số 71 Hình3.39 Đặc tính của bộ điều khiển PI khi mômen tải thay đổi 72 Hình3.40 Đặc tính của bộ điều khiển PI- mờ khi mômen tải thay đổi 73 Hình3.41 Đặc tính của các bộ điều khiển khi mômen tải thay đổi 74 Hình3.42 Đặc tính của bộ điều khiển PI khi tốc độ đặt thay đổi 75 Hình3.43 Đặc tính của bộ điều khiển PI-mờ khi tốc độ đặt thay đổi 76 Hình3.44 Đặc tính của các bộ điều khiển khi tốc độ đặt thay đổi Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 14. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 14 MỞ ĐẦU 1. Lý do chọn đề tài Hiện nay đến 90% các bộ điều khiển trong thực tế là dựa trên luật điều khiển PID. Sự thông dụng của bộ điều khiển PID là ở chỗ: đơn giản trong thiết kế và tính toán tham số cũng như quan điểm đánh giá tham số. Thuật toán PID được xây dựng từ nhiều hướng như theo kinh nghiệm hoặc phân tích. Tuy nhiên việc hiệu chỉnh các tham số của bộ điều khiển PID còn thụ động. Vì vậy việc nghiên cứu ứng dụng lý thuyết Mờ để xác định và hiệu chỉnh tham số cho bộ điều khiển PID cho phù hợp với các trạng thái làm việc là cần thiết và cần được tập trung giải quyết. Do vậy tôi đã lựa chọn đề tài “ Nghiên cứu thiết kế bộ điều khiển PID mờ ”. 2. Ý nghĩa khoa học và thực tiễn 2.1. Ý nghĩa khoa học Khắc phục được nhược điểm của hệ PID khi xác định các tham số. Làm tăng khả năng ứng dụng vào thực tiễn của lý thuyết Mờ. Nâng cao chất lượng của hệ điều khiển tự động. 2.2. Ý nghĩa thực tiễn Đáp ứng được yêu cầu của các hệ thực đòi hỏi chất lượng điều chỉnh cao. Đáp ứng được yêu cầu của thực tiễn là cần xác định tham số của PID. Đề tài góp phần trong việc nghiên cứu nâng cao chất lượng hệ thống điều khiển khi kết hợp sử dụng bộ điều khiển mờ lai. Nó thích hợp cho hệ thống điều khiển tốc độ thông dụng, hệ thống tuỳ động và cả những hệ thống phản hồi tương tự. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 15. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 15 Chương 1 TỔNG QUAN VỀ BỘ ĐIỀU KHIỂN PID 1.1. CẤU TRÚC CHUNG CỦA HỆ ĐIỀU KHIỂN Cấu trúc chung của hệ thống điều khiển tự động như Hình1.1. Trong đó: ĐTĐT TBĐK TBĐL - CĐTH : Đối tượng điều khiển. : Thiết bị điều khiển. : Thiết bị đo lường và chuyển đổi tín hiệu. U(t) e(t) x(t) y(t) TBĐK ĐTĐK Z(t) TBĐL CĐTH Hình1.1: Cấu trúc hệ thống điều khiển U(t) : Là tín hiệu vào của hệ thống - còn gọi là tín hiệu đặt hay lượng chủ đạo để xác định điểm làm việc của hệ thống. y(t) : Tín hiệu đầu ra của hệ thống. Đây chính là đại lượng được điều chỉnh. x(t) : Là tín hiệu điều khiển tác động lên đối tượng. e(t) : Là sai lệch điều khiển. Z(t) : Là tín hiệu phản hồi. Thiết bị điều khiển là thành phần quan trọng nhất duy trì chế độ làm việc cho cả hệ thống điều khiển. 1.2. CÁC CHỈ TIÊU ĐÁNH GIÁ CHẤT LƯỢNG HỆ ĐIỀU KHIỂN 1.2.1. Chỉ tiêu chất lượng tĩnh Chỉ tiêu chất lượng tĩnh được đánh giá bằng sai số xác lập (sai lệch tĩnh): là sai lệch của lượng ra so với yêu cầu khi quá trình điều khiển đã kết thúc. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 16. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 t s 16 Sai số xác lập : Là sai số của hệ thống khi thời gian tiến đến vô cùng exl = lime(t) ↔ exl = limsE(s) (1.1) cht(t) r(t) exl R(s) E(s) G(s) C(s) H(s) e(t) exl t 0 Hình1.2: Thể hiện đặc tính của sai số xác lập 1.2.2. Chỉ tiêu chất lượng động Chất lượng động của hệ thống được đánh giá qua 3 chỉ tiêu cơ bản : - Lượng quá điều chỉnh. - Thời gian quá độ. - Số lần dao động. 1.2.2.1. Lượng quá điều chỉnh Lượng quá điều chỉnh: Là lượng sai lệch của đáp ứng của hệ thống so với giá trị xác lập của nó. c(t) cmax δmax cxl cxl t 0 Hình1.3: Thể hiện đặc tính của lượng quá điều chỉnh Lượng quá điều chỉnh δmax ( Percent of Overshoot – POT ) được tính bằng công thức : δmax = cmax  cxl x100% xl Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên (1.2) http://www.lrc-tnu.edu.vn
  • 17. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 17 1.2.2.2. Thời gian quá độ Thời gian quá độ ( tqd) : Là thời gian kể từ khi có tác động vào hệ thống (khởi động hệ thống) cho đến khi sai lệch của quá trình điều khiển nằm trong giới hạn cho phép ε % . ε % thường chọn là 2% (0.02) hoặc 5% (0.05) y(t) yxl t 0 tqd Hình1.4: Thể hiện đặc tính của thời gian quá độ 1.2.2.3. Số lần dao động n là số lần dao động của y(t) xung quanh giá trị yxl y(t) n yxl 0 Hình1.5: Thể hiện đặc tính của t số lần dao động Giá trị n càng nhỏ càng tốt. Giá trị n do yêu cầu thiết kế đặt ra, thường n ≤ 3 1.3. CÁC LUẬT ĐIỀU KHIỂN 1.3.1. Quy luật điều chỉnh tỷ lệ (P) Trong quy luật điều chỉnh tỷ lệ tác động điều chỉnh được xác định theo công thức: U = K.e (1.3) Trong đó, K là tham số điều chỉnh gọi là hệ số khuếch đại. Hàm truyền đạt của bộ điều chỉnh tỷ lệ có dạng: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 18. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 1 1 1 e 2 18 W(p) = K (1.4) - Hàm truyền tần số của nó là : W(jω) = K. - Đặc tính pha tần số : φ(ω) = 0 Từ các đặc tính trên ta thấy quy luật tỷ lệ phản ứng như nhau đối với tín hiệu ở mọi tần số. Góc lệch pha giữa tín hiệu ra và tín hiệu vào bằng không. Vì vậy, tín hiệu điều khiển sẽ xuất hiện ngay khi có tín hiệu sai lệch. Giá trị và tốc độ thay đổi của tín hiệu điều khiển U tỷ lệ với giá trị và tốc độ thay đổi của tín hiệu vào Ưu điểm cơ bản của quy luật tỷ lệ là tốc độ tác động nhanh. Hệ thống điều chỉnh sử dụng quy luật tỷ lệ có tính ổn định cao, thời gian điều chỉnh ngắn. Nhược điểm cơ bản của quy luật tỷ lệ là không có khả năng triệt tiêu sai lệch tĩnh. 1.3.2. Quy luật điều chỉnh tích phân (I) Quy luật điều chỉnh tích phân được mô tả bởi phương trình vi phân : U = 1 TI edt hoặc dt = K.e (1.5) Trong đó, TI = K là hằng số thời gian tích phân - Hàm truyền đạt có dạng: W(p) = TI .p - Hàm truyền tần số: W(jω) = Tj = -j T = - Đặc tính biên độ tần số: A(ω) = T  - Đặc tính pha tần số: φ(ω) = - 2 1 -j T Rõ ràng quy luật tích phân phản ứng kém với tín hiệu có tần số cao. Trong cả dải tần số tín hiệu ra chậm pha so với tín hiệu vào một góc bằng 2 , như vậy quy luật tích phân phản ứng chậm. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 19. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 e   ) 19 Ưu điểm cơ bản của quy luật điều chỉnh tích phân là có khả năng triệt tiêu sai lệch dư vì quy luật điều chỉnh (I) chỉ ngừng tác động khi sai lệch e = 0 Nhược điểm cơ bản của quy luật tích phân là tốc độ tác động chậm nên hệ thống điều chỉnh tự động sử dụng quy luật tích phân sẽ kém ổn định. Thời gian điều khiển kéo dài. Trong thực tế, quy luật điều chỉnh tích phân chỉ sử dụng cho các đối tượng có độ trễ và hằng số thời gian nhỏ. 1.3.3. Quy luật điều chỉnh tỷ lệ vi phân (PD) Là quy luật điều chỉnh được mô tả bởi phương trình vi phân: U = K1.e + K2 dt = Km  e  Td dt  (1.6) Trong đó, Km = K1 là hệ số khuếch đại Td = K2 là hằng số thời gian vi phân 1 Các tham số hiệu chỉnh của quy luật PD là Km và Td - Hàm quá độ : h(t) = Km[ 1(t) + Td.∂(t)] - Hàm truyền đạt của quy luật PD có dạng : W(p) = Km(1+Td.p) - Hàm truyền tần số : W(jω) = Km(1+jTd.ω) = A(ω).ejφ(ω) Với A(ω) = 1(Td )2 và φ(ω) = arctgTdω như vậy 0 <φ(ω) < 2 Các đặc tính của quy luật điều chỉnh tỷ lệ vi phân được mô tả trên Hình1.6. A(ω) φ(ω BT / 2 PT ω ω I(ω) TB ω → ∞ P ω = 0 ω h(t) Km t Km Hình1.6: Các đặc tính của quy luật điều chỉnh tỷ lệ vi phân Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 20. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864    m   m   m   m   T 20 Quy luật PD có hai tham số hiệu chỉnh là Km và Td. Nếu Td = 0 thì quy luật PD trở thành quy luật tỷ lệ, nếu Km = 0 thì quy luật PD trở thành quy luật vi phân. Trong toàn dải tần số, tín hiệu ra luôn luôn vượt trước tín hiệu vào nên quy luật PD tác động nhanh hơn quy luật tỷ lệ nhưng quá trình điều chỉnh vẫn không có khả năng triệt tiêu sai lệch dư giống như quy luật tỷ lệ. Phần tử vi phân tăng tốc độ tác động nhưng đồng thời cũng rất nhạy cảm với nhiễu ở tần số cao. Vì vậy, trong công nghiệp, quy luật tỷ lệ vi phân chỉ sử dụng khi quy trình công nghệ cho phép có sai lệch dư và đòi hỏi tốc độ tác động rất nhanh. 1.3.4. Quy luật điều chỉnh tỷ lệ tích phân (PI) Quy luật PI là sự kết hợp của hai quy luật P và I được mô tả bằng phương trình vi phân sau : U = K1 .e + K2 ∫edt = Kme  T edt (1.7) Trong đó, Km = K1 là hệ số khuếch đại của PI. TI = K1 là hằng số thời gian tích phân. 2 Thời gian tích phân là khoảng thời gian cần thiết để cho tác động tích phân bằng tác động tỷ lệ, vì vậy nó còn được gọi là thời gian gấp đôi. Hàm truyền đạt và hàm truyền tần số của quy luật tỷ lệ tích phân có dạng: - Hàm quá độ của quy luật PI: h(t) = K 1(t)  1 1(t)dt  I    = K 1 1 t  I  - Hàm truyền đạt: W(p) = K 1 1   I   - Hàm truyền tần số: W(jω) = K 1j 1   I   - Đặc tính biên độ tần số: A(ω) = Km I Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên (TI )2 1 http://www.lrc-tnu.edu.vn
  • 21. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 21 - Đặc tính pha tần số: φ(ω) = - arctg 1 I Như vậy, 0 > φ(ω) > - / 2 Từ các đặc tính trên ta thấy: Khi tần số tín hiệu thấp, tác động của phần tích phân là lớn nên biên độ lớn. Tần số càng tăng tác động của tích phân càng giảm xuống, còn tác động của tỷ lệ tăng lên, góc lệch pha giữa tín hiệu ra và tín hiệu vào giảm xuống. Quy luật PI có hai tham số hiệu chỉnh là Km và TI. Khi TI = ∞ thì quy luật PI trở thành quy luật P, khi Km = 0, quy luật PI trở thành I. Khi tần số biến thiên từ 0 đến ∞, góc lệch pha giữa tín hiệu ra so với tín hiệu vào biến thiên trong khoảng -/ 2 đến 0. Do đó, quy luật PI tác động nhanh hơn quy luật tích phân song chậm hơn quy luật tỷ lệ. Các đặc tính của quy luật điều chỉnh tỷ lệ tích phân được mô tả trên Hình1.7. A(ω) φ(ω) BT PT ω Km ω / 2 R(ω) TBP K I(ω) h(t) ω → ∞ K ω = 0 ω t TI Hình1.7: Các đặc tính của quy luật điều chỉnh tỷ lệ tích phân Ưu điểm của quy luật tỷ lệ tích phân là tác động nhanh do có thành phần tỷ lệ và có khả năng triệt tiêu sai lệch tĩnh do có thành phần tích phân. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 22. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 de    m   m   m  T   22 Nếu ta chọn được tham số Km, TI thích hợp thì quy luật điều chỉnh PI có thể áp dụng cho phần lớn các đối tượng trong công nghiệp. Nhược điểm của quy luật tích phân là tốc độ tác động nhỏ hơn quy luật tỷ lệ. Vì vậy, nếu đối tượng yêu cầu tốc độ tác động nhanh do nhiễu thay đổi liên tục thì quy luật tích phân không đáp ứng được yêu cầu. 1.3.5. Quy luật điều chỉnh tỷ lệ vi tích phân (PID) Quy luật điều chỉnh tỷ lệ vi tích phân được mô tả bởi phương trình: U = K1 .e + K2 ∫edt +K3 dt = Km  e  TI edt TD dt  (1.8) Trong đó, Km = K1 là hệ số khuếch đại của PI. TI = K1 là hằng số thời gian tích phân 2 TD = K3 là hằng số thời gian vi phân 1 - Hàm quá độ: h(t) = K 1 1 t  T (t)  I   - Hàm truyền đạt: W(p) = K 1 1  T p  I   - Hàm truyền tần số: W(jω) = K 1j(T  1 )   I   - Đặc tính biên độ tần số: A(ω) = Km (TI)2 (TDTI2 1)2 I - Đặc tính pha tần số: φ(ω) = arctgT  1   I   Như vậy, / 2 0 < φ(ω) < /2 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 23. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 1 23 Các đặc tính của quy luật điều chỉnh PID được mô tả trên Hình1.8. A(ω) BT Km ω0 = TITD ω φ(ω) / 2 / 2 PT ω I(ω) TBP ω → ∞ h(t) Km R(ω) Km * * t ω = 0 TI Hình1.8: Các đặc tính của quy luật điều chỉnh tỷ lệ tích phân Ta nhận thấy ở dải tần số thấp đặc tính của quy luật PID gần giống với quy luật PI, ở dải tần số cao PID gần giống với quy luật PD, tại ω0 = PID mang đặc tính của P. 1 TITD Quy luật PID có ba tham số hiệu chỉnh Km, TI, TD. Xét ảnh hưởng của ba tham số ta thấy: - Khi TD = 0 và TI = ∞ quy luật PID trở thành quy luật P - Khi TD = 0 quy luật PID trở thành quy luật PI - Khi TI = ∞ quy luật PID trở thành quy luật PD Ưu điểm của quy luật PID là tốc độ tác động nhanh và có khả năng triệt tiêu sai lệch tĩnh. Về tốc độ tác động, quy luật PID còn có thể nhanh hơn cả quy luật tỷ lệ. Điều đó phụ thuộc vào thông số TI, TD. Nếu ta chọn được tham số tối ưu thì quy luật PID sẽ đáp ứng được mọi yêu cầu về điều chỉnh chất lượng của các quy trình công nghệ. Tuy nhiên, việc chọn được bộ ba thông số tối ưu là rất khó khăn. Do đó trong công nghiệp, quy luật PID thường chỉ được sử dụng khi đối tượng điều chỉnh có Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 24. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 24 nhiều thay đổi liên tục và quy trình công nghệ đòi hỏi độ chính xác cao mà quy luật PI không đáp ứng được. 1.4. CÁC PHƯƠNG PHÁP XÁC ĐỊNH THAM SỐ PID Tên gọi PID là chữ viết tắt của ba thành phần cơ bản có trong bộ điều khiển Hình1.9a gồm khâu khuếch đại (P), khâu tích phân (I), và khâu vi phân (D). Nguời ta vẫn thường nói rằng PID là một tập thể hoàn hảo bao gồm ba tính cách khác nhau: - Phục tùng và thực hiện chính xác nhiệm vụ được giao (tỷ lệ) - Làm việc và có tích luỹ kinh nghiệm để thực hiện tốt nhiệm vụ (tích phân). - Luôn có sang kiến và phản ứng nhanh nhạy với sự thay đổi tình huống trong quá trình thực hiện nhiệm vụ (vi phân). e kp up 1 u ω TI s uI e _ PID u Đối tượng y điều khiển TDs a) uD b) Hình1.9: Điều khiển với bộ điều khiển PID Bộ điều khiển PID được sử dụng khá rộng rãi để điều khiển đối tượng SISO theo nguyên lý hồi tiếp Hình1.9b. Lý do bộ PID được sử dụng rộng rãi là tính đơn giản của nó cả về cấu trúc lẫn nguyên lý làm việc. Bộ PID có nhiệm vụ đưa sai lệch e(t) của hệ thống về 0 sao cho quá trình quá độ thỏa mãn các yêu cầu cơ bản về chất lượng: - Nếu sai lệch e(t) càng lớn thì thông qua thành phần up(t), tín hiệu điều chỉnh u(t) càng lớn (vai trò của khuếch đại kp). - Nếu sai lệch e(t) chưa bằng 0 thì thông qua thành phần uI(t), PID vẫn còn tồn tại tín hiệu điều chỉnh (vai trò của tích phân TI). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 25. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 t 25 - Nếu sự thay đổi của sai lệch e(t) càng lớn thì thông qua thành phần uD(t), phản ứng thích hợp của u(t) sẽ càng nhanh (vai trò của vi phân) Bộ điều khiển PID được mô tả bằng mô hình vào ra: u(t) = kp[ e(t) + 1 I e(t)d + TD de(t) ] (1.9) 0 Trong đó e(t) là tín hiệu đầu vào, u(t) là tín hiệu đầu ra, kp được gọi là hệ số khuếch đại, TI là hằng số tích phân, TD là hằng số vi phân. Từ mô hình vào ra trên ta có được hàm truyền đạt của bộ điều khiển PID: R(s) = kp(1+ TI s + TDs ) (1.10) Chất lượng hệ thống phụ thuộc vào các tham số kp, TI, TD. Muốn hệ thống có được chất lượng như mong muốn thì phải phân tích đối tượng rồi trên cơ sở đó chọn các tham số cho phù hợp. Hiện có khá nhiều các phương pháp xác định các tham số kp, TI, TD cho bộ điều khiển PID, song tiện ích hơn cả trong ứng dụng vẫn là: - Phương pháp Ziegler – Nichols. - Phương pháp Chien – Hrones – Reswick. - Phương pháp tổng T của Kuhn. - Phương pháp tối ưu độ lớn và phương pháp tối ưu đối xứng. Một điều cần nói thêm là không phải mọi trường hợp ứng dụng đều phải xác định cả ba tham số kp, TI, TD. Chẳng hạn, khi bản thân đối tượng đã có thành phần tích phân thì trong bộ điều khiển ta không cần có thêm khâu tích phân mới làm cho sai lệch tĩnh bằng 0, hay nói cách khác, khi đó ta chỉ cần sử dụng bộ điều khiển PD. R(s) = kp(1 + TDs ) (1.11) là đủ (TI = ∞) hoặc khi tín hiệu trong hệ thống thay đổi tương đối chậm và bản thân bộ điều khiển không cần phải có phản ứng thật nhanh với sự thay đổi của sai lệch e(t) thì ta chỉ cần sử dụng bộ điều khiển PI (TD = 0) có hàm truyền đạt:
  • 26. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 27. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 lim 26 R(s) = kp( 1 + TI s ) (1.12) 1.4.1. Phương pháp Ziegler - Nichols Ziegler và Nichols đã đưa ra hai phương pháp thực nghiệm để xác định tham số bộ điều khiển PID. Trong khi phương pháp thứ nhất sử dụng dạng mô hình xấp xỉ quán tính bậc nhất có trễ của đối tượng điều khiển: S(s) = keLs 1 Ts ( 1.13) thì phương pháp thứ hai nổi trội hơn ở chổ hoàn toàn không cần đến mô hình toán học của đối tượng. Tuy nhiên, nó có hạn chế là chỉ áp dụng được cho một lớp các đối tượng nhất định. Phương pháp Ziegler – Nichols thứ nhất: Phương pháp thực nghiệm này có nhiệm vụ xác định các tham số kp, TI, TD cho bộ điều khiển PID trên cơ sở xấp xỉ hàm truyền đạt S(s) của đối tượng thành dạng (1.13), để hệ kín nhanh chóng trở về chế độ xác lập và độ quá điều chỉnh Δh không vượt quá một giới hạn cho phép, khoảng 40% so với h∞ = t h(t), tức là có h h ≤ 0,4. h(t) ω e _ 40% PID u S(s) y 1 t a) b) Hình1.10: Nhiệm vụ của bộ điều khiển PID Ba tham số L (hằng số thời gian trễ), k (hệ số khuếch đại) và T (hằng số thời gian quán tính) của mô hình xấp xỉ (1.13) có thể được xác định gần đúng từ đồ thị hàm quá độ h(t) của đối tượng. Nếu đối tượng có hàm quá độ dạng như Hình1.11a thì từ đồ thị hàm h(t) đó ta đọc ra được ngay: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 28. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 lim lim 27 h(t) h(t) k k t t L T a) L T b) Hình1.11: Xác định tham số cho mô hình xấp xỉ - L là khoản thời gian đầu ra h(t) chưa có phản ứng ngay với kích thích 1(t) tại đầu vào. - k là giá trị giới hạn h∞ = t h(t) - Gọi A là điểm kết thúc thời gian trễ, tức là điểm trên trục hoành có hoành độ bằng L. Khi đó T là khoảnh thời gian cần thiết sau L để tiếp tuyến của h(t) tại A đạt giá trị k. Trường hợp hàm quá độ h(t) không có dạng lý tưởng như ở Hình1.11a, song có dạng gần giống là hình chữ S của khâu quán tính bậc hai hoặc bậc n như ở Hình1.11b mô tả, thì ba tham số k, L, T của mô hình (1.13) được xác định xấp xỉ như sau: - k là giá trị giới hạn h∞ = t h(t). - Kẻ đường tiếp tuyến của h(t) tại điểm uốn của nó. Khi đó L sẽ là hoành độ giao điểm của tiếp tuyến với trục hoành và T là khoảng thời gian cần thiết để đường tiếp tuyến đi được từ giá trị 0 đến giá trị k. Như vậy ta có thể thấy, điều kiện để áp dụng được phương pháp xấp xỉ mô hình bậc nhất có trễ của đối tượng là đối tượng đã phải ổn định, không có giao động và ít nhất hàm quá độ của nó phải có dạng chữ S. Sau khi đã có các tham số cho mô hình xấp xỉ (1.13) của đối tượng Ziegler – Nichols đã đề nghị sử dụng các tham số kp, TI, TD cho bộ điều khiển như sau: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 29. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 kL I 2 Hình1 12: Xác định hằng số khuếch đại tới hạn 28 - Nếu chỉ sử dụng bộ điều khiển khuếch đại R(s) = kp, thì chọn kp = kL - Nếu sử dụng bộ PI với R(s)=kp( 1+ TI s ) thì chọn kp= 0,9T và TI =10 L - NếusửdụngPIDcóR(s)= kp(1+ TI s +TDs)thìchọnkp =1,2T , T =2L,TD= L Phương pháp Ziegler – Nichols thứ hai. Phương pháp thực nghiệm thứ hai này có đặc điểm là không sử dụng mô hình toán học của đối tượng, ngay cả mô hình xấp xỉ gần đúng (1.13) Phương pháp Ziegler – Nichols thứ hai có nội dung như sau: - Thay bộ điều khiển PID trong hệ kín Hình1.12a bằng bộ khuếch đại. Sau đó tăng hệ số khuếch đại tới giá trị tới hạn kth để hệ kín ở biên giới ổn định, tức là h(t) có dạng dao động điều hoà Hình1.12b xác định chu kỳ Tth của dao động... ω e _ kth y Đối tượng điều khiển h(t) 2 1,5 Tth 1 0,5 t 1 2 3 5 7 9 a) b) - Xác định tham . số cho bộ điều khiển P, PI hay PID như sau: + Nếu sử dụng R(s) = kp thì chọn kp = 2 kth + Nếu sử dụng R(s) =kp(1 + TI s ) thì chọn kp=0,45kth và TI = 0,85Tth + Nếu sử dụng PID thì chọn kp = 0,6kth , TI = 0,5Tth , TD = 0,12Tth Phương pháp thực nghiệm thứ hai có một nhược điểm là chỉ áp dụng được cho những đối tượng có được chế độ biên giới ổn định khi hiệu chỉnh hằng số khuếch đại trong hệ kín. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 30. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864  lim 29 1.4.2. Phương pháp Chien – Hrones – Reswick Về mặt nguyên lý phương pháp Chien – Hrones – Reswick gần giống với phương pháp thứ nhất của Ziegler – Nichols. Song nó không sử dụng mô hình tham số (1.13) gần đúng dạng quán tính bậc nhất có trễ cho đối tượng mà thay vào đó là trực tiếp dạng hàm quá độ h(t) của nó. Phương pháp Chien – Hrones – Reswick cũng phải có giả thiết rằng đối tượng là ổn định, hàm quá độ h(t) không giao động và có dạng hình chữ S Hình1.13 tức là luôn có đạo hàm không âm: dh(t) = g(t) ≥ 0 . Tuy nhiên, phương pháp này thích ứng với những đối tượng bậc cao như quán tính bậc n: S(s) = 1sTn Và có hàm quá độ h(t) thoả mãn: a > 0 Trong đó a là hoành độ giao điểm tiếp tuyến của h(t) tại điểm uốn U với trục thời gian Hình1.13 và b là khoảng thời gian cần thiết để tiếp tuyến đó đi được từ 0 tới giá trị xác lập k = t h(t). h(t) k U a >3 t a b Hình1.13: Hàm quá độ cho phương pháp Chien – Hrones – Reswick Từ dạng hàm quá độ h(t) đối tượng với hai tham số a, b thoả mãn, Chien – Hrones – Reswick đã đưa bốn cách bốn cách xác định tham số bộ điều khiển cho bốn yêu cầu chất lượng như sau: - Yêu cầu tối ưu theo nhiễu (giảm ảnh hưởng nhiễu) và hệ kín không có độ quá điều chỉnh. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 31. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 lim 10 3b lim 6b 20 100 30 + Bộ điều khiển P : Chọn kp = 10ak + Bộ điều khiển PI : Chọn kp = 10ak và TI = 4a + Bộ điều khiển PID : Chọn kp = 19b , TI = 12a và TD = 21a - Yêu cầu tối ưu theo nhiễu (giảm ảnh hưởng nhiễu) và hệ kín có độ quá điều chỉnh Δh không vượt quá 20% so với h∞ = t h(t). + Bộ điều khiển P : Chọn kp = 10ak + Bộ điều khiển PI : Chọn kp = 10ak và TI = 23a + Bộ điều khiển PID : Chọn kp = 20ak , TI = 2a và TD = 50 - Yêu cầu tối ưu theo tín hiệu đặt trước (giảm sai lệch bám) và hệ kín không có độ quá điều chỉnh Δh. + Bộ điều khiển P : Chọn kp = 10ak + Bộ điều khiển PI : Chọn kp = 20ak và TI = 5 + Bộ điều khiển PID : Chọn kp = 5ak , TI = b và TD = a - Yêu cầu tối ưu theo tín hiệu đặt trước (giảm sai lệch bám) và hệ kín có độ quá điều chỉnh Δh không vượt quá 20% so với h∞ = t h(t): + Bộ điều khiển P : Chọn kp = 10ak + Bộ điều khiển PI : Chọn kp = 5ak và TI = b + Bộ điều khiển PID : Chọn kp = 19b , TI = 27b và TD = 47a
  • 32. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 33. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 S(s) = k , 1 1 1 1 lim gian 31 1.4.3. Phương pháp tổng T của Kuhn Cho đối tượng có hàm truyền đạt (1T t 1s)(1T t 2s).......(1T t m s) -sT (1T m 1s)(1 T m 2 s).......(1 T m n s) ( m< n ) (1.14 ) Giả thiết rằng hàm quá độ h(t) của nó có dạng hình chữ S như mô tả ở Hình1.14, vậy thì (1.14) phải thoả mãn định lý. Giao điểm của đường quỹ đạo biên pha A(jω) của đa thức Hurwitz A(s) với trục thực phải nằm xen kẽ giữa những giao điểm của nó với trục ảo. Giá trị tại hai giao điểm kề nhau của A(jω) với trục thực của đa thức Hurwitz A(s) phải trái dấu nhau. Giá trị tại hai giao điểm kề nhau A(jω) với trục ảo của đa thức Hurwitz A(s) phải trái dấu nhau. Tức là các hằng số ở tử số Ti t phải được giả thiết là nhỏ hơn hằng số thời gian tương ứng với nó ở mẫu số Tj m . Nói cách khác nếu như đã có sự sắp xếp: T t  T2 t  ...  Tm t và T m  T2 m  ...  Tn m thì cũng phải có. T t  T m , T2 t  T2 m , … , Tm t Tm m Ở đây các chữ cái t và m trong Ti t ,Tj m . không có ý nghĩa luỹ thừa mà chỉ là ký hiệu nói rằng nó thuộc về đa thức tử số hay mẫu số trong hàm truyền đạt S(s). h(t k ) A t Hình1.14: Quan hệ giữa diện tích và tổng các hằng số thời Gọi A là diện tích bao bởi đường cong h(t) và k = t h(t) vậy thì ta sẽ có. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 34. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 n m i j1 i1 lim 32 Kết luận 1: Giữa diện tích A và các hằng số thời gian Ti t , Tj m , T của (1.14) có mối quan hệ: A = kT= k Tj m  T t T (1.15) T  Kết luận 1 chỉ ra rằng Tcó thể dễ dàng được xác định từ hàm quá độ h(t) dạng hình chữ S và đi từ 0 của đối tượng ổn định, không dao động, bằng cách ước lượng diện tích A cũng như: k = t h(t), T= A k (1.16) Trên cơ sở hai giá trị k, T đã có của đối tượng. Kuhn đề ra phương pháp tổng T xác định tham số kp, TI, TD cho bộ điều khiển PID sao cho hệ hồi tiếp có quá trình quá độ ngắn hơn và độ quá điều chỉnh Δh không vượt quá 25%. Phương pháp tổng T của Kuhn bao gồm hai bước sau: - Xác định k, T, có thể từ hàm truyền đạt S(s) cho trong (1.14) nhờ kết luận 1 và công thức (1.16) hoặc bằng thực nghiệm từ hàm quá độ h(t) đi từ 0 và có dạng hình chữ S của đối tượng theo (1.16). - Xác định tham số: + Nếu sử dụng bộ điều khiển PI: chọn kp = 2k và TI = 2 + Nếu sử dụng bộ điều khiển PID: chọn kp= k và TI= 2T và TD=0,167T∑ 1.4.4. Phương pháp tối ưu 1.4.4.1. Phương pháp tối ưu độ lớn Một trong những yêu cầu chất lượng đối với hệ thống điều khiển kín Hình1.15 mô tả bởi hàm truyền đạt G(s). G(s) = 1SR Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
  • 35. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 (1.17) http://www.lrc-tnu.edu.vn
  • 36. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 33 ω e _ R(s) u S(s) y L(ω) Càng rộng càng tốt 0 -20 - 40 0,1ω ω a) b) 10ωc ω Hình1.15: Dải tần số mà ở đó có biên độ hàmđặt tính bằng 1, càng rộng càng tốt Là hệ thống luôn có được đáp ứng y(t) giống như tín hiệu lệch được đưa ra ở đầu vào ω(t) tại mọi điểm tần số hoặc ít ra thời gian quá độ để y(t) bám được vào ω(t) càng ngắn càng tốt. Nói cách khác, bộ điều khiển lý tưởng R(s) cần phải mang đến cho hệ thống khả năng: G( j) = 1 với mọi ω (1.18) Nhưng trong thực tế, vì nhiều lý do mà yêu cầu R(s) thoã mãn (1.18) khó được đáp ứng. Chẳng hạn như vì hệ thống thực luôn chứa trong nó bản chất quán tính, tính “cưỡng lại lệch’’ tác động từ ngoài vào. Song “tính xấu” đó của hệ thống lại được giảm bớt một cách tự nhiên ở chế độ làm việc có tần số lớn, nên người ta thường đã thoả mãn với bộ điều khiển R(s) khi nó mang lại được cho hệ thống tính chất (1.18) trong một dải tần số rộng lân cận thuộc 0. Bộ điều khiển R(s) thoả mãn: G( j) ≈ 1 (1.19) trong dải tần số tần số có độ rộng lớn được gọi là bộ điều khiển tối ưu độ lớn. Hình1.15 là ví dụ minh hoạ cho nguyên tắc điều khiển tối ưu độ lớn. Bộ điều khiển R(s) cần phải được chọn sao cho miền tần số của biểu đồ Bole hàm truyền hệ kín G(s) thoả mãn: L(ω) = 20lg G( j) ≈ 0 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 37. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 1 1 34 là lớn nhất. Dải tần số này càng lớn, chất lượng hệ kín theo nghĩa (1.19) càng cao. Một điều cần thiết nói thêm là tên gọi tối ưu độ lớn được dùng ở đây không mang ý nghĩa chặt chẽ về mặt toán học cho một bài toán tối ưu, tức là ở đây không có phiếm hàm đánh giá chất lượng nào được sử dụng. Do đó, cũng không xác định cụ thể là với bộ điều khiển R(s) phiếm hàm có giá trị lớn nhất hay không. Thuần tuý tên gọi này chỉ mang tính định tính rằng dải tần số ω, mà ở đó G(s) thoả mãn (1.19), càng rộng càng tốt. Phương pháp tố ưu độ lớn được xây dụng chủ yếu chỉ phục vụ việc chọn tham số bộ điều khiển PID để điều khiển các đối tượng S(s) có hàm truyền đạt dạng: - Quán tính bậc nhất: S(s) = 1Ts - Quán tính bậc hai: - Quán tính bậc ba: S(s) = (1 T s)(1 T2 s) S(s) = (1 T s)(1 T2 s)(1 T3s) Tuy nhiên, cho các lớp đối tượng có dạng hàm truyền đạt phức tạp hơn, chẳng hạn như (1.14), ta vẫn có thể sử dụng được phương pháp chọn tham số PID theo tối ưu độ lớn bằng cách xấp xỉ chúng về một trong ba dạng cơ bản trên nhờ phương pháp tổng T của Kuhn hoặc phương pháp tổng các hằng số thời gian nhỏ sẽ được trình bày dưới đây: Điều khiển đối tượng quán tính bậc nhất. Cho hệ kín có sơ đồ khối như Hình1.16 Trong đó: - Bộ điều khiển là khâu tích phân: R(s) = TI s (1.20) - Đối tượng là khâu quán tính bậc nhất: S(s) = 1 Ts (1.21) Như vậy ta sẽ có: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 38. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864  k 35 - Hàm truyền đạt hệ kín: G(s) = TR s(1 Ts) k với TR = TI p - Hàm truyền đạt hệ hở: Gh(s) = R(s)S(s) = Suy ra: k TR (1 Ts) (1.22) G( j) = k k TRT2 2  TR 2 ↔ G( j) 2 = k 2  (TR 2  2kTRT)2  TR 2 T 2 4 L(ω) ω e _ R(s) u S(s) y 0 -20 -40 ω a) b) Hình1.16: Điều khiên khâu quán tính bậc nhất Và điều kiện (1.20) được thoả mãn trong một dải tần số thấp có độ rộng lớn, tất nhiên người ta có thể chọn TR sao cho: TR 2 – 2kTRT = 0 ↔ TR = TI = 2kT p Khi đó hệ kín có biểu đồ Bole cho ở Hình1.16b với hàm truyền đạt G(s) = 2kTs(1Ts)  k = Kết luận 2: 2 n s2 2Dn s  n 2 với ωn = 1 2T và D = 1 2 Nếu đối tượng điều khiển là khâu quán tính bậc nhất (1.21), thì bộ điều khiển tích phân (1.20) với tham số TI = 2kT sẽ là bộ điều khiển tối ưu độ lớn. p Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 39. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 1 1 1 1 n T n T 1 36 Nếu đối tượng S(s) có dạng: S(s) = (1T s)(1T2 s)...(1 Tn s) (1.23) để áp dụng được kết luận trên với bộ điều khiển tối ưu độ lớn là khâu tích phân (1.20) thì ta phải tìm cách chuyển mô hình (1.23) về dạng xấp xỉ khâu quán tính bậc nhất. Phương pháp xấp xỉ mô hình (1.23) thành (1.21) sau đây là phương pháp tổng các hằng số thời gian nhỏ. Nó được sử dụng chủ yếu cho các hàm truyền S(s) kiểu (1.23) có T1, T2,….Tn rất nhỏ. Sử dụng công thức khai khiển Vieta cho đa thức mẫu số trong (1.23) được. S(s) = k 1 (T  T2 ... Tn )s  (T T2 T T3 ...)s2 .... Do đó ở những tần số thấp, tức là khi s nhỏ, ta có thể bỏ qua thành phần bậc cao của s và thu được công thức xấp xỉ (1.21) có: T = i i1 Ta đi đến Kết luận 3: Nếu đối tượng điều khiển (1.23) có các hằng số thời gian T1, T2,….Tn rất nhỏ thì bộ điều khiển tích phân (1.20) với tham số điều khiển tối ưu độ lớn. Điều khiển đối tượng quán tính bậc hai. TI kp = 2ki sẽ là bộ i1 Xét bài toán chọn tham số bộ điều khiển PID cho đối tưọng quán tính bậc hai. S(s) = (1 T s)(1 T2 s) ( 1.24) Khi đó để hàm truyền đạt hệ hở Gh(s) lại có dạng (1.22), và do đó sẽ sử Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 40. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 = 1 1 k(1 T s) T 1 37 dụng được kết luận 1 ta chọn bộ điều khiển PI thay vì bộ điều khiển I như đã làm với đối tượng bậc nhất: R(s) = kp(1+ TI s ) = kp ( 1 TI s) (1 TI s) TR s , TR = TI kp ( 1.25) → Gh(s) = R(s)S(s) = TR s(1 T s)(1 T2 s) ( 1.26) nhằm thực hiện việc bù hằng số thời gian T1 của biểu thức (1.24) theo nghĩa TI = T1 với cách chọn tham số TI này, hàm truyền đạt hệ hở (1.26) trở thành. Gh(s) = TR s(1 T 2 s) Và nó hoàn toàn giống (1.22) tức là ta lại có được TR theo kết luận 1: TR = Vậy: TI kp = 2kT2 ↔ kp = TI 2kT2 = 1 2kT2 Kết luận 4: Nếu đối tượng điều khiển là khâu quán tính bậc hai (1.24), thì bộ điều khiển PI (1.25) với các tham số TI = T1, kp = 2kT2 thì sẽ là bộ điều khiển tối ưu độ lớn. Nếu đối tượng không phải là khâu quán tính bậc hai mà lại có hàm truyền đạt S(s) dạng (1.23) với các hằng số thời gian T2, T3,….Tn rất nhỏ so với T1 thì do nó cỏ thể xấp xỉ bằng: S(s) = (1 T s)(1 Ts) trong đó T = i2 i nhờ phương pháp tổng các hằng số thời gian nhỏ ta còn có: Kết luận 5: Nếu đối tượng điều khiển (1.23) có một hằng số thời gian T1 lớn vượt trội và các hằng số thời gian còn lại T2, T3,….Tn rất nhỏ, thì bộ điều khiển PI
  • 41. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 42. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 i 1 T s R 1 = 1 1 38 (1.25) có các tham số TI = T1 , kp = n sẽ là bộ điều khiển tối ưu độ lớn. 2k T i2 Điều khiển đối tượng quán tính bậc ba. Đối tượng là khâu quán tính bậc ba: S(s) = (1 T s)(1 T2 s)(1 T3s) Ta sẽ sử dụng bộ điều khiển PID R(s) = kp(1+ TI s +TDs) = (1 TAs)(1 TB s) với : TA+TB = TI và TATB = TITD (1.27) TR = TI (1.28) p Khi đó hàm truyền đạt hệ hở sẽ trở về dạng (1.22) nếu ta chọn. TA = T1, TB = T2 ↔ TI = T1 + T2 , TD = T T  T2 Suy ra : TR = TI = 2kT3 p ↔ kp = 2kT3 T  T2 2kT3 Vậy ta được kết luận tiếp theo. Kết luận 6: Nếu đối tượng điều khiển là khâu quán tính bậc ba (1.27) thì bộ điều khiển PID (1.28) với các tham số TI = T1 + T2, TD = T T  T2 , kp = T 2kT3 2 sẽ là bộ điều khiển tối ưu độ lớn. Trong trường hợp đối tượng lại có dạng hàm truyền đạt (1.23) nhưng các hằng số thời gian T3, T4, ... Tn rất nhỏ so với hai hằng số còn lại T1, T2 thì khi sử dụng phương pháp tổng các hằng số thời gian nhỏ, để xấp xỉ nó về dạng quán tính bậc ba: S(s) = (1 T s)(1 T2 s)(1 Ts) trong đó T = i3 i Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 43. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 T i 39 Ta sẽ áp dụng được kết luận 6 với: TI = T1 + T2, TD = 1T2 , kp = T T2 1 2 2k T i3 1.4.4.2. Phương pháp tối ưu đối xứng Ta có thể thấy ngay được sự hạn chế của phương pháp thiết kế PID tối ưu độ lớn là đối tượng S(s) phải ổn định, hàm quá độ h(t) của nó phải đi từ 0 và có dạng hình chữ S. Phương pháp chọn tham số PID theo nguyên tắc tối ưu đối xứng được xem như là một sự bù đắp cho điều khiếm khuyến trên của tối ưu độ lớn. Trước tiên, ta xét hệ kín cho ở Hình1.17. Gọi Gh(s) = R(s)S(s) là hàm truyền đạt của hệ hở. Khi đó hệ kín có hàm truyền đạt: G(s) = 1 Gh (s) ↔ Gh(s) = 1 Gh (s) và giống với phương pháp tối ưu độ lớn, để có G( j) ≈ 1 trong dải tần số thấp thì phải có: G( j) >> 1 trong dải tần số ω nhỏ (1.29) Hình1.17b là biểu đồ Bole mong muốn của hàm truyền hệ hở Gh(s) gồm Lh(ω ) và φh(ω ). Dải tần số ω trong biểu đồ Bole được chia ra làm ba vùng: - Vùng I là vùng tần số thấp. Điều kiện (1.29) được thể hiện rõ nét ở vùng I là hàm đặc tính tần hệ hở Gh(jω) phải có biên độ rất lớn, hay Lh(ω)>>0. Vùng này đại diện cho chất lượng hệ thống ở chế độ xác lập hoặc tĩnh (tần số nhỏ). Sự ảnh hưởng của nó tới tính động học của hệ kín là có thể bỏ qua. - Vùng II là vùng tần số trung bình và cao. Vùng này mang thông tin đặc trưng của tính động học hệ kín. Sự ảnh hưởng của vùng này tới tính chất hệ kín ở dải tần số thấp (tĩnh) hoặc rất cao là có thể bỏ qua. Vùng II được đặc trưng bởi điểm tần số cắt Lh(ωc ) = 0 hay Gh ( jc ) = 1. Mong muốn rằng hệ kín không có cấu trúc phức tạp nên hàm Gh(jω) cũng được giả thiết chỉ có một Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 44. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 1 k  _ 40 tần số cắt ωc. Đường đồ thị biên độ Bole Lh(ω) sẽ thay đổi độ nghiên một giá trị 20db/dec tại điểm tần số gãy ωI của đa thức tử số và -20db/dec tại điểm tần số gãy ωT của đa thức mẫu số. Nếu khoảng cách độ nghiêng đủ dài thì thường φh(jω) sẽ thay đổi một giá trị là 900 tại ωI và -900 tại ωT. Ngoài ra, hệ kín sẽ ổn định nếu tại tần số cắt đó hệ hở có góc pha φh(ωc) lớn hơn – П. Bởi vậy, tính ổn định hệ kín được đảm bảo nếu trong vùng I đã có Gh ( jc ) >> 1 và ở vùng II này, xung quanh điểm tần số cắt, biểu đồ Bole Lh(ω) có độ dốc là -20db/dec cũng như độ dốc khoảng cách đó là đủ lớn. - Vùng III là vùng tần số rất cao. Vùng này mang ít, có thể bỏ qua được những thông tin về chất lượng của hệ thống. Để hệ thống không bị ảnh hưởng bởi nhiễu tần số rất cao, tức là khi ở tần số rất cao G(s) cần có biên độ rất nhỏ, thì trong vùng này hàm Gh(jω) nên có giá trị tiến đến 0. e R(s) S(s) y R(s S(s) Hình1.17: Minh hoạ tư tưởng thiết kế bộ điều khiển PID tối ưu đối xứng Lh(ω ) I φh(ω ) II III ω ω1 ωC Ta có thể thấy ngay được rằng, nếu ký hiệu: TI = ωI -1 , Tc = ωc -1 , T1 = ω1 -1 thì hệ hở Gh(s) mong muốn với biểu đồ Bole cho trong Hình1.18b phải là: Gh(s) = R(s)S(s) = s h (1sT ) (1.30) Điều khiển đối tượng tích phân – quán tính bậc nhất. Từ (1.30) thấy được, khi đối tượng S(s) có hàm truyền đạt dạng khâu tích phân – quán tính bậc nhất: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 45. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 1 1 1 T T 2 41 S(s) = s(1 T s) (1.31) thì với bộ điều khiển PI: R(s) = kp(1+ TI s ) (1.32) hệ hở sẽ có hàm truyền đạt giống như (1.30) là: Gh(s) = R(s)S(s) = kp k(1 TI s) TI s2 (1sT ) (1.33) Rõ ràng là trong vùng I, hàm Gh(s) theo (1.33) thoả mãn (1.29). Để ở vùng II, biểu đồ biên độ Bole của Gh(s) có độ nghiêng -20db/dec xung quanh điểm tần số cắt ωc thì phải có: ωI = 1 < ω1 = 1 → TI > T1 (1.34) I 1 và Gh ( jI ) > Gh ( jc ) = 1 > Gh ( j1 ) (1.35) Từ mô hình (1.33) của hệ hở ta có góc pha φh(ω) = arcGh(jω) = arctan(ωTI) - arctan(ωT1)- Л Nhằm nâng cao độ dự trữ ổn định cho hệ kín, các tham số bộ điều khiển cần phải được chọn sao cho tại tần số cắt ωc góc pha φh(ωc) là lớn nhất điều này dẫn đến: dh (c ) d  → ωc = = 0 → 1(cTI )2 - 1 (c 1 )2 = 0 1 TI 1 → lg(ωc) = lg(I ) lg(1 ) (1.36) Kết quả (1.36) này nói rằng trong biểu đồ Bole, điểm tần số cắt ωc cần phải nằm giữa hai tần số gãy ωI và ω1. Đó cũng là lý do tại sao phương pháp có tên là đối xứng. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 46. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 ↔ 1 1 1 → a = 42 Gọi khoảng cách giữa ωI và ω1 đo trong hệ trục tọa độ biểu đồ Bole là a, ta có: lga = lgω1 -lgωI = lg TI → a = TI (1.37) 1 1 Như vậy, rõ ràng sẽ có (1.34) nếu có a>1 Thay ωc cho trong (1.36) vào (1.35) ta sẽ có với (1.33) và (1.37): Gh ( jc ) = 1 kp k 1 (TI C )2 TI 2 C 1(T C )2 = 1 ↔ kp = kT 1 a (1.38) Nói cách khác nếu đã có a>1 và ( 1.38) thì cũng có (1.35) Khoảng cách a giữa ωI và ω1 còn là một đại lượng đặc trưng cho độ quá điều chỉnh Δh của hệ kín nếu hệ có dao động. Cụ thể là a càng lớn, độ quá điều chỉnh Δh càng nhỏ. Điều này ta thấy được như sau: Trong vùng II, hàm truyền đạt hệ hở Gh(s) được thay thế gần đúng bằng: Gh(s) ≈ TC s(1 T s) với TC = C Khi đó hệ kín sẽ có hàm truyền đạt. G(s) = 1 Gh (s) ≈ 1 1 TC s  TCT s2 = 12DTs  (Ts)2 với T = TC 1 và 2D = TC 1 → lg2D = (lgTC – lgT1) = lga (vì tính chất đỗi xứng của ωC) → D = 2 < 1 nếu 4>a>1 Vậy trong vùng II, hàm quá độ hệ kín có dạng dao động tắt dần khi 4>a>1. Độ quá điều chỉnh của hàm quá độ hệ kín sẽ là. Δh = exp D  4ln2 (h) 1D2 2  ln2 (h) (1.39) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 47. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 1 = . = vớ k = ~ 43 Công thức (1.39) xác định điều khẳng định là Δh nghịch biến với a. Ngoài ra, nó còn chỉ rằng Δh chỉ phụ thuộc vào a do đó sẽ được sử dụng để xác định a từ yêu cầu chất lượng hệ kín về Δh. Tóm lại, nếu đối tượng là khâu tích phân - quán tính bậc nhất (1.31) thì bộ điều khiển tối ưuđốixứngsẽlà bộ điềukhiển PI(1.32)với các thamsố xácđịnhnhưsau: - Xác định a từ độ quá điều chỉnh Δh cần có của hệ kín theo (1.39) hoặc tự chọn a > 1 từ yêu cầu chất lượng đề ra. Giá trị a được chọn càng lớn, độ quá điều chỉnh càng nhỏ. Nếu a ≤ 1, hệ kín sẽ không ổn định. - Tính TI theo (1.37) tức là TI = aT1 - Tính kp theo (1.38) tức là kp = kT 1 a Điều khiển đối tượng tích phân – quán tính bậc hai. Để điều khiển đối tượng là khâu tích phân – quán tính bậc hai: S(s) = s(1 T s)(1 T2 s) (1.40) Ta sử dụng bộ điều khiển PID R(s) = kp(1+ TI s +TDs) = kp (1 TA s )(1 TB s) (1.41) Có các tham số TA+TB = TI, TATB = TITD và TA = TI (1.42) Vì với nó hệ hở cũng sẽ có hàm truyền đạt dạng (1.30) và (1.33): Gh(s) = R(s)S(s) = kp k(1 TB s) TI s2 (1T2s) kpTB k(1 TB s TI TB s2 (1 T2 s) ~ k(1 TB s) ~ kpTB p TB s2 (1 T2 s) p TI (1.43) Do hàm truyền đạt (1.43) giống gần như hoàn toàn so với (1.33) của bài toán điều khiển đối tượng tích phân – quán tính bậc nhất (chỉ có một điểm khác biệt duy nhất là kp được thay bởi kp = kpTB , nên ta cũng có ngay được I các thông số tối ưu đối xứng của bộ điều khiển PID (1.41). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 48. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 ~ ~ T ~  44 TB = aT2 và kp = kT2 a (1.44) Suy ra, các tham số tối ưu đối xứng của bộ điều khiển PID(1.41) sẽ được chọn như sau: - Chọn TA = T1 - Xác định 4>a>1 từ độ quá điều chỉnh Δh cần có của hệ kín, hoặc chọn a>1 từ yêu cầu chất lượng đề ra. Giá trị a được chọn càng lớn, độ quá điều chỉnh càng nhỏ. Để hệ kín không có giao động thì chọn a≥ 4. Hệ kín sẽ không ổn định với a ≤ 1. - Tính TB = aT2. Từ đó suy ra TI = TA+TB và TD = TATB I - Tính kp = kT2 a rồi suy ra kp = kpTI B 1.4.5. Xác định tham số PID dựa trên quá trình tối ưutrên máy tính Qua phân tích ở trên thì ta có thể thực hiện phép thử nhiều lần để đạt được đáp ứng tốt hơn nhưng sẽ mất nhiều thời gian. Để giải quyết vấn đề này thì nên áp dụng phương pháp tính toán trên máy tính nhờ công cụ Matlab. Thông thường các bộ điều khiển PID được đưa ra như sau: Gc(s) = K s a2 = K s2 2as a2  (1.45)   Điều này có nghĩa là phải tìm sự phù hợp giữa K và a để hệ vòng kín là ổn định dao động và độ quá điều chỉnh trong đáp ứng trước bước nhẩy là nhỏ hơn 10% và lớn hơn 5%, để tránh quá mất ổn định dao động hoặc gần với mất ổn định đáp ứng. Để giải quyết vấn đề này cần tìm sự kết hợp giữa K và a mà thoả mãn yêu cầu. Ví dụ vùng của K và a được bao bởi thông số sau: n ≤ K ≤ l ; p ≤ a ≤ q (1.46) n, l là giải lựa chọn tham số K. p, q là giải lựa chọn của tham số a. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 49. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 45 Để tránh khối lượng tính toán quá lớn ta phải chọn bước tính toán cho phù hợp, ví dụ chọn bước tính là 0,2 cho cả tham số K và a. Quá trình thực hiện trên máy tính được mô tả bằng cách sử dụng hai vòng lặp FOR, bắt đầu là điều chỉnh giá trị K ở vòng lặp ngoài sau đó thì điều chỉnh giá trị a ở vòng lặp trong tiếp đó định nghĩa hàm truyền hệ thống và đáp ứng bước nhẩy. Định nghĩa độ quá điều chỉnh trong đáp ứng: Nếu điều kiện m < 1.1 và m > 1.05 thì đạt yêu cầu và tiến hành ngắt vòng điều chỉnh trong và ngoài, thoát khỏi chương trình. Việc xác định K, a, m được thực hiện tự động nhờ công thức: SOL = [ K ; a ; m ]. 1.5. KẾT LUẬN CHƯƠNG 1 Nội dung của chương 1, tập trung nghiên cứu các bộ điều khiển P, I, PI, PD, PID. Tập trung nghiên cứu, cấu trúc, nguyên lý làm việc, phạm vi ứng dụng và các phương pháp xác định, hiệu chỉnh tham số bộ điều khiển PID theo các phương pháp khác nhau. Dựa vào tính năng, phạm vị ứng dụng , trên cơ so sánh đặc điểm của đối tượng cần điều khiển, chúng ta sẽ lựa chọn được bộ điều khiển tương ứng là P, PI, PD hay PID phù hợp.Trên cơ sở của yêu cầu chất lượng điều khiển chúng ta sẽ tính toán được các tham số của bộ điều khiển bằng các phương pháp khác nhau như đã trình bày trong 1.4. Bộ điều khiển PID hiện nay vẫn còn được sử dụng khá rộng rãi để điều khiển đối tượng SISO theo nguyên lý hồi tiếp. Lý do bộ PID được sử dụng rộng rãi là tính đơn giản của nó cả về cấu trúc lẫn nguyên lý làm việc, tin cậy trong điều khiển và đáp ứng được yêu cầu chất lượng điều khiển trong giới hạn nhất định. Tuy nhiên bộ điều khiển PID cũng còn tồn tại nhược điểm là trong quá trình làm việc khi tham số của hệ thống thay đổi hoặc hệ chịu nhiễu tác động thì tính bền vững của hệ không được đảm bảo, chất lượng ra bị thay đổi. Các hệ cần điều khiển trong thực tế chủ yếu là các hệ phi tuyến có chưa các tham số (có thể có tham số không biết trước) thay đổi khi làm việc. Ngoài ra trong quá trình làm việc hệ còn chịu nhiễu tác động từ môi trường. Điều Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 50. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 46 khiển các hệ thống nói trên với các chỉ tiêu chất lượng cao các bộ điều khiển PID thông thường nói chung không đáp ứng được. Để điều khiển các hệ phi tuyến mạnh, hoặc các hệ có phần tử không mô hình hoá được, các tham số không biết trước và chịu ảnh hưởng của nhiễu từ môi trường, thường được thiết kế theo hai hướng: hướng thứ nhất Sử dụng các bộ điều khiển hiện đại như : Điều khiển tối ưu, điều khiển bền vững, điều khiển mờ, điều khiển thích nghi….Hướng thứ 2 là sử dụng các bộ điều khiển lai để tận dụng ưu điểm của các bộ điều khiển như điều khiển thích nghi bền vững, PID mờ ….. Trong luận văn tác giả sẽ lự chon phương pháp điều khiển PID mờ để xử lý các tồn tại của bộ điều khiển PID. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 51. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 47 Chương 2 BỘ ĐIỀU KHIỂN MỜ 2.1. LỊCH SỬ PHÁT TRIỂN CỦA LOGIC MỜ Lịch sử của điều khiển mờ bắt đầu từ năm 1965, khi đó giáo sư Lofti A Zadeh ở trường đại học California - Mỹ đưa ra khái niệm về lý thuyết tập mờ (Fuzzy set theory). Từ đó trở đi các nghiên cứu lý thuyết và ứng dụng tập mờ phát triển một cách mạnh mẽ. Với những thời điểm đáng chú ý sau: - Năm 1972, các giáo sư Terano và Asai đã thiết lập ra cơ sở nghiên cứu hệ thống điều khiển mờ ở Nhật. - Năm 1974, Mamdani đã nghiên cứu điều khiển mờ cho lò hơi. - Năm 1980, hãng Smidth Co. đã nghiên cứu điều khiển mờ cho lò xi măng. - Năm 1983, hãng Fuji Electric nghiên cứu ứng dụng mờ cho nhà máy sử lý nước. - Năm 1984, Hiệp hội hệ thống mờ quốc tế (IFSA) được thành lập. - Năm 1989, phòng thí nghiệm quốc tế nghiên cứu ứng dụng kỹ thuật mờ đầu tiên được thành lập. Cho đến nay, hệ thống điều khiển mờ được các nhà khoa học, các kỹ sư và sinh viên trong mọi lĩnh vực khoa học kỹ thuật đặc biệt quan tâm và ứng dụng trong sản xuất và đời sống, đã có rất nhiều tài liệu nghiên cứu lý thuyết và các kết qủa ứng dụng logic mờ trong điều khiển hệ thống. Tuy nhiên logic mờ vẫn đang hứa hẹn phát triển mạnh mẽ. 2.2. MỘT SỐ KHÁI NIỆM CƠ BẢN VỀ LOGIC MỜ 2.2.1. Định nghĩa tập mờ Logic mờ bắt đầu với khái niệm tập mờ. Khái niệm về tập hợp đã được hình thành trên nền tảng logic và được định nghĩa như một sự xếp đặt chung các vật, các đối tượng có cùng chung một tính chất, được gọi là phần tử của tập hợp đó. Ý nghĩa logic của khái Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 52. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 48 niệm tập hợp được xác định ở chỗ một vật hoặc một đối tượng bất kỳ chỉ có thể có hai khả năng hoặc là phần tử của tập đang xét hoặc không. Xét tập hợp A ở trên. Ánh xạ A {0,1} định nghĩa trên tập A như sau: A(x) = 0 nếu x A và A(x) = 1 nếu x A (2.1) Được gọi là hàm liên thuộc của tập hợp A. Một tập X luôn có X(x)=1, với mọi x được gọi là không gian nền (tập nền). Một tập hợp A có dạng A = {xX x} thỏa mãn một số tính chất nào đó thì được gọi là có tập nền X, hay được định nghĩa trên tập nền X. Như vậy trong lý thuyết kinh điển, hàm liên thuộc hoàn toàn tương đương với định nghĩa một tập hợp. Từ định nghĩa về một tập hợp A bất kỳ ta có thể xác định được hàm liên thuộc μA(x) cho tập hợp đó và ngược lại từ hàm liên thuộc μA(x) của tập hợp A cũng hoàn toàn suy ra được định nghĩa cho tập hợp A. Tuy nhiên, cách biểu diễn hàm liên thuộc như vậy không phù hợp với những tập hợp được mô tả “mờ” như tập B gồm các số thực nhỏ hơn nhiều so với 6: B = {x R x << 6}; hoặc tập C gồm các số thực xấp xỉ bằng 3: C={xR x 3}. Lý do là với những tập mờ như vậy chưa đủ để xác định được x = 3,5 có thuộc tập B hoặc x = 2,5 có thuộc tập C hay không. Nếu đã không khẳng định được x = 3,5 có thuộc tập B hay không thì cũng không thể khẳng định được x = 3,5 không thuộc tập B. Vậy x = 3,5 thuộc tập B bao nhiêu phần trăm. Giả sử tồn tại câu trả lời thì hàm liên thuộc B(x) tại điểm x = 3,5 phải có một giá trị trong khoảng [0,1], tức là: 0 B(x) 1 . Nói cách khác hàm B(x) không còn là hàm hai giá trị như đối với tập hợp kinh điển nữa mà là một ánh xạ: B: R [0,1].
  • 53. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 54. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 49 Như vậy, khác với tập hợp kinh điển A, từ “định nghĩa kinh điển” của tập “mờ” B hoặc C không suy ra được hàm liên thuộc B(x) hoặc C(x) của chúng. Do đó, ta có định nghĩa về tập mờ như sau: Tập mờ F xác định trên tập kinh điển X là một tập mà mỗi phần tử của nó là một cặp các giá trị (x, F(x) trong đó x  X và F là ánh xạ. F:X[0,1]. Ánh xạ F được gọi là hàm liên thuộc của tập mờ F. Tập kinh điển X được gọi là tập nền (hay vũ trụ) của tập mờ F. 2.2.2. Các hàm liên thuộc thường được sử dụng Hàm liên thuộc được xây dựng dựa trên các đường thẳng : Dạng này có ưu điểm là đơn giản. Chúng gồm hai dạng chính là: tam giác và hình thang. Hàm liên thuộc được xây dựng dựa trên đường cong phân bố Gauss: kiểu thứ nhất là đường cong Gauss dạng đơn giản và kiểu thứ hai là sự kết hợp hai đường cong Gauss khác nhau ở hai phía. Cả hai đường cong này đều có ưu điểm là trơn và không gẫy ở mọi điểm nên chúng là phương pháp phổ biến để xác định tập mờ. Ngoài ra, hàm liên thuộc còn có thể có một số dạng ít phổ biến (chỉ được sử dụng trong một số ứng dụng nhất định). Đó là các dạng sigma và dạng đường cong Z, Pi và S. 2.2.3. Biến ngôn ngữ và giá trị của biến ngôn ngữ Một biến có thể gán bởi các từ trong ngôn ngữ tự nhiên làm giá trị của nó gọi là biến ngôn ngữ. Một biến ngôn ngữ thường bao gồm 4 thông số: X, T, U, M với : + X : Tên của biến ngôn ngữ. + T : Tập của các giá trị ngôn ngữ. + U : Không gian nền mà trên đó biến ngôn ngữ X nhận các giá trị rõ. + M : Chỉ ra sự phân bố của T trên U Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 55. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864  50 Ví dụ: biến ngôn ngữ “Tốc độ xe” có tập các giá trị ngôn ngữ là rất chậm, chậm, trung bình, nhanh, rất nhanh, không gian nền của biến là tập các số thực dương. Vậy biến tốc độ xe có 2 miền giá trị khác nhau: - Miền các giá trị ngôn ngữ N: [rất chậm, chậm, trung bình, nhanh, rất nhanh] - Miền các giá trị vật lý V = {x R (x≥0 )} Mỗi giá trị ngôn ngữ (mỗi phần tử của N) có tập nền là miền giá trị vật lý V. Từ một giá trị vật lý của biến ngôn ngữ ta có được một véc tơ μ gồm các độ phụ thuộc của x: X → μT = [ μrất chậm μ chậm μtrung binh μnhanh μrất nhanh ] ánh xạ trên được gọi là quá trình Fuzzy hoá giá trị rõ x. Ví dụ : Ứng với tốc độ 50 km/h ta có. 0 0,5 Véc tơ μ(50) = 0,5 0 0 2.3. BỘ ĐIỀU KHIỂN MỜ μ 1 μRC μC μTB μNH μRN Tốc độ 50 Hình2.1: Mờ hoá biến “Tốc độ” Sơ đồ khối của bộ điều khiển mờ trên Hình2.2. bao gồm 4 khối: - Khối mờ hóa (fuzzifiers). - Khối hợp thành. - Khối luật mờ. - Khối giải mờ (defuzzifiers). Đầu vào x Khối mờ hóa (fuzzifiers) Khối hợp thành Đầu ra Giải mờ y Khối luật mờ Hình2.2: Sơ đồ khối của bộ điều khiển mờ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 56. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 A A A 51 2.3.1. Khâu mờ hóa Khâu mờ hóa có nhiệm vụ chuyển một giá trị rõ hóa đầu vào x0 thành một vector gồm các độ phụ thuộc của các giá trị rõ đó theo các giá trị mờ (tập mờ) đã định nghĩa cho biến ngôn ngữ đầu vào. Mờ hoá được định nghĩa như sự ánh xạ từ tập các giá trị thực (giá trị rõ) x* U Rn thành lập các giá trị mờ ' ~ ở trong U. Hệ thống mờ như là một bộ xấp xỉ vạn năng. Nguyên tắc chung việc thực hiện mờ hoá là: - Từ tập giá trị thực x đầu vào sẽ tạo ra tập mờ có giá trị đủ rộng tại các điểm rõ x*. A' ~ với hàm liên thuộc - Nếu có nhiễu ở đầu vào thì viêc mờ hoá sẽ góp phần khử nhiễu. - Việc mờ hoá phải tạo điều kiện đơn giản cho tính toán sau này. Thông thường có 3 phương pháp mờ hóa: Mờ hóa đơn trị, mờ hóa Gaus (Gaussian fuzzifier) và mờ hóa hình tam giác (Triangular fuzzifier). Thường sử dụng mờ hóa Gaus hoặc mờ hóa hình tam giác vì hai phương pháp này không những cho phép tính toán tương đối đơn giản mà còn đồng thời có thể khử nhiễu đầu vào. Mờ hoá đơn trị (Singleton fuzzifier): Mờ hoá đơn trị là từ các điểm giá trị thực x* U lấy các giá trị đơn trị của tập mờ ~ ' , nghĩa là hàm liên thuộc dạng: μA’(x) = 0 nếu x = x* nếu ở các chỗ khác (2.2) Mờ hoá Gaus (Gaussian Fuzzifier) : Mờ hoá Gaus là từ các điểm giá trị thực x* U lấy các giá trị trong tập mờ ~ ' với hàm liên thuộc Gaus. Mờ hoá hình tam giác (Triangular Fuzzifier) : Mờ hoá hình tam giác là từ các điểm giá trị thực x* U lấy các giá trị trong tập mờ A' ~ với hàm liên thuộc dạng hình tam giác, hoặc hình thang. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 57. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 52 Ta thấy mờ hoá đơn trị cho phép tính toán về sau rất đơn giản nhưng không khử được nhiễu đầu vào, mờ hoá Gaus hoặc mờ hoá hình tam giác không những cho phép tính toán về sau tương đối đơn giản mà còn đồng thời có thể khử nhiễu đầu vào. 2.3.2. Khâu thực hiện luật hợp thành Khâu thực hiện luật hợp thành gồm 2 khối đó là khối luật mờ và khối hợp thành. Khối luật mờ (suy luận mờ) bao gồm tập các luật “Nếu … Thì” dựa vào các luật mờ cơ sở được người thiết kế viết ra cho thích hợp với từng biến và giá trị của các biến ngôn ngữ theo quan hệ mờ Vào/Ra. Khối hợp thành dùng để biến đổi các giá trị mờ hoá của biến ngôn ngữ đầu vào thành các giá trị mờ của biến ngôn ngữ đầu ra theo các luật hợp thành nào đó. Khâu thực hiện luật hợp thành, có tên gọi là thiết bị hợp thành, xử lý vector và cho giá trị mờ B’ của tập biến đầu ra. Cho hai biến ngôn ngữ và . Nếu biến nhận giá trị (mờ) A với hàm liên thuộc A(x) và nhận giá trị (mờ) B với hàm liên thuộc B(y) thì biểu thức: = A được gọi là mệnh đề điều kiện và = B được gọi là mệnh đề kết luận. Nếu ký hiệu mệnh đề  = A là p và mệnh đề  = B là q thì mệnh đề hợp thành: p q (từ p suy ra q) (2.3) hoàn toàn tương đương với luật điều khiển: Nếu = A thì = B (2.4) Mệnh đề hợp thành trên là một ví dụ đơn giản về bộ điều khiển mờ. Nó cho phép từ một giá trị đầu vào xo hay cụ thể là từ độ phụ thuộc A(xo) đối với tập mờ A của giá trị đầu vào xo xác định được hệ số thỏa mãn mệnh đề kết luận q của giá trị đầu ra y. Hệ số thỏa mãn mệnh đề kết luận này được gọi là giá trị của mệnh đề hợp thành khi đầu vào bằng A và giá trị của mệnh đề hợp Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 58. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 53 thành (2.3) là một giá trị mờ. Biểu diễn giá trị mờ đó là tập hợp C thì mệnh đề hợp thành mờ (2.4) chính là một ánh xạ: A(xo) C(y) Ta có công thức xác định hàm liên thuộc cho mệnh đề hợp thành B’=AB. B'(y) = min{A, B(y)}, được gọi là quy tắc hợp thành MIN B'(y) = A.B(y), được gọi là quy tắc hợp thành PROD Đây là hai quy tắc hợp thành thường được dùng trong lý thuyết điều khiển mờ để mô tả mệnh đề hợp thành A B. Hàm liên thuộc AB(y) của mệnh đề hợp thành A B sẽ được ký hiệu là R. Ta có luật hợp thành là tên chung gọi mô hình R biểu diễn một hay nhiều hàm liên thuộc cho một hay nhiều mệnh đề hợp thành, nói cách khác luật hợp thành được hiểu là một tập hợp của nhiều mệnh đề hợp thành. Một luật hợp thành chỉ có một mệnh đề hợp thành được gọi là luật hợp thành đơn. Ngược lại nếu nó có nhiều hơn một mệnh đề hợp thành ta sẽ gọi nó là luật hợp thành kép. Phần lớn các hệ mờ trong thực tế đều có mô hình là luật hợp thành kép. Ngoài ra R còn có một số tên gọi khác phụ thuộc vào cách kết hợp các mệnh đề hợp thành (max hay sum) và quy tắc sử dụng trong từng mệnh đề hợp thành (MIN hay PROD): - Luật hợp thành max-PROD, nếu các hàm liên thuộc thành phần được xác định theo quy tắc hợp thành PROD và phép hợp giữa các mệnh đề hợp thành được lấy theo luật max. - Luật hợp thành max-MIN, nếu các hàm liên thuộc thành phần được xác định theo quy tắc hợp thành MIN và phép hợp giữa các mệnh đề hợp thành được lấy theo luật max. - Luật hợp thành sum-MIN, nếu các hàm liên thuộc thành phần được xác định theo quy tắc hợp thành MIN và phép hợp được lấy theo công thức Lukasiewicz. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  • 59. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 μB(y) μA=>B(y) x0 54 - Luật hợp thành sum-PROD, nếu các hàm liên thuộc thành phần được các định theo quy tắc hợp thành PROD và phép hợp được lấy theo công thức Lukasiewicz. μ μ μA(x) μB(x) x y μ μ μA(x) x x0 μB(x) μA=>B(y) y μ μ μA(x) x Hình2.3: Hàm liên thuộc của luật hợp thành : (a) Hàm liên thuộc A(x) và B(y).(b) AB(y) xác định theo quy tắc min.(c) AB(y) xác định theo quy tắc PROD. Tổng quát, ta xét thuật toán xây dựng luật hợp thành có nhiều mệnh đề hợp thành. Xét luật hợp thành gồm p mệnh đề hợp thành: R1 : Nếu = A1 Thì = B1 hoặc R2: Nếu = A2 Thì = B2 hoặc . . . RP: Nếu = AP, Thì = BP Trong đó các giá trị mờ A1, A2,..., AP có cùng tập nền X và B1, B2,..., BP có cùng tập nền Y.
  • 60. Dịch vụ viết thuê đề tài – KB Zalo/Tele 0917.193.864 – luanvantrust.com Kham thảo miễn phí – Kết bạn Zalo/Tele mình 0917.193.864 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn