SlideShare ist ein Scribd-Unternehmen logo
1 von 10
República Bolivariana de Venezuela
Ministerio del Poder Popular para la Educación Universitaria
Universidad Politécnica Territorial “Andrés Eloy Blanco”
Barquisimeto, Estado Lara
BARQUISIMETO, MARZO 2021
Autor:
Lorenny Colmenares
CI: V-27.666.482
PNF CONTADURIA
Sección 0403
Definición: El plano cartesiano o sistema de ejes coordenados es la representación gráfica matemática donde dos líneas
numeradas se interceptan. Recibe este nombre en honor al matemático y filósofo René Descartes (1596-1650).
Los ejes de
coordenada
s son
perpendicul
ares entre
sí.
Las escalas
de los ejes
son iguales.
Los números
positivos están a la
derecha del origen en
el eje de las x y por
arriba del origen en
el eje de las y.
Los puntos
en los ejes
no
pertenecen
a ningún
cuadrante.
Es
bidimensio
nal.
Características del plano cartesiano Partes del plano cartesiano
Ejemplo plano cartesiano
con coordenadas
En el plano cartesiano abajo están localizados varios
puntos, cuyas coordenadas cartesianas son:
•punto A = (2,2) en el primer cuadrante;
•punto B = (-7,4) en el segundo cuadrante;
•punto C = (-7, -3) en el tercer cuadrante;
•punto D = (3, -5) en el cuarto cuadrante;
•punto E = (5, 4) en el primer cuadrante;
•punto F = (-2, 1) en el segundo cuadrante;
•punto G = (-3, -3) en el tercer cuadrante y
•punto H = (3, -2) en el cuarto cuadrante.
El plano
cartesiano nos
permite:
Localizar las
coordenadas
de los puntos
en un plano.
Determinar la
línea recta
que pasa por
dos puntos.
Dibujar
polígonos
conociendo
los puntos de
sus vértices.
Representar
gráficamente
una función.
¿Para qué sirve el plano cartesiano?
Distancia: La distancia entre dos puntos está vinculada al plano cartesiano, ya que este permite calcular la distancia que existe entre ambos
puntos, a partir de la ubicación de las coordenadas de ambos.
Ejemplo de como hallar la distancia entre dos puntos en plano
Ejemplo 1.
Hallar la distancia entre los puntos A(-1, 3) y B(6,2).
Solución.
AB = √(xb - xa)2 + (yb - ya)2 = √(6 - (-1))2 + (2 - 3)2 = √72 + 12 = √50 = 5√2
Resultado: AB = 5√2.
Ejemplo de como hallar la distancia entre dos puntos en espacio
Ejemplo 2.
Hallar la distancia entre los puntos A(-1, 3, 3) y B(6, 2, -2).
Solución.
AB = √(xb - xa)2 + (yb - ya)2 + (zb - za)2 =
= √(6 - (-1))2 + (2 - 3)2 + (-2 - 3)2 = √72 + 12 + 52 = √75 = 5√3
Resultado: AB = 5√3.
Fórmulas para hallar la distancia entre dos puntos
 Fórmulas para hallar la distancia entre dos puntos
A(xa , ya) y B(xb , yb) en plano:
AB = √(xb - xa)2 + (yb - ya)2
 Fórmulas para hallar la distancia entre dos
puntos A(xa, ya, za) y B(xb, yb, zb) en espacio:
AB = √(xb - xa)2 + (yb - ya)2 + (zb - za)2
Punto medio: Es el punto que se encuentra a la misma distancia de cualquiera de los extremos. Antes debemos conocer que es un
punto es una figura geométrica adimensional: no tiene longitud, área, volumen, ni otro ángulo dimensional. No es un objeto físico.
El modo de obtener geométricamente el punto medio de un segmento, mediante regla y compás, consiste en trazar dos arcos de
circunferencia de igual radio, con centro en los extremos, y unir sus intersecciones para obtener la recta mediatriz. Esta «corta» al
segmento en su punto medio.
Teorema Sea AB un segmento cuyos extremos tienen coordenadas A (xA; yA) ; B (xB; yB) entonces las coordenadas del punto
medio M (xM ; yM) de AB son:
Circunferencia: Se denomina
circunferencia al lugar geométrico de
los puntos del plano que equidistan de
un punto fijo llamado centro. El radio
de la circunferencia es la distancia de
un punto cualquiera de dicha
circunferencia al centro.
Ecuación analítica de la circunferencia: si hacemos coincidir el centro con el
origen de coordenadas, las coordenadas de cualquier punto de la circunferencia
(x, y) determina un triángulo rectángulo, y por supuesto que responde al teorema de
Pitágoras: r2 = x2 + y2. Puesto que la distancia entre el centro (a, b) y uno cualquiera
de los puntos (x, y) de la circunferencia es constante e igual al radio r tendremos
que: r2 = (x – a)2 + (y – b)2 Llamada canónica podemos desarrollarla resolviendo los
cuadrados (trinomio cuadrado perfecto) y obtenemos:
x2 + y2 – 2ax –2by – r2 = 0.
Si reemplazamos – 2a = D; – 2b = E; F = a2 + b2 – r2 tendremos que:
x2 + y2 + Dx + Ey + F = 0
Ejemplo: Si tenemos la ecuación x2 + y2 + 6x – 8y – 11 = 0
Entonces tenemos que: D = 6 Þ 6 = – 2a Þ a = – 3
E = – 8 Þ – 8 = – 2b Þ b = 4
El centro de la circunferencia es (– 3, 4). Hallemos el radio
F = (– 3)2 + 42 – r2 Þ – 11 = (– 3)2 + 42 – r2 Þ r = 6
La ecuación de la circunferencia queda: (x + 3)2 + (y – 4)2 = 36
Elipse: Es el lugar geométrico de los
puntos del plano cuya suma de
distancias a dos puntos fijos es
constante. Estos dos puntos fijos se
llaman focos de la elipse.
Ecuación analítica de la elipse: para
simplificar la explicación ubiquemos a los focos
sobre el eje de las x, situados en los puntos F (c,0) y
F' (– c,0). Tomemos un punto cualquiera P de la
elipse cuyas coordenadas son (x, y). En el caso de la
elipse la suma de las distancias entre PF y PF' es
igual al doble del radio sobre el eje x.
Entonces: PF + PF' = 2a.
Aplicando Pitágoras
tenemos que:
Elevamos al cuadrado ambos
miembros para sacar las
raíces y desarrollamos los
cuadrados queda
finalmente:
Si la elipse estuviese centrada en un punto cualquiera (p, q) la ecuación debería de ser:
Si desarrollamos los cuadrados obtendremos que: b2x2 + a2y2 – 2xpb2 – 2yqa2 + p2b2 + q2a2 – a2b2 = 0
Si hacemos: A = b2
B = a2
C = – 2pb2
D = – 2qa2
E = p2b2 + q2a2 – a2b2
tendremos la ecuación: Ax2 + By2 + Cx + Dy + E = 0,
donde podemos comprobar que es igual que la de la circunferencia excepto que los términos A y B no tienen
porqué ser iguales.
Ejemplo: Si tenemos la ecuación 4x2 + 9y2 + 24x – 8y + 81 = 0
Entonces tenemos que: A = 4 Þ 4 = b2 Þ b = 2; B = 9 Þ 9 = a2 Þ a = 3
Los radios de la elipse son: sobre el eje x = a = 3; sobre el eje y = b = 2. Hallemos en centro (p, q).
C = 24 Þ 24 = – 2pb2 Þ p = – 3
D = – 54 Þ – 54 = – 2qa2 Þ q = 3
El centro es, entonces, (p, q) = (– 3, 3). Para verificar que se trate de una elipse calculemos E que debe tener el
valor de 81. E = p2b2 + q2a2 – a2b2 = 81
La ecuación de la elipse queda:
Hipérbola: Es el lugar
geométrico de los puntos del plano
cuya diferencia de distancias entre
dos puntos fijos es constante.
Estos dos puntos fijos se llaman
focos de la hipérbola.
Ecuación analítica de la hipérbola: nuevamente ubiquemos
los focos sobre el eje x, F = (c,0) y F' = (–c,0), y tomemos un punto
cualquiera P = (x, y) de la hipérbola. En este caso, la diferencia de
las distancias entre PF y PF' es igual al doble de la distancia que
hay entre el centro de coordenadas y la intersección de la hipérbola
con el eje x. Entonces tendremos que: PF – PF' = 2a
Elevando al cuadrado ambos miembros y
procediendo matemáticamente podemos
llegar a esta expresión: (c2 – a2). x2 – a2y2 –
(c2 – a2) a2 = 0 (los cálculos los dejo por tu
cuenta pero puedes guiarte con el desarrollo
que hicimos para la elipse). Nuevamente a
partir del dibujo y aplicando Pitágoras
podemos obtener que c2 = a2 + b2 y por lo
tanto la ecuación nos queda: b2x2 – a2y2 =
a2b2. Dividiendo cada término por
a2b2 obtenemos:
 Si la hipérbola estuviese centrada en un punto cualquiera (p, q) la ecuación debería de ser:
Si desarrollamos los cuadrados obtendremos que: b2x2 – a2y2 – 2xpb2 + 2yqa2 + p2b2 – q2a2 – a2b2 = 0
Si hacemos: A = b2
B = – a2
C = – 2pb2
D = 2qa2
E = p2b2 – q2a2 – a2b2
tendremos la ecuación: Ax2 – By2 + Cx + Dy + E = 0, donde podemos comprobar que es igual que la de la circunferencia, o una elipse, excepto que
los términos A y B no tienen porqué ser iguales.
Asíntotas: Son rectas que jamás cortan a la hipérbola, aunque se acercan lo más posible a ella. Ambas deben pasar por el "centro" (p, q)
Las ecuaciones de las asíntotas son:
Parábola: Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija
llamada directriz.
Ecuación analítica de la parábola: Supongamos que el foco esté situado en el punto (0,c) y la directriz es la recta y = – c,
por lo tanto el vértice está en su punto medio (0,0), si tomamos un punto cualquiera P = (x , y) de la parábola y un punto Q = (x, –
c) de la recta debe de cumplirse que: PF = PQ
Elevando al cuadrado ambos miembros: x2 = 4cy
Si la parábola no tiene su vértice en (0,0) si no en (p, q) entonces la ecuación sería: (x–
p)2 = 4c(y – q)
desarrollando la ecuación tendremos: x2 + p2 – 2xp – 4cy + 4cq = 0
Si hacemos D = – 2p
E = – 4c
F = p2 + 4cq
obtendremos que es: x2 + Dx + Ey + F = 0, en la que podemos observar que falta el
término de y2.
Observación: es de destacar que el término x y no aparece, la razón es que se ha supuesto
que los ejes de simetría de las cónicas son paralelos a los ejes de coordenadas; en caso
contrario aparecería este término, que como es lógico dependerá del ángulo de inclinación
de los ejes.

Weitere ähnliche Inhalte

Was ist angesagt?

Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltosJairo G.M
 
La circunferencia en geometria analitica
La circunferencia en geometria analiticaLa circunferencia en geometria analitica
La circunferencia en geometria analiticaLarry Lituma
 
Traslación, Giro de ejes y Determinación de curvas
Traslación, Giro de ejes y Determinación de curvasTraslación, Giro de ejes y Determinación de curvas
Traslación, Giro de ejes y Determinación de curvasJefferson Antamba
 
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3Pascual Sardella
 
ECUACION GENERAL DE LA HIPERBOLA
ECUACION GENERAL DE LA HIPERBOLAECUACION GENERAL DE LA HIPERBOLA
ECUACION GENERAL DE LA HIPERBOLAMalexandra26
 
Problemas y ejercicios resueltos de cónicas
 Problemas y ejercicios resueltos de cónicas Problemas y ejercicios resueltos de cónicas
Problemas y ejercicios resueltos de cónicasPascual Sardella
 
3 la circunferencia
3 la circunferencia3 la circunferencia
3 la circunferenciainsucoppt
 
Taller Geometría Analítica
Taller Geometría AnalíticaTaller Geometría Analítica
Taller Geometría AnalíticaMaría Juliana
 
Geometría Recurso nº 1
Geometría  Recurso nº 1Geometría  Recurso nº 1
Geometría Recurso nº 1vegaalvaro
 
Ejercicios cap 010
Ejercicios cap 010Ejercicios cap 010
Ejercicios cap 010Bleakness
 
Imi sem 10 s2 planos paralelos y perpendiculares (1) (1)
Imi sem 10 s2 planos paralelos y perpendiculares (1) (1)Imi sem 10 s2 planos paralelos y perpendiculares (1) (1)
Imi sem 10 s2 planos paralelos y perpendiculares (1) (1)Ivan Nina
 

Was ist angesagt? (20)

Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
La circunferencia en geometria analitica
La circunferencia en geometria analiticaLa circunferencia en geometria analitica
La circunferencia en geometria analitica
 
Traslación, Giro de ejes y Determinación de curvas
Traslación, Giro de ejes y Determinación de curvasTraslación, Giro de ejes y Determinación de curvas
Traslación, Giro de ejes y Determinación de curvas
 
Matema Tica Basica 1
Matema Tica Basica  1Matema Tica Basica  1
Matema Tica Basica 1
 
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
 
ECUACION GENERAL DE LA HIPERBOLA
ECUACION GENERAL DE LA HIPERBOLAECUACION GENERAL DE LA HIPERBOLA
ECUACION GENERAL DE LA HIPERBOLA
 
Problemas y ejercicios resueltos de cónicas
 Problemas y ejercicios resueltos de cónicas Problemas y ejercicios resueltos de cónicas
Problemas y ejercicios resueltos de cónicas
 
Ejercicios de elipse
Ejercicios de elipseEjercicios de elipse
Ejercicios de elipse
 
3 la circunferencia
3 la circunferencia3 la circunferencia
3 la circunferencia
 
Taller Geometría Analítica
Taller Geometría AnalíticaTaller Geometría Analítica
Taller Geometría Analítica
 
Elipse hiperbola resueltos
Elipse hiperbola resueltosElipse hiperbola resueltos
Elipse hiperbola resueltos
 
Mat 11 u4
Mat 11 u4Mat 11 u4
Mat 11 u4
 
Geometría Recurso nº 1
Geometría  Recurso nº 1Geometría  Recurso nº 1
Geometría Recurso nº 1
 
Ejercicios cap 010
Ejercicios cap 010Ejercicios cap 010
Ejercicios cap 010
 
Elipse
ElipseElipse
Elipse
 
Ecuacion de la circunferencia
Ecuacion de la circunferenciaEcuacion de la circunferencia
Ecuacion de la circunferencia
 
Imi sem 10 s2 planos paralelos y perpendiculares (1) (1)
Imi sem 10 s2 planos paralelos y perpendiculares (1) (1)Imi sem 10 s2 planos paralelos y perpendiculares (1) (1)
Imi sem 10 s2 planos paralelos y perpendiculares (1) (1)
 
Conicas
ConicasConicas
Conicas
 
Ecuaciones de la circunferencia y parabola.
Ecuaciones de la circunferencia y parabola.Ecuaciones de la circunferencia y parabola.
Ecuaciones de la circunferencia y parabola.
 
La Elipse
La ElipseLa Elipse
La Elipse
 

Ähnlich wie Plano numérico, unidad II

Calculo camila convertido
Calculo camila convertidoCalculo camila convertido
Calculo camila convertidoCamilaAnzola3
 
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdf
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdfPLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdf
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdfyannetthha
 
Gemetria Analitica
Gemetria AnaliticaGemetria Analitica
Gemetria Analiticaangela reyes
 
Plano numerico carlos
Plano numerico carlosPlano numerico carlos
Plano numerico carlosHaderth
 
Resumen geometria analitica
Resumen geometria analiticaResumen geometria analitica
Resumen geometria analiticaTeFita Vinueza
 
Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2joan cortez
 
Plano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptxPlano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptxJsMguelCM
 
Ejercicios resueltos parabolas
Ejercicios resueltos parabolasEjercicios resueltos parabolas
Ejercicios resueltos parabolasAndre TL
 
Plano Numerico Miguel Colombo.pdf
Plano Numerico Miguel Colombo.pdfPlano Numerico Miguel Colombo.pdf
Plano Numerico Miguel Colombo.pdfJsMguelCM
 
Plano Numerico Carlos Camacaro.docx
Plano Numerico Carlos Camacaro.docxPlano Numerico Carlos Camacaro.docx
Plano Numerico Carlos Camacaro.docxcarloscamacaro9
 
ejercicios_de_geometria_resueltos.pdf
ejercicios_de_geometria_resueltos.pdfejercicios_de_geometria_resueltos.pdf
ejercicios_de_geometria_resueltos.pdfAbdon Ludeña Huamani
 

Ähnlich wie Plano numérico, unidad II (20)

Plano numérico, unidad II
Plano numérico, unidad IIPlano numérico, unidad II
Plano numérico, unidad II
 
Calculo camila convertido
Calculo camila convertidoCalculo camila convertido
Calculo camila convertido
 
Joel Rodriguez 24417637.pptx
Joel Rodriguez 24417637.pptxJoel Rodriguez 24417637.pptx
Joel Rodriguez 24417637.pptx
 
Conicas
ConicasConicas
Conicas
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdf
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdfPLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdf
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdf
 
Plano numérico.pptx
Plano numérico.pptxPlano numérico.pptx
Plano numérico.pptx
 
Gemetria Analitica
Gemetria AnaliticaGemetria Analitica
Gemetria Analitica
 
Plano numerico carlos
Plano numerico carlosPlano numerico carlos
Plano numerico carlos
 
Resumen geometria analitica
Resumen geometria analiticaResumen geometria analitica
Resumen geometria analitica
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2
 
Plano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptxPlano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptx
 
Ejercicios resueltos parabolas
Ejercicios resueltos parabolasEjercicios resueltos parabolas
Ejercicios resueltos parabolas
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
Plano Numerico Miguel Colombo.pdf
Plano Numerico Miguel Colombo.pdfPlano Numerico Miguel Colombo.pdf
Plano Numerico Miguel Colombo.pdf
 
Plano Numerico Carlos Camacaro.docx
Plano Numerico Carlos Camacaro.docxPlano Numerico Carlos Camacaro.docx
Plano Numerico Carlos Camacaro.docx
 
ejercicios_de_geometria_resueltos.pdf
ejercicios_de_geometria_resueltos.pdfejercicios_de_geometria_resueltos.pdf
ejercicios_de_geometria_resueltos.pdf
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 

Mehr von LorennyColmenares

lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas
lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas
lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas LorennyColmenares
 
Expresiones algebraicas, unidad I
Expresiones algebraicas, unidad IExpresiones algebraicas, unidad I
Expresiones algebraicas, unidad ILorennyColmenares
 
Conjunto numérico, unidad II
Conjunto numérico, unidad IIConjunto numérico, unidad II
Conjunto numérico, unidad IILorennyColmenares
 
Conjunto numerico, lorenny colmenares
Conjunto numerico, lorenny colmenaresConjunto numerico, lorenny colmenares
Conjunto numerico, lorenny colmenaresLorennyColmenares
 

Mehr von LorennyColmenares (8)

Lorenny colmenares-27666482
Lorenny colmenares-27666482Lorenny colmenares-27666482
Lorenny colmenares-27666482
 
Lorenny colmenares-27666482
Lorenny colmenares-27666482Lorenny colmenares-27666482
Lorenny colmenares-27666482
 
lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas
lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas
lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas
 
Mapa conceptual de proyecto
Mapa conceptual de proyectoMapa conceptual de proyecto
Mapa conceptual de proyecto
 
V27666482
V27666482V27666482
V27666482
 
Expresiones algebraicas, unidad I
Expresiones algebraicas, unidad IExpresiones algebraicas, unidad I
Expresiones algebraicas, unidad I
 
Conjunto numérico, unidad II
Conjunto numérico, unidad IIConjunto numérico, unidad II
Conjunto numérico, unidad II
 
Conjunto numerico, lorenny colmenares
Conjunto numerico, lorenny colmenaresConjunto numerico, lorenny colmenares
Conjunto numerico, lorenny colmenares
 

Kürzlich hochgeladen

6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primariaWilian24
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICAÁngel Encinas
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Juan Martín Martín
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.docRodneyFrankCUADROSMI
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...jlorentemartos
 
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptxRESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptxpvtablets2023
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxiemerc2024
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfAlfaresbilingual
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfMercedes Gonzalez
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxBeatrizQuijano2
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024IES Vicent Andres Estelles
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfcarolinamartinezsev
 
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.pptFUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.pptNancyMoreiraMora1
 
semana 4 9NO Estudios sociales.pptxnnnn
semana 4  9NO Estudios sociales.pptxnnnnsemana 4  9NO Estudios sociales.pptxnnnn
semana 4 9NO Estudios sociales.pptxnnnnlitzyleovaldivieso
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfapunteshistoriamarmo
 

Kürzlich hochgeladen (20)

6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptxRESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.pptFUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
 
semana 4 9NO Estudios sociales.pptxnnnn
semana 4  9NO Estudios sociales.pptxnnnnsemana 4  9NO Estudios sociales.pptxnnnn
semana 4 9NO Estudios sociales.pptxnnnn
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 

Plano numérico, unidad II

  • 1. República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria Universidad Politécnica Territorial “Andrés Eloy Blanco” Barquisimeto, Estado Lara BARQUISIMETO, MARZO 2021 Autor: Lorenny Colmenares CI: V-27.666.482 PNF CONTADURIA Sección 0403
  • 2. Definición: El plano cartesiano o sistema de ejes coordenados es la representación gráfica matemática donde dos líneas numeradas se interceptan. Recibe este nombre en honor al matemático y filósofo René Descartes (1596-1650). Los ejes de coordenada s son perpendicul ares entre sí. Las escalas de los ejes son iguales. Los números positivos están a la derecha del origen en el eje de las x y por arriba del origen en el eje de las y. Los puntos en los ejes no pertenecen a ningún cuadrante. Es bidimensio nal. Características del plano cartesiano Partes del plano cartesiano
  • 3. Ejemplo plano cartesiano con coordenadas En el plano cartesiano abajo están localizados varios puntos, cuyas coordenadas cartesianas son: •punto A = (2,2) en el primer cuadrante; •punto B = (-7,4) en el segundo cuadrante; •punto C = (-7, -3) en el tercer cuadrante; •punto D = (3, -5) en el cuarto cuadrante; •punto E = (5, 4) en el primer cuadrante; •punto F = (-2, 1) en el segundo cuadrante; •punto G = (-3, -3) en el tercer cuadrante y •punto H = (3, -2) en el cuarto cuadrante. El plano cartesiano nos permite: Localizar las coordenadas de los puntos en un plano. Determinar la línea recta que pasa por dos puntos. Dibujar polígonos conociendo los puntos de sus vértices. Representar gráficamente una función. ¿Para qué sirve el plano cartesiano?
  • 4. Distancia: La distancia entre dos puntos está vinculada al plano cartesiano, ya que este permite calcular la distancia que existe entre ambos puntos, a partir de la ubicación de las coordenadas de ambos. Ejemplo de como hallar la distancia entre dos puntos en plano Ejemplo 1. Hallar la distancia entre los puntos A(-1, 3) y B(6,2). Solución. AB = √(xb - xa)2 + (yb - ya)2 = √(6 - (-1))2 + (2 - 3)2 = √72 + 12 = √50 = 5√2 Resultado: AB = 5√2. Ejemplo de como hallar la distancia entre dos puntos en espacio Ejemplo 2. Hallar la distancia entre los puntos A(-1, 3, 3) y B(6, 2, -2). Solución. AB = √(xb - xa)2 + (yb - ya)2 + (zb - za)2 = = √(6 - (-1))2 + (2 - 3)2 + (-2 - 3)2 = √72 + 12 + 52 = √75 = 5√3 Resultado: AB = 5√3. Fórmulas para hallar la distancia entre dos puntos  Fórmulas para hallar la distancia entre dos puntos A(xa , ya) y B(xb , yb) en plano: AB = √(xb - xa)2 + (yb - ya)2  Fórmulas para hallar la distancia entre dos puntos A(xa, ya, za) y B(xb, yb, zb) en espacio: AB = √(xb - xa)2 + (yb - ya)2 + (zb - za)2
  • 5. Punto medio: Es el punto que se encuentra a la misma distancia de cualquiera de los extremos. Antes debemos conocer que es un punto es una figura geométrica adimensional: no tiene longitud, área, volumen, ni otro ángulo dimensional. No es un objeto físico. El modo de obtener geométricamente el punto medio de un segmento, mediante regla y compás, consiste en trazar dos arcos de circunferencia de igual radio, con centro en los extremos, y unir sus intersecciones para obtener la recta mediatriz. Esta «corta» al segmento en su punto medio. Teorema Sea AB un segmento cuyos extremos tienen coordenadas A (xA; yA) ; B (xB; yB) entonces las coordenadas del punto medio M (xM ; yM) de AB son:
  • 6. Circunferencia: Se denomina circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. El radio de la circunferencia es la distancia de un punto cualquiera de dicha circunferencia al centro. Ecuación analítica de la circunferencia: si hacemos coincidir el centro con el origen de coordenadas, las coordenadas de cualquier punto de la circunferencia (x, y) determina un triángulo rectángulo, y por supuesto que responde al teorema de Pitágoras: r2 = x2 + y2. Puesto que la distancia entre el centro (a, b) y uno cualquiera de los puntos (x, y) de la circunferencia es constante e igual al radio r tendremos que: r2 = (x – a)2 + (y – b)2 Llamada canónica podemos desarrollarla resolviendo los cuadrados (trinomio cuadrado perfecto) y obtenemos: x2 + y2 – 2ax –2by – r2 = 0. Si reemplazamos – 2a = D; – 2b = E; F = a2 + b2 – r2 tendremos que: x2 + y2 + Dx + Ey + F = 0 Ejemplo: Si tenemos la ecuación x2 + y2 + 6x – 8y – 11 = 0 Entonces tenemos que: D = 6 Þ 6 = – 2a Þ a = – 3 E = – 8 Þ – 8 = – 2b Þ b = 4 El centro de la circunferencia es (– 3, 4). Hallemos el radio F = (– 3)2 + 42 – r2 Þ – 11 = (– 3)2 + 42 – r2 Þ r = 6 La ecuación de la circunferencia queda: (x + 3)2 + (y – 4)2 = 36
  • 7. Elipse: Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos es constante. Estos dos puntos fijos se llaman focos de la elipse. Ecuación analítica de la elipse: para simplificar la explicación ubiquemos a los focos sobre el eje de las x, situados en los puntos F (c,0) y F' (– c,0). Tomemos un punto cualquiera P de la elipse cuyas coordenadas son (x, y). En el caso de la elipse la suma de las distancias entre PF y PF' es igual al doble del radio sobre el eje x. Entonces: PF + PF' = 2a. Aplicando Pitágoras tenemos que: Elevamos al cuadrado ambos miembros para sacar las raíces y desarrollamos los cuadrados queda finalmente: Si la elipse estuviese centrada en un punto cualquiera (p, q) la ecuación debería de ser: Si desarrollamos los cuadrados obtendremos que: b2x2 + a2y2 – 2xpb2 – 2yqa2 + p2b2 + q2a2 – a2b2 = 0 Si hacemos: A = b2 B = a2 C = – 2pb2 D = – 2qa2 E = p2b2 + q2a2 – a2b2 tendremos la ecuación: Ax2 + By2 + Cx + Dy + E = 0, donde podemos comprobar que es igual que la de la circunferencia excepto que los términos A y B no tienen porqué ser iguales.
  • 8. Ejemplo: Si tenemos la ecuación 4x2 + 9y2 + 24x – 8y + 81 = 0 Entonces tenemos que: A = 4 Þ 4 = b2 Þ b = 2; B = 9 Þ 9 = a2 Þ a = 3 Los radios de la elipse son: sobre el eje x = a = 3; sobre el eje y = b = 2. Hallemos en centro (p, q). C = 24 Þ 24 = – 2pb2 Þ p = – 3 D = – 54 Þ – 54 = – 2qa2 Þ q = 3 El centro es, entonces, (p, q) = (– 3, 3). Para verificar que se trate de una elipse calculemos E que debe tener el valor de 81. E = p2b2 + q2a2 – a2b2 = 81 La ecuación de la elipse queda: Hipérbola: Es el lugar geométrico de los puntos del plano cuya diferencia de distancias entre dos puntos fijos es constante. Estos dos puntos fijos se llaman focos de la hipérbola. Ecuación analítica de la hipérbola: nuevamente ubiquemos los focos sobre el eje x, F = (c,0) y F' = (–c,0), y tomemos un punto cualquiera P = (x, y) de la hipérbola. En este caso, la diferencia de las distancias entre PF y PF' es igual al doble de la distancia que hay entre el centro de coordenadas y la intersección de la hipérbola con el eje x. Entonces tendremos que: PF – PF' = 2a Elevando al cuadrado ambos miembros y procediendo matemáticamente podemos llegar a esta expresión: (c2 – a2). x2 – a2y2 – (c2 – a2) a2 = 0 (los cálculos los dejo por tu cuenta pero puedes guiarte con el desarrollo que hicimos para la elipse). Nuevamente a partir del dibujo y aplicando Pitágoras podemos obtener que c2 = a2 + b2 y por lo tanto la ecuación nos queda: b2x2 – a2y2 = a2b2. Dividiendo cada término por a2b2 obtenemos:
  • 9.  Si la hipérbola estuviese centrada en un punto cualquiera (p, q) la ecuación debería de ser: Si desarrollamos los cuadrados obtendremos que: b2x2 – a2y2 – 2xpb2 + 2yqa2 + p2b2 – q2a2 – a2b2 = 0 Si hacemos: A = b2 B = – a2 C = – 2pb2 D = 2qa2 E = p2b2 – q2a2 – a2b2 tendremos la ecuación: Ax2 – By2 + Cx + Dy + E = 0, donde podemos comprobar que es igual que la de la circunferencia, o una elipse, excepto que los términos A y B no tienen porqué ser iguales. Asíntotas: Son rectas que jamás cortan a la hipérbola, aunque se acercan lo más posible a ella. Ambas deben pasar por el "centro" (p, q) Las ecuaciones de las asíntotas son: Parábola: Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.
  • 10. Ecuación analítica de la parábola: Supongamos que el foco esté situado en el punto (0,c) y la directriz es la recta y = – c, por lo tanto el vértice está en su punto medio (0,0), si tomamos un punto cualquiera P = (x , y) de la parábola y un punto Q = (x, – c) de la recta debe de cumplirse que: PF = PQ Elevando al cuadrado ambos miembros: x2 = 4cy Si la parábola no tiene su vértice en (0,0) si no en (p, q) entonces la ecuación sería: (x– p)2 = 4c(y – q) desarrollando la ecuación tendremos: x2 + p2 – 2xp – 4cy + 4cq = 0 Si hacemos D = – 2p E = – 4c F = p2 + 4cq obtendremos que es: x2 + Dx + Ey + F = 0, en la que podemos observar que falta el término de y2. Observación: es de destacar que el término x y no aparece, la razón es que se ha supuesto que los ejes de simetría de las cónicas son paralelos a los ejes de coordenadas; en caso contrario aparecería este término, que como es lógico dependerá del ángulo de inclinación de los ejes.