SlideShare ist ein Scribd-Unternehmen logo
1 von 19
I. Nomenclature of Coordination Complexes
A. Ligands
1) Table 21.13 lists common ligands, names, structures, and abbreviations
Chapter 20 Lecture 2 Transition Metals
B. Naming and Writing Formulas of Coordination Compounds
1) The cation comes first, then the anion(s)
a) diamminesilver(I) chloride [Ag(NH3)2]Cl
b) potassium hexacyanoferrate(III) K3[Fe(CN)6]
2) Inner Sphere Complex Ion is enclosed in brackets
a) Ligands are named before the metal
b) Metal is written first in the formula
c) Metal oxidation state in Roman Numerals in parenthesis after the metal ion
d) A space only between cation and anion
e) No capitalization is needed
i. tetraamminecopper(II) sulfate [Cu(NH3)4]SO4
ii. hexaamminecobalt(III) chloride [Co(NH3)6]Cl3
3) Prefixes denote the number of each ligand type. Special prefixes and parentheses
are used if the ligand already contains a prefix.
2 di bis 6 hexa hexakis
3 tri tris 7 hepta heptakis
4 tetra tetrakis 8 octa octakis
5 penta pentakis 9 nona nonakis
10 deca decakis
a) dichlorobis(ethylenediamine)cobalt(III) fluoride [Co(en)2Cl2]F
b) tris(bipyridine)iron(II) chloride [Fe(bipy)3]Cl2
4) Ligands are named in alphabetical order not counting prefixes.
a) tetraamminedichlorocobalt(III) [Co(NH3)4Cl2]+
b) amminebromochloromethylamineplatinum(II) [Pt(NH3)BrCl(CH3NH2)]
5) Ligand name alterations:
a) Anionic ligands are given an -o suffix: chloro, flouro, oxo, sulfato
b) Neutral ligands keep their name: methylamine, bipyridine
c) Water becomes aqua
d) NH3 becomes ammine to keep separate from alkylamines
6) How to handle anionic complexes
a) Add –ate to the metal name if the complex ion has an overall (-) charge
b) Negatively charged complexes of certain metals use their Latin names:
Fe = ferrate Ag = argenate Sb = stibate
Pb = plumbate Sn = stannate Au = aurate
c) [PtCl4]2-
= tetrachloroplatinate(II)
II. Coordination Chemistry Isomers = same ligands arranged differently
A. Hierarchy of isomers
B. Structural Isomers = different ligands in coordination sphere
1) Coordination Isomers = ratio of ligand:metal same, but ligands are attached to
metal ions in different numbers
a) [Pt(NH3)2Cl2]
b) [Pt(NH3)3Cl][Pt(NH3)Cl3]
c) [Pt(NH3)4][PtCl4]
2) Linkage Isomers = depends on which atom of the ligand is attached to metal
a) SCN-
Linkage isomers
i. Pb2+
—SCN = thiocyanate complex
ii. Fe3+
—NCS = isothiocyanate complex
b) NO2
-
Linkage isomers
i. M—ONO = nitrito complex
ii. M—NO2 = nitro complex
C. Stereoisomers = same ligands, but different spatial arrangement
1) Geometric Isomers
a) cis- or trans- isomers possible for MA2B2
b) Six-coordinate complexes also can have cis and trans isomers
2) Optical Isomers = have opposite effect on plane polarized light
C. Stereoisomers = same ligands, but different spatial arrangement
1) Geometric Isomers
a) cis- or trans- isomers possible for MA2B2
b) Six-coordinate complexes also can have cis and trans isomers
2) Optical Isomers = have opposite effect on plane polarized light
a. Optical Isomers are non-superimposable mirror images of each other
b. Optical Isomers are called Enantiomers (Many biomolecules/drugs)
c. An object or molecule that has an Enantiomer is called Chiral
III. Coordination Compounds and the Localized Electron Model
A. History
1) Proposed by Pauling in the 1930’s
2) Describes bonding using hybrid orbitals filled with e- pairs
3) Extension of Lewis/VSEPR to include d-orbitals
B. Theory
1) Metal ions utilize d-orbitals in hybrids
2) Octahedral complexes require 6 hybrid orbitals
a) d2
sp3
hybridization of metal Atomic Orbitals provides new MO
b) Ligand lone pairs fill the hybrid orbitals to produce the bond
c) d-orbitals can come from 3d (low spin) or 4d (high spin)
Fe3+
Co2+
3) Coordinate Covalent Bond = Ligand as Lewis Base and Metal as Lewis Acid
3) Problems with the theory
a) High energy 4d orbitals are unlikely participants in bonding
b) Doesn’t explain electronic spectra of transition metal complexes
III. Crystal Field Theory
A. History
1) Developed to describe metal ions in solid state crystals only
2) M+
is surrounded by A-
“point charges”
3) Energies of the d-orbitals are “split” due to unequal geometric interactions
with the point charges
4) Does not take into account covalency and molecular orbitals
5) Has been extended to do so in Ligand Field Theory
B. Theory
1) Place degenerate set of 5 d-orbitals into an octahedral field of (-) charges (L:)
2) The electrons in the d-orbitals are repelled by the (-) charge of the ligands
3) The dz2 and dx2-y2orbitals are most effected because their lobes point directly
along x,y,z axes where the point charges are
4) The dxy, dxz, and dyz orbitals aren’t destabilized as much
Octahedral Arrangement of d-Orbitals
5) The energy difference between these orbital sets is called “delta octahedral” = ∆o
a) The low energy set has t2g symmetry and are stabilized by –0.4 ∆o each
b) The high energy set has eg symmetry and are destabilized by +0.6 ∆o each
c) The total energy of the 5 d-orbitals is the same as in the uniform field = 0
(2)(+0.6 ∆o) + (3)(-0.4 ∆o) = 0
6) CFSE = Crystal Field Stabilization Energy = how much energy is gained
by the electrons in the 5 d-orbitals due to their splitting
a) Co(III) = d6
low spin
(6e-)(-0.4 ∆o) = -2.4 ∆o stabilization
a) Cu(II) = d9
(6e-)(-0.4 ∆o) + (3e-)(+0.6 ∆o) = -0.6 ∆o stabilization
a) Cu(I) = d10
(6e-)(-0.4 ∆o) + (4e-)(+0.6 ∆o) = 0 ∆o stabilization
MO Diagram for
an Octahedral Complex
7) All octahedral metal complexes will have the exact same MO diagram, only the
number of d-electrons will change
8) The 6 bonding MO’s, with lowered energy for their electron pairs is what holds
the metal complex together
9) The d-electrons in the t2g and eg* MO’s
a) Determine the “Ligand Field”
b) Determine the geometry and many characteristics of the metal complex
C. Orbital Splitting and Electron Spin
1) The energy difference between the t2g and eg* MO’s = ∆o = “delta octahedral”
2) Strong-Field Ligands = ligands whose orbitals interact strongly with metal ion
a) eg* is raised in energy
b) ∆o is large
3) Weak-Field Ligands = ligands whose orbitals interact weakly with metal ion
a) eg* is raised only slightly in energy
b) ∆o is small
4) Electron Spin
a) d0
– d3
and d8
– d10
octahedral complexes have only one possible
arrangement of electrons in the t2g and eg* MO’s
b) d4
– d7
octahedral complexes have two possible electronic arrangements
i. Low Spin = least number of unpaired electrons; favored by strong
field ligands with large ∆o
ii. High Spin = maximum number of unpaired electrons; favored by
weak field ligands with small ∆o
4) Splittings for other geometries:
Tetrahedral
Square
Planar
Linear
E. The Spectrochemical Series
1) A list of Strong-Field through Weak-Field ligands
2) σ-donors only
a) en > NH3 because it is more basic (stronger field ligand)
b) F- > Cl- > Br- > I- (basicity)
3) π-donors
a) Halides field strength is lowered due to π-donor ability
b) For similar reasons H2O, OH-, RCO2
-
also are weak field ligands
4) π-acceptors increase ligand field strength: CO, CN- > phen > NO2- >
NCS-
5) Combined Spectrochemical Series
CO, CN- > phen > NO2- > en > NH3 > NCS- > H2O > F- > RCO2- > OH- > Cl- > Br- > I-
Strong field, low spin
π-acceptor
σ-donor only Weak field, high spin
π-donor
D. Electronic Spectra
1) A characteristic of transition metal complexes is color arising from
electronic transitions between d-orbitals of different energies
a) Electronic transition in an octahedral d1
complex
b) The UV-Vis Experiment and the spectral result

Weitere ähnliche Inhalte

Was ist angesagt?

6 coordinative comp
6 coordinative comp6 coordinative comp
6 coordinative compnizhgma.ru
 
Hybridization in transition metals
Hybridization in transition metalsHybridization in transition metals
Hybridization in transition metalsfahad nadeem
 
Coordination chemistry/Descriptive Chemistry /Transition Metals
Coordination chemistry/Descriptive Chemistry /Transition MetalsCoordination chemistry/Descriptive Chemistry /Transition Metals
Coordination chemistry/Descriptive Chemistry /Transition MetalsPharmacy Universe
 
Coordination compounds (12th Maharashtra state board)
Coordination compounds (12th Maharashtra state board)Coordination compounds (12th Maharashtra state board)
Coordination compounds (12th Maharashtra state board)Freya Cardozo
 
Metal nitrosyls and their derivatives
Metal nitrosyls and their derivativesMetal nitrosyls and their derivatives
Metal nitrosyls and their derivativesRana Ashraf
 
Coordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and TheoriesCoordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and TheoriesImtiaz Alam
 
B sc_I_General chemistry U-IV Ligands and chelates
B sc_I_General chemistry U-IV Ligands and chelates  B sc_I_General chemistry U-IV Ligands and chelates
B sc_I_General chemistry U-IV Ligands and chelates Rai University
 
Coordination chemistry - introduction
Coordination chemistry - introductionCoordination chemistry - introduction
Coordination chemistry - introductionSANTHANAM V
 

Was ist angesagt? (16)

Coordination notes
Coordination notesCoordination notes
Coordination notes
 
6 coordinative comp
6 coordinative comp6 coordinative comp
6 coordinative comp
 
Hybridization in transition metals
Hybridization in transition metalsHybridization in transition metals
Hybridization in transition metals
 
Coordination chemistry/Descriptive Chemistry /Transition Metals
Coordination chemistry/Descriptive Chemistry /Transition MetalsCoordination chemistry/Descriptive Chemistry /Transition Metals
Coordination chemistry/Descriptive Chemistry /Transition Metals
 
coordination compounds
coordination compoundscoordination compounds
coordination compounds
 
Complex compounds
Complex compoundsComplex compounds
Complex compounds
 
Chapter 24
Chapter 24Chapter 24
Chapter 24
 
Coordination compounds (12th Maharashtra state board)
Coordination compounds (12th Maharashtra state board)Coordination compounds (12th Maharashtra state board)
Coordination compounds (12th Maharashtra state board)
 
Metal nitrosyls and their derivatives
Metal nitrosyls and their derivativesMetal nitrosyls and their derivatives
Metal nitrosyls and their derivatives
 
Coordination chemistry i
Coordination chemistry iCoordination chemistry i
Coordination chemistry i
 
Coordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and TheoriesCoordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and Theories
 
Werner's theory
Werner's theoryWerner's theory
Werner's theory
 
B sc_I_General chemistry U-IV Ligands and chelates
B sc_I_General chemistry U-IV Ligands and chelates  B sc_I_General chemistry U-IV Ligands and chelates
B sc_I_General chemistry U-IV Ligands and chelates
 
Coordination chemistry - introduction
Coordination chemistry - introductionCoordination chemistry - introduction
Coordination chemistry - introduction
 
Bonding in coordination compound(werners theory)
Bonding in coordination compound(werners theory)Bonding in coordination compound(werners theory)
Bonding in coordination compound(werners theory)
 
Coordination chemistry
Coordination chemistryCoordination chemistry
Coordination chemistry
 

Ähnlich wie Transition metals

Coordination compounds upto VBT (2).pptx
Coordination compounds upto VBT (2).pptxCoordination compounds upto VBT (2).pptx
Coordination compounds upto VBT (2).pptxdelhibabu936
 
Properties of coordination compounds part 1 (2018)
Properties of coordination compounds part 1 (2018)Properties of coordination compounds part 1 (2018)
Properties of coordination compounds part 1 (2018)Chris Sonntag
 
I -s2o.100 Chapter 3 Chemical BondsUWL tnteractive ve.docx
I -s2o.100 Chapter 3 Chemical BondsUWL tnteractive ve.docxI -s2o.100 Chapter 3 Chemical BondsUWL tnteractive ve.docx
I -s2o.100 Chapter 3 Chemical BondsUWL tnteractive ve.docxadampcarr67227
 
Molecular orbital theory
Molecular orbital theoryMolecular orbital theory
Molecular orbital theoryPallavi Kumbhar
 
week2-d3-Introduction to Bonding.pdf
week2-d3-Introduction to Bonding.pdfweek2-d3-Introduction to Bonding.pdf
week2-d3-Introduction to Bonding.pdfIvyJoyceBuan2
 
PPSC Chemistry Lecturer Preparation (Test # 12)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 12)- Malik XufyanPPSC Chemistry Lecturer Preparation (Test # 12)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 12)- Malik XufyanMalik Xufyan
 
PPSC Chemistry Lecturer Preparation (Test # 10)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 10)- Malik XufyanPPSC Chemistry Lecturer Preparation (Test # 10)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 10)- Malik XufyanMalik Xufyan
 
Molecular Orbital Theory (MOT)
Molecular Orbital Theory  (MOT)Molecular Orbital Theory  (MOT)
Molecular Orbital Theory (MOT)Shivaji Burungale
 
topic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptxtopic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptxJaimin Surani
 
Properties of coordination compounds part 1
Properties of coordination compounds part 1Properties of coordination compounds part 1
Properties of coordination compounds part 1Chris Sonntag
 
djtkffpes9gtl4fkqdkh-signature-016162306cab773303228479b063befdf29baf20ea52f9...
djtkffpes9gtl4fkqdkh-signature-016162306cab773303228479b063befdf29baf20ea52f9...djtkffpes9gtl4fkqdkh-signature-016162306cab773303228479b063befdf29baf20ea52f9...
djtkffpes9gtl4fkqdkh-signature-016162306cab773303228479b063befdf29baf20ea52f9...gtacreations85
 
Cordination compound
Cordination compoundCordination compound
Cordination compoundnysa tutorial
 
d and f , coordination compounds questions .pdf
d and f , coordination compounds questions .pdfd and f , coordination compounds questions .pdf
d and f , coordination compounds questions .pdfSABARISHSABARISH22
 
coordinating compounds.pdf
coordinating compounds.pdfcoordinating compounds.pdf
coordinating compounds.pdfLUXMIKANTGIRI
 

Ähnlich wie Transition metals (20)

Coordination compounds upto VBT (2).pptx
Coordination compounds upto VBT (2).pptxCoordination compounds upto VBT (2).pptx
Coordination compounds upto VBT (2).pptx
 
Properties of coordination compounds part 1 (2018)
Properties of coordination compounds part 1 (2018)Properties of coordination compounds part 1 (2018)
Properties of coordination compounds part 1 (2018)
 
B.sc II chemistry of transitional elements (iii)
B.sc II chemistry of transitional elements  (iii)B.sc II chemistry of transitional elements  (iii)
B.sc II chemistry of transitional elements (iii)
 
Transition metals
Transition metalsTransition metals
Transition metals
 
I -s2o.100 Chapter 3 Chemical BondsUWL tnteractive ve.docx
I -s2o.100 Chapter 3 Chemical BondsUWL tnteractive ve.docxI -s2o.100 Chapter 3 Chemical BondsUWL tnteractive ve.docx
I -s2o.100 Chapter 3 Chemical BondsUWL tnteractive ve.docx
 
Crystal field Theory
Crystal field TheoryCrystal field Theory
Crystal field Theory
 
Crystal field theory
Crystal field theoryCrystal field theory
Crystal field theory
 
B.sc II chemistry of transitional elements (ii)
B.sc II chemistry of transitional elements   (ii)B.sc II chemistry of transitional elements   (ii)
B.sc II chemistry of transitional elements (ii)
 
Molecular orbital theory
Molecular orbital theoryMolecular orbital theory
Molecular orbital theory
 
week2-d3-Introduction to Bonding.pdf
week2-d3-Introduction to Bonding.pdfweek2-d3-Introduction to Bonding.pdf
week2-d3-Introduction to Bonding.pdf
 
PPSC Chemistry Lecturer Preparation (Test # 12)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 12)- Malik XufyanPPSC Chemistry Lecturer Preparation (Test # 12)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 12)- Malik Xufyan
 
PPSC Chemistry Lecturer Preparation (Test # 10)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 10)- Malik XufyanPPSC Chemistry Lecturer Preparation (Test # 10)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 10)- Malik Xufyan
 
Molecular Orbital Theory (MOT)
Molecular Orbital Theory  (MOT)Molecular Orbital Theory  (MOT)
Molecular Orbital Theory (MOT)
 
topic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptxtopic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptx
 
Properties of coordination compounds part 1
Properties of coordination compounds part 1Properties of coordination compounds part 1
Properties of coordination compounds part 1
 
djtkffpes9gtl4fkqdkh-signature-016162306cab773303228479b063befdf29baf20ea52f9...
djtkffpes9gtl4fkqdkh-signature-016162306cab773303228479b063befdf29baf20ea52f9...djtkffpes9gtl4fkqdkh-signature-016162306cab773303228479b063befdf29baf20ea52f9...
djtkffpes9gtl4fkqdkh-signature-016162306cab773303228479b063befdf29baf20ea52f9...
 
Cordination compound
Cordination compoundCordination compound
Cordination compound
 
d and f , coordination compounds questions .pdf
d and f , coordination compounds questions .pdfd and f , coordination compounds questions .pdf
d and f , coordination compounds questions .pdf
 
Molecular Orbital Theory
Molecular Orbital Theory  Molecular Orbital Theory
Molecular Orbital Theory
 
coordinating compounds.pdf
coordinating compounds.pdfcoordinating compounds.pdf
coordinating compounds.pdf
 

Mehr von Eko Supriyadi

Kamus Bergambar Bahasa Indonesia Bahasa Inggris Bahasa Arab
Kamus Bergambar Bahasa Indonesia Bahasa Inggris Bahasa ArabKamus Bergambar Bahasa Indonesia Bahasa Inggris Bahasa Arab
Kamus Bergambar Bahasa Indonesia Bahasa Inggris Bahasa ArabEko Supriyadi
 
Modul Penyusunan Soal Hots Tahun 2017
Modul Penyusunan Soal Hots Tahun 2017 Modul Penyusunan Soal Hots Tahun 2017
Modul Penyusunan Soal Hots Tahun 2017 Eko Supriyadi
 
Kata Kerja Operasional KKO Edisi Revisi Teori Bloom
Kata Kerja Operasional KKO Edisi Revisi Teori BloomKata Kerja Operasional KKO Edisi Revisi Teori Bloom
Kata Kerja Operasional KKO Edisi Revisi Teori BloomEko Supriyadi
 
Permendikbud nomor 16 tahun 2019 salinan
Permendikbud nomor 16 tahun 2019   salinanPermendikbud nomor 16 tahun 2019   salinan
Permendikbud nomor 16 tahun 2019 salinanEko Supriyadi
 
Buku 4 Pedoman PKB Dan Angka Kreditnya
Buku 4 Pedoman PKB Dan Angka KreditnyaBuku 4 Pedoman PKB Dan Angka Kreditnya
Buku 4 Pedoman PKB Dan Angka KreditnyaEko Supriyadi
 
1. menguasai karakteristik peserta didik
1. menguasai karakteristik peserta didik1. menguasai karakteristik peserta didik
1. menguasai karakteristik peserta didikEko Supriyadi
 
Jabatan fungsional guru dan angka kreditnya
Jabatan fungsional guru dan angka kreditnyaJabatan fungsional guru dan angka kreditnya
Jabatan fungsional guru dan angka kreditnyaEko Supriyadi
 
Ppt penyusunan soal hots
Ppt  penyusunan soal  hotsPpt  penyusunan soal  hots
Ppt penyusunan soal hotsEko Supriyadi
 
Pendidikan karakter P2KPTK2
Pendidikan karakter P2KPTK2Pendidikan karakter P2KPTK2
Pendidikan karakter P2KPTK2Eko Supriyadi
 
Pendekatan saintifik
Pendekatan saintifikPendekatan saintifik
Pendekatan saintifikEko Supriyadi
 
Panduan penilaian sd desember 2016
Panduan penilaian sd desember 2016Panduan penilaian sd desember 2016
Panduan penilaian sd desember 2016Eko Supriyadi
 
Model model pembelajaran kurikulum 2013
Model model pembelajaran kurikulum 2013Model model pembelajaran kurikulum 2013
Model model pembelajaran kurikulum 2013Eko Supriyadi
 
Lk telaah rpp sd 2017
Lk telaah rpp sd 2017Lk telaah rpp sd 2017
Lk telaah rpp sd 2017Eko Supriyadi
 
Lk pengamatan praktik pembelajaran sd
Lk pengamatan praktik pembelajaran sdLk pengamatan praktik pembelajaran sd
Lk pengamatan praktik pembelajaran sdEko Supriyadi
 

Mehr von Eko Supriyadi (20)

Metode pembelajaran
Metode pembelajaranMetode pembelajaran
Metode pembelajaran
 
Kamus Bergambar Bahasa Indonesia Bahasa Inggris Bahasa Arab
Kamus Bergambar Bahasa Indonesia Bahasa Inggris Bahasa ArabKamus Bergambar Bahasa Indonesia Bahasa Inggris Bahasa Arab
Kamus Bergambar Bahasa Indonesia Bahasa Inggris Bahasa Arab
 
Hots templates 2019
Hots templates  2019Hots templates  2019
Hots templates 2019
 
Buku penilaian hots
Buku penilaian hotsBuku penilaian hots
Buku penilaian hots
 
Modul Penyusunan Soal Hots Tahun 2017
Modul Penyusunan Soal Hots Tahun 2017 Modul Penyusunan Soal Hots Tahun 2017
Modul Penyusunan Soal Hots Tahun 2017
 
Kata Kerja Operasional KKO Edisi Revisi Teori Bloom
Kata Kerja Operasional KKO Edisi Revisi Teori BloomKata Kerja Operasional KKO Edisi Revisi Teori Bloom
Kata Kerja Operasional KKO Edisi Revisi Teori Bloom
 
Permendikbud nomor 16 tahun 2019 salinan
Permendikbud nomor 16 tahun 2019   salinanPermendikbud nomor 16 tahun 2019   salinan
Permendikbud nomor 16 tahun 2019 salinan
 
Buku 4 Pedoman PKB Dan Angka Kreditnya
Buku 4 Pedoman PKB Dan Angka KreditnyaBuku 4 Pedoman PKB Dan Angka Kreditnya
Buku 4 Pedoman PKB Dan Angka Kreditnya
 
1. menguasai karakteristik peserta didik
1. menguasai karakteristik peserta didik1. menguasai karakteristik peserta didik
1. menguasai karakteristik peserta didik
 
Jabatan fungsional guru dan angka kreditnya
Jabatan fungsional guru dan angka kreditnyaJabatan fungsional guru dan angka kreditnya
Jabatan fungsional guru dan angka kreditnya
 
Teori x y
Teori   x yTeori   x y
Teori x y
 
Ppt penyusunan soal hots
Ppt  penyusunan soal  hotsPpt  penyusunan soal  hots
Ppt penyusunan soal hots
 
Personality plus
Personality plusPersonality plus
Personality plus
 
Pendidikan karakter P2KPTK2
Pendidikan karakter P2KPTK2Pendidikan karakter P2KPTK2
Pendidikan karakter P2KPTK2
 
Pendekatan saintifik
Pendekatan saintifikPendekatan saintifik
Pendekatan saintifik
 
Panduan penilaian sd desember 2016
Panduan penilaian sd desember 2016Panduan penilaian sd desember 2016
Panduan penilaian sd desember 2016
 
Model model pembelajaran kurikulum 2013
Model model pembelajaran kurikulum 2013Model model pembelajaran kurikulum 2013
Model model pembelajaran kurikulum 2013
 
Lk telaah rpp sd 2017
Lk telaah rpp sd 2017Lk telaah rpp sd 2017
Lk telaah rpp sd 2017
 
Lk pengamatan praktik pembelajaran sd
Lk pengamatan praktik pembelajaran sdLk pengamatan praktik pembelajaran sd
Lk pengamatan praktik pembelajaran sd
 
Literacy mh
Literacy mhLiteracy mh
Literacy mh
 

Transition metals

  • 1. I. Nomenclature of Coordination Complexes A. Ligands 1) Table 21.13 lists common ligands, names, structures, and abbreviations Chapter 20 Lecture 2 Transition Metals
  • 2. B. Naming and Writing Formulas of Coordination Compounds 1) The cation comes first, then the anion(s) a) diamminesilver(I) chloride [Ag(NH3)2]Cl b) potassium hexacyanoferrate(III) K3[Fe(CN)6] 2) Inner Sphere Complex Ion is enclosed in brackets a) Ligands are named before the metal b) Metal is written first in the formula c) Metal oxidation state in Roman Numerals in parenthesis after the metal ion d) A space only between cation and anion e) No capitalization is needed i. tetraamminecopper(II) sulfate [Cu(NH3)4]SO4 ii. hexaamminecobalt(III) chloride [Co(NH3)6]Cl3 3) Prefixes denote the number of each ligand type. Special prefixes and parentheses are used if the ligand already contains a prefix. 2 di bis 6 hexa hexakis 3 tri tris 7 hepta heptakis 4 tetra tetrakis 8 octa octakis 5 penta pentakis 9 nona nonakis 10 deca decakis
  • 3. a) dichlorobis(ethylenediamine)cobalt(III) fluoride [Co(en)2Cl2]F b) tris(bipyridine)iron(II) chloride [Fe(bipy)3]Cl2 4) Ligands are named in alphabetical order not counting prefixes. a) tetraamminedichlorocobalt(III) [Co(NH3)4Cl2]+ b) amminebromochloromethylamineplatinum(II) [Pt(NH3)BrCl(CH3NH2)] 5) Ligand name alterations: a) Anionic ligands are given an -o suffix: chloro, flouro, oxo, sulfato b) Neutral ligands keep their name: methylamine, bipyridine c) Water becomes aqua d) NH3 becomes ammine to keep separate from alkylamines 6) How to handle anionic complexes a) Add –ate to the metal name if the complex ion has an overall (-) charge b) Negatively charged complexes of certain metals use their Latin names: Fe = ferrate Ag = argenate Sb = stibate Pb = plumbate Sn = stannate Au = aurate c) [PtCl4]2- = tetrachloroplatinate(II)
  • 4. II. Coordination Chemistry Isomers = same ligands arranged differently A. Hierarchy of isomers
  • 5. B. Structural Isomers = different ligands in coordination sphere 1) Coordination Isomers = ratio of ligand:metal same, but ligands are attached to metal ions in different numbers a) [Pt(NH3)2Cl2] b) [Pt(NH3)3Cl][Pt(NH3)Cl3] c) [Pt(NH3)4][PtCl4] 2) Linkage Isomers = depends on which atom of the ligand is attached to metal a) SCN- Linkage isomers i. Pb2+ —SCN = thiocyanate complex ii. Fe3+ —NCS = isothiocyanate complex b) NO2 - Linkage isomers i. M—ONO = nitrito complex ii. M—NO2 = nitro complex
  • 6. C. Stereoisomers = same ligands, but different spatial arrangement 1) Geometric Isomers a) cis- or trans- isomers possible for MA2B2 b) Six-coordinate complexes also can have cis and trans isomers 2) Optical Isomers = have opposite effect on plane polarized light C. Stereoisomers = same ligands, but different spatial arrangement 1) Geometric Isomers a) cis- or trans- isomers possible for MA2B2 b) Six-coordinate complexes also can have cis and trans isomers 2) Optical Isomers = have opposite effect on plane polarized light
  • 7. a. Optical Isomers are non-superimposable mirror images of each other b. Optical Isomers are called Enantiomers (Many biomolecules/drugs) c. An object or molecule that has an Enantiomer is called Chiral
  • 8. III. Coordination Compounds and the Localized Electron Model A. History 1) Proposed by Pauling in the 1930’s 2) Describes bonding using hybrid orbitals filled with e- pairs 3) Extension of Lewis/VSEPR to include d-orbitals B. Theory 1) Metal ions utilize d-orbitals in hybrids 2) Octahedral complexes require 6 hybrid orbitals a) d2 sp3 hybridization of metal Atomic Orbitals provides new MO b) Ligand lone pairs fill the hybrid orbitals to produce the bond c) d-orbitals can come from 3d (low spin) or 4d (high spin) Fe3+ Co2+
  • 9. 3) Coordinate Covalent Bond = Ligand as Lewis Base and Metal as Lewis Acid
  • 10. 3) Problems with the theory a) High energy 4d orbitals are unlikely participants in bonding b) Doesn’t explain electronic spectra of transition metal complexes III. Crystal Field Theory A. History 1) Developed to describe metal ions in solid state crystals only 2) M+ is surrounded by A- “point charges” 3) Energies of the d-orbitals are “split” due to unequal geometric interactions with the point charges 4) Does not take into account covalency and molecular orbitals 5) Has been extended to do so in Ligand Field Theory B. Theory 1) Place degenerate set of 5 d-orbitals into an octahedral field of (-) charges (L:) 2) The electrons in the d-orbitals are repelled by the (-) charge of the ligands 3) The dz2 and dx2-y2orbitals are most effected because their lobes point directly along x,y,z axes where the point charges are 4) The dxy, dxz, and dyz orbitals aren’t destabilized as much
  • 12. 5) The energy difference between these orbital sets is called “delta octahedral” = ∆o a) The low energy set has t2g symmetry and are stabilized by –0.4 ∆o each b) The high energy set has eg symmetry and are destabilized by +0.6 ∆o each c) The total energy of the 5 d-orbitals is the same as in the uniform field = 0 (2)(+0.6 ∆o) + (3)(-0.4 ∆o) = 0
  • 13. 6) CFSE = Crystal Field Stabilization Energy = how much energy is gained by the electrons in the 5 d-orbitals due to their splitting a) Co(III) = d6 low spin (6e-)(-0.4 ∆o) = -2.4 ∆o stabilization a) Cu(II) = d9 (6e-)(-0.4 ∆o) + (3e-)(+0.6 ∆o) = -0.6 ∆o stabilization a) Cu(I) = d10 (6e-)(-0.4 ∆o) + (4e-)(+0.6 ∆o) = 0 ∆o stabilization
  • 14. MO Diagram for an Octahedral Complex
  • 15. 7) All octahedral metal complexes will have the exact same MO diagram, only the number of d-electrons will change 8) The 6 bonding MO’s, with lowered energy for their electron pairs is what holds the metal complex together 9) The d-electrons in the t2g and eg* MO’s a) Determine the “Ligand Field” b) Determine the geometry and many characteristics of the metal complex C. Orbital Splitting and Electron Spin 1) The energy difference between the t2g and eg* MO’s = ∆o = “delta octahedral” 2) Strong-Field Ligands = ligands whose orbitals interact strongly with metal ion a) eg* is raised in energy b) ∆o is large 3) Weak-Field Ligands = ligands whose orbitals interact weakly with metal ion a) eg* is raised only slightly in energy b) ∆o is small
  • 16. 4) Electron Spin a) d0 – d3 and d8 – d10 octahedral complexes have only one possible arrangement of electrons in the t2g and eg* MO’s b) d4 – d7 octahedral complexes have two possible electronic arrangements i. Low Spin = least number of unpaired electrons; favored by strong field ligands with large ∆o ii. High Spin = maximum number of unpaired electrons; favored by weak field ligands with small ∆o
  • 17. 4) Splittings for other geometries: Tetrahedral Square Planar Linear
  • 18. E. The Spectrochemical Series 1) A list of Strong-Field through Weak-Field ligands 2) σ-donors only a) en > NH3 because it is more basic (stronger field ligand) b) F- > Cl- > Br- > I- (basicity) 3) π-donors a) Halides field strength is lowered due to π-donor ability b) For similar reasons H2O, OH-, RCO2 - also are weak field ligands 4) π-acceptors increase ligand field strength: CO, CN- > phen > NO2- > NCS- 5) Combined Spectrochemical Series CO, CN- > phen > NO2- > en > NH3 > NCS- > H2O > F- > RCO2- > OH- > Cl- > Br- > I- Strong field, low spin π-acceptor σ-donor only Weak field, high spin π-donor
  • 19. D. Electronic Spectra 1) A characteristic of transition metal complexes is color arising from electronic transitions between d-orbitals of different energies a) Electronic transition in an octahedral d1 complex b) The UV-Vis Experiment and the spectral result