Anzeige

plano numerico terminado.docx

20. Feb 2023
plano numerico terminado.docx
plano numerico terminado.docx
plano numerico terminado.docx
plano numerico terminado.docx
Anzeige
plano numerico terminado.docx
plano numerico terminado.docx
plano numerico terminado.docx
plano numerico terminado.docx
plano numerico terminado.docx
Anzeige
plano numerico terminado.docx
Nächste SlideShare
Heredia daryerlis 0406Heredia daryerlis 0406
Wird geladen in ... 3
1 von 10
Anzeige

Más contenido relacionado

Anzeige

plano numerico terminado.docx

  1. Republica bolivariana de Venezuela Ministerio del poder popular para la educación universitaria Universidad politécnica territorial Andres Eloy Blanco Estado Lara Plano numérico Integrante:
  2. Leirry perez c.i.v-22.272.310 Sección: dl 0413 Trayecto inicial plano numérico o plano cartesiano Se conoce como plano cartesiano, coordenadas cartesianas o sistema cartesiano, a dos rectas numéricas perpendiculares, una horizontal y otra vertical, que se cortan en un punto llamado origen o punto cero. La finalidad del plano cartesiano es describir la posición o ubicación de un punto en el plano, la cual está representada por el sistema de coordenadas. El plano cartesiano también sirve para analizar matemáticamente figuras geométricas como la parábola, la hipérbole, la línea, la circunferencia y la elipse, las cuales forman parte de la geometría analítica.
  3. El nombre del plano cartesiano se debe al filósofo y matemático francés René Descartes, quien fue el creador de la geometría analítica y el primero en utilizar este sistema de coordenadas. Distancia En las matemáticas, la distancia entre dos puntos del espacio euclídeo equivale a la longitud del segmento de la recta que los une, expresado numéricamente. En espacios más complejos, como los definidos en la geometría no euclidiana, el «camino más corto» entre dos puntos es un segmento recto con curvatura llamada geodésica.
  4. Punto medio Punto medio en matemática, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. Más generalmente punto equidistante en matemática, es el punto que se encuentra a la misma distancia de dos elementos geométricos, ya sean puntos, segmentos, rectas, etc. Si es un segmento, el punto medio es el que lo divide en dos partes iguales. En ese caso, el punto medio es único y equidista de los extremos del segmento. Por cumplir esta última condición, pertenece a la mediatriz del segmento. Ecuaciones y trazados de circunferencia La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro (recordar que
  5. estamos hablando del Plano Cartesiano y es respecto a éste que trabajamos). Determinación de una circunferencia Una circunferencia queda determinada cuando conocemos: a) Tres puntos de la misma, equidistantes del centro. b) El centro y el radio. c) El centro y un punto en ella. d) El centro y una recta tangente a la circunferencia. También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto, llamado centro . Esta propiedad es la clave para hallar la expresión analítica de una circunferencia (la ecuación de la circunferencia ). Entonces, entrando en el terreno de la Geometría Analítica , (dentro del Plano Cartesiano ) diremos que —para cualquier punto, P (x, y) , de una circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es (x ─ a) 2 + (y ─ b) 2 = r 2 ¿Qué significa esto?
  6. En el contexto de la Geometría Analítica significa que una circunferencia graficada con un centro definido (coordenadas) en el Plano Cartesiano y con radio conocido la podemos “ver” como gráfico y también la podemos “transformar” o expresar como una ecuación matemática. Así la vemos Así podemos expresarla Donde: (d) Distancia CP = r y Fórmula que elevada al cuadrado nos da (x ─ a) 2 + (y ─ b) 2 = r 2 También se usa como (x ─ h) 2 + (y ─ k) 2 = r 2 Recordar siempre que en esta fórmula la x y la y serán las coordenadas de cualquier punto (P) sobre la circunferencia, equidistante del centro un radio (r) . Y que la a y la b (o la h y la k , según se use) corresponderán a las coordenadas del centro de la circunferencia C(a, b) . Parábola
  7. En matemáticas, una parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo (llamado foco) y de una recta fija (denominada directriz). Por lo tanto, cualquier punto de una parábola esta a la misma distancia de su foco y de su directriz. Además, en geometría la parábola es una de las secciones cónicas junto a la circunferencia, la elipse y la hipérbola. Es decir, una parábola se puede obtener a partir de un cono. En particular, la parábola es el resultado de cortar un cono con un plano con un ángulo de inclinación respecto al eje de revolución equivalente al ángulo de la generatriz del cono. En consecuencia, el plano que contiene la parábola es paralelo a la generatriz del cono. Elipses Una elipse es una curva plana, simple y cerrada con dos ejes de simetría que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado. La elipse es también la imagen afín de una circunferencia.
  8. Hipérbola Una hipérbola (del griego ὑπερβολή) es una curva abierta de dos ramas, obtenida cortando un cono recto mediante un plano no necesariamente paralelo al eje de simetría, y con ángulo menor
  9. que el de la generatriz respecto del eje de revolución. En geometría analítica, una hipérbola es el lugar geométrico de los puntos de un plano, tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos, llamados focos, es igual a la distancia entre los vértices, la cual es una constante positiva. Siendo esta constante menor a la distancia entre los focos. Ejercicio para resolver
  10. F(x)=3.x-1=
Anzeige