REPUBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA EDUCACION SUPERIOR
UNIVERSIDAD POLITECNICA TERRITORIAL DE LARA “ANDRES ELOY BLANCO”
PNF CONTADURIA PÚBLICA
San Esteban Comunicación Dominicos de Salamanca•138 views
PLANO NUMERICO
1. REPUBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA EDUCACION SUPERIOR
UNIVERSIDAD POLITECNICA TERRITORIAL DE LARA “ANDRES ELOY BLANCO”
PNF CONTADURIA PÚBLICA.
Barquisimeto – Estado Lara.
• Laura Sira.
• C.I: 24.567.371.
• CO0104.
2. ¿Qué es un Plano cartesiano?
Se conoce como plano cartesiano, coordenadas cartesianas o sistema cartesiano, a dos
rectas numéricas perpendiculares, una horizontal y otra vertical, que se cortan en un
punto llamado origen o punto cero.
La finalidad del plano cartesiano es describir la posición o ubicación de un punto en el
plano, la cual está representada por el sistema de coordenadas.
El plano cartesiano también sirve para analizar matemáticamente figuras geométricas
como la parábola, la hipérbole, la línea, la circunferencia y la elipse, las cuales forman
parte de la geometría analítica.
3. Distancia.
A partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la distancia que hay
entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en una recta paralela a éste eje, la
distancia entre los puntos corresponde al valor absoluto de las diferencia de sus abscisas. (x 2 – x 1 ).
Ejemplo:
La distancia entre los puntos (–4, 0) y (5, 0).
Donde (-4) = x 1 ; 5 = x 2. Aplicando la fórmula es 5 – (–4) = 5 +4 = 9 unidades.
Lo mismo sucede con el eje de las ordenadas, cuando los puntos se encuentran ubicados sobre el eje y (de las
ordenadas) o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la
diferencia de sus ordenadas. (y 2 – y 1 ).
Si los puntos se encuentran en cualquier lugar del plano cartesiano, se calcula mediante la relación:
Para demostrar esta relación se deben ubicar los puntos P 1 (x 1 , y 1 ) y P 2 (x 2 , y 2 ) en el sistema de coordenadas,
luego formar un triángulo rectángulo de hipotenusa P 1 P 2 y emplear el Teorema de Pitágoras.
Ejemplo:
4. Punto Medio.
Punto medio en matemática, es el punto que se encuentra a la misma distancia de otros
dos puntos cualquiera o extremos de un segmento.
Más generalmente punto equidistante en matemática, es el punto que se encuentra a la
misma distancia de dos elementos geométricos, ya sean puntos, segmentos, rectas, etc.
Si es un segmento, el punto medio es el que lo divide en dos partes iguales. En ese
caso, el punto medio es único y equidista de los extremos del segmento. Por cumplir
esta última condición, pertenece a la mediatriz del segmento.
5. Ecuaciones y trazado de circunferencias.
La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un
punto fijo llamado centro (recordar que estamos hablando del Plano Cartesiano y es
respecto a éste que trabajamos).Determinación de una circunferencia
6. Obtener la ecuación de la circunferencia dada su gráfica
Para lograrlo debemos conocer dos elementos importantes:
El centro de la circunferencia (C), dado por sus coordenadas
El radio (r) de la misma circunferencia
Definido esto, tendremos dos posibilidades:
A) Circunferencia con centro (C) en el origen de las coordenadas; expresado como C (0, 0)
B) Y circunferencia con centro (C) fuera del origen de las coordenadas; expresado, por ejemplo, como C (3, 2).
Circunferencia con centro (C) en el origen de las coordenadas; expresado como C (0, 0)
Los datos que nos entrega son:
Centro: C (0, 0), el centro se ubica en el origen de las coordenadas x e y
radio: r = 3, lo indica el 3 en cada una de las coordenadas.
Recordar esto:
Cuando el centro (C) de la circunferencia sea (0, 0) se usará la ecuación para expresar dicha circunferencia
en forma analítica (Geometría analítica). Esta ecuación se conoce como ecuación reducida.
Para la gráfica de nuestro ejemplo, reemplazamos el valor de r en la fórmula y nos queda como la
ecuación reducida de la circunferencia graficada arriba.
7. La parábola
Es una sección cónica, resultado de la intersección de un cono recto con un plano que corta
a la base del mismo, oblicuo a su eje y paralelo a una generatriz g de la superficie cónica.
El foco y la directriz determinan cómo va a ser la apariencia de la parábola (en el sentido de
que “parecerá” más o menos abierta según sea la distancia entre F y la directriz). Todas las
parábolas son semejantes. Su excentricidad es 1 en todos los casos. Solamente varía la
escala.
8. Elipsis
Una elipse es una curva plana, simple y cerrada con dos ejes de simetría que
resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría
con ángulo mayor que el de la generatriz respecto del eje de revolución.
9. La hipérbola
Es aquella curva plana y simétrica respecto de dos planos perpendiculares entre
sí, mientras que la distancia en relación a dos puntos o focos resulta constante.
O sea, la hipérbola es una sección cónica, una curva abierta de dos ramas que
se podrá obtener al cortar un cono recto por un plano oblicuo al eje que impone
simetría; y con un ángulo más pequeño que el de la generatriz respecto del eje
de revolución.