SlideShare ist ein Scribd-Unternehmen logo
1 von 60
Downloaden Sie, um offline zu lesen
Be a Microbio
Peer Advisor!
• Work with a great team.
• Practice leadership skills.
• Use your unique skills to build community.
• Help us all stay connected.
• Show your enthusiasm for microbiology.
Applications due March 8th!
http://bit.ly/micropa_app
Or contact Heather Reed at
hreed@umass.edu
COVID Conversations:
A Q&A on the Microbiology
of COVID-19
Tuesday, March 16th
@ 5 pm
Hosted by Dr. Mandy Muller and
Dr. Wilmore Webley of the Microbiology Department
Register using barcode below or
at www.micro.umass.edu !
The SARS-CoV-2 genome is highly reduced…
and has no 16S ribosomal RNA genes
ul Qamar et al., 2020
RARE AND UNCULTURED MICROBES
Unit 08, 3.2.2021
Reading for today: Brown Ch. 13 & 14
Reading for next class: Brown Ch. 16, Walter & Ley (moodle)
Dr. Kristen DeAngelis
Office Hours by appointment
deangelis@microbio.umass.edu
Poll Q
Unit 8: Rare and Uncultured Microbes
LECTURE LEARNING GOALS
1. Describe the phyla containing rare bacteria:
Deinococcus/Thermus, Chlamydia &
Planctomycetes.
2. Describe the sequencing methods used to
understand uncultured microbes. Explain the
Eocyte hypothesis and how this model differs
from the three domain tree of life.
3. For the cultured microbes, describe major
characteristics for the 13 bacterial phyla, and
explain why some microbe remain
uncultivated.
6
Unit 8: Rare and Uncultured Microbes
LECTURE LEARNING GOALS
1. Describe the phyla containing rare bacteria:
Deinococcus/Thermus, Chlamydia &
Planctomycetes.
2. Describe the sequencing methods used to
understand uncultured microbes. Explain the
Eocyte hypothesis and how this model differs
from the three domain tree of life.
3. For the cultured microbes, describe major
characteristics for the 13 bacterial phyla, and
explain why some microbe remain
uncultivated.
7
Deinococcus/Thermus, Chlamydia &
Planctomycetes
Deinococci, Chlamydia &
Planctomycetes
• There are 13 main phyla, and we are
talking about three with few cultured
representatives
• The Chlamydia & Planctomycetes are
closely related
• Deinococcus-thermus is one of the
more deeply branching phyla.
Phylum Deinococcus-Thermus
Phylum Deinococcus-Thermus
• There are two well-known genera in this
phylum, Deinococcus and Thermus
– These two genera are phenotypically and
phylogenetically quite different
• Examples
– Deinococcus radiodurans
– Thermus aquaticus
Deinococcus radiodurans
Phylum Deinococcus-Thermus
Cell division by septal curtain
Deinococcus radiodurans
• D. radiodurans survives high exposure to
gamma-irradiation
– E. coli can withstand up to 500 Gy (Grays,
Joules per kilogram)
– For comparison, 10 Gy is lethal to humans
– maintains several copies of the each of its two
chromosomes, as the mechanism of DNA
stress resistance
• cells divide by forming a septal curtain
– It closes in like the shutter of a camera
– There are two perpendicular curtains formedin
cell division, producing tetrads
Thermus aquaticus
Phylum Deinococcus-Thermus
• Isolated from many
alkaline hot springs in
Yellowstone NP
• Pink colonies, especially
when grown in light due to
pigments
• Its DNA polymerase is
highly heat resistant and
error-correcting
– Taq polymerase is
commonly used in PCR
Phylum
Planctomycetes
Fig. 13.12 P. bekefii
Fig. 13.13 P. bekefii
Phylum Planctomycetes
• Diversity is unclear, because they are so few
cultivated
• Metabolism of almost all are aerobic,
heterotrophic, mesophilic oligotrophs
• Habitats are mostly aquatic and especially
eutrophic environments, though sequences
are detected in a wide range of
environments including wastewater and soils
Blastopirellula marina
Phylum Planctomycetes
• Common freshwater species
• Reproduce by budding
• Internal membrane-defined
compartmentalization
– Central pirellulosome contains
the riboplasm and nucleoid
(genome)
– Riboplasm contains ribosomes
and DNA
– Paryphoplasm contains RNA but
not ribosomes
Phylum Chlamydiae
Phylum Chlamydiae
• Low phylogenetic and phenotypic diversity
– Few cultured representatives
– Uncultured diversity seems to be much greater
• Metabolism
– Greatly reduced genomes
– Remain capable of
• information processing (transcription, translation,
replication)
• cell envelope
• central metabolism
• Habitat: Obligate intracellular parasites
transmitted via small, metabolically inert
particles
Chlamydia trachomatis
Phylum Chlamydiae
• Human pathogen that
causes the most common
sexually transmitted disease
(STD) in the U.S.
• Most infections are
asymptomatic, but
untreated infections can
cause sterility
• Repeated ocular infection
in children can cause
blindness
C. trachomatis elementary bodies attached to human sperm.
From Courtney S. Hossenzadeh in Microbiology Today.
Developmental cycle of Chlamydia
Developmental cycle of Chlamydia
• Biphasic life cycle
– Elemental bodies are infectious and metabolically inert
– Replication bodies are much larger, noninfectious and
osmotically fragile
• RBs live inside the cell, metabolize, grow and and
divide within the endocytic vessicles
• When resources in the cell become limited, most
RBs differentiate into EBs and are released from the
cell
• Not all infectious cycles end in host cell lysis; some
species are released by exocytosis
Reductive evolution
• Over evolutionary time,
parasites rely more on
the host for the things it
needs and may simplify
its genome
• This reduction allows the
organism to devote
more resources to
reproduction
Activity for Review of
Unit 08.1 Rare phyla
Ernst Haeckl’s Tree of Life
was wrong because it’s based
on morphology. Today,
scientists are using Machine
Learning to identify microbes
by morphology. What are
some distinct morphologies,
and which organisms are they
linked to?
24
Unit 8: Rare and Uncultured Microbes
LECTURE LEARNING GOALS
1. Describe the phyla containing rare bacteria:
Deinococcus/Thermus, Chlamydia &
Planctomycetes.
2. Describe the sequencing methods used to
understand uncultured microbes. Explain the
Eocyte hypothesis and how this model differs
from the three domain tree of life.
3. For the cultured microbes, describe major
characteristics for the 13 bacterial phyla, and
explain why some microbe remain
uncultivated.
25
Poll Q
Bacterial phyla
with
few to no
cultivated
representatives
Bacterial phyla with few to no
cultivated representatives
• The 13 “main” phyla were described by Carl Woese
in his classic 1987 paper
• Since then, sequencing revealed that microbial
diversity is much greater than this!
• Most cultivated, characterized bacteria fall into one
of five phyla
– Proteoabcteria, Firmicutes, Actinobacteria, Bacteroidetes
and Cyanobacteria
– Animal diversity is similar: most animal species belong to a
few animal phyla e.g. nematodes (round worms) and
arthropods (insects)
Molecular approaches aka ‘Omics
• Amplicon-based sequencing
– limited capacity for discovery
– Better for phylogenetics because traits can be aligned
• Shotgun sequencing
– Lots of room for discovery
– Half of sequences have no known homology
Assembling whole genomes from
metagenomic data using binning
• Short sequences are
“binned” based on
shared characteristics
– GC content
– taxonomy
– Coverage (sequence
depth)
– K-mer frequency
http://dx.doi.org/10.3389/fmicb.2015.01451
Detecting unculturable bacteria
• Genomics – sequencing whole genomes, DNA
• Transcriptomics – sequencing RNA from genomes
• Proteomics – sequencing proteins
• Metabolomics – identification of all metabolites,
usually by analytical chemistry
• Meta-
– Add the prefix “meta-” to any of the above, and it refers to
sequencing mixed communities instead of single species
– For example, Metagenomics – sequencing mixed
communities
– For example, Metatranscriptomics – sequencing RNA from
mixed communities
New Tree of Life
Slides thanks to Jonathan Eisen! @phylogenomics
A “new” tree of life
• Shotgun sequencing from a diversity of
environments, including filtration to include
very small organisms
• Based largely on metagenome-assembled
genomes (MAGs)
• Tree constructed based on aligned and
concatenated a set of 16 ribosomal protein
sequences from each organism
• Two surprising attributes
– Topology: Recovery of a two-domain tree of life
– Uncultured diversity is the majority (e.g. the CPR)
3 Domain ToLs
• Woesian tree (top)
– Based on structural RNA
sequences
• Alternative 3-domain ToL
(middle)
– Based on protein structures
• NOT a ToL (bottom)
– No tree places the root in
the Eukarya
– “Prokaryote” is NOT a
monophyletic group
– LUCA was not a eukaryote
34
34
Bacteria Archaea Eukaryotes
root
Bacteria
Archaea Eukaryotes
root
Bacteria
Archaea
root
Eocyte hypothesis
35
Eocyte hypothesis
• some analyses of the protein translation elongation
factors, paralogs used to root the 3-domains tree,
do not actually recover the 3 domains
• These show a tree where the eukaryotic proteins
branch as phylum of Archaea called the
Crenarchaeota (aka the eocytes)
• shapes of ribosomes in the Crenarchaeota and
eukaryotes are more similar to each other than to
either bacteria or the second major kingdom of
archaea, the Euryarchaeota.
The two-domain Eocyte ToL
vs the three-domain ToL
37
Eukarya Eukarya
Bacteria Bacteria
Archaea Archaea
• These are competing hypotheses for the origin of
the domain Eukarya.
– (A) The rooted 3-domains tree posits that the Archaea,
consisting of 2 kingdoms Euryarchaeota and
Crenarchaeota (eocytes), are monophyletic and more
closely related to the eukaryotes than to Bacteria.
– (B) An alternative hypothesis, the eocyte tree, posits that
the Archaea are paraphyletic, with the eocytes
(Crenarchaeota) most closely related to the eukaryotes.
– Paraphyletic = monophyletic except for one group
Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R., Embley, T. M. (2008). "The archaebacterial
origin of eukaryotes". Proc Natl Acad Sci U S A 105 (51): 20356-61.
The two-domain Eocyte ToL
vs the three-domain ToL
5 Eukaryotic
supergroups:
• Excavates
• Chromalveolates
• Plantae
• Rhizaria
• Unikonts
Bacteria
Eukaryotes
Euryarchaea
Crenarchaea
The Eocytes
• Domain Eukarya still has 5 supergroups: Excavates,
Chromalveolates, Plantae, Rhizaria, & Unikonts
– 92 bacterial phyla – we cover 13 in this class !
– 25 Archaeal phyla
• Crenarchaeota (aka the Eocytes)
• In this tree, Archaea are a polyphyletic group
– Euryarchaeota
– Other phyla including Thaumarchaeota, Nanoarchaeum,
Koryarchaeum
40
Activity for Review of
Unit 08.2 Eocyte hypothesis
• Based on what you know about how to make a
tree, and how to make and root a tree of life,
why do you think that there are so many
models (trees) of the phylogeny of life?
41
Unit 8: Rare and Uncultured Microbes
LECTURE LEARNING GOALS
1. Describe the phyla containing rare bacteria:
Deinococcus/Thermus, Chlamydia &
Planctomycetes.
2. Describe the sequencing methods used to
understand uncultured microbes. Explain the
Eocyte hypothesis and how this model differs
from the three domain tree of life.
3. For the cultured microbes, describe major
characteristics for the 13 bacterial phyla, and
explain why some microbe remain
uncultivated.
42
Poll Q
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Hug et al. 2016. Nature Microbiology.
New View of
the Domain Bacteria
Hug et al. 2016. Nature Microbiology.
New View of the Domain Bacteria
• And a new phylum: the Candidate Phyla Radiation
– “CPR”
– all members have small genomes and most have restricted
metabolic capacities.
– Most are likely symbionts, with greatly reduced genomes.
• A striking feature of this tree is the large number of
major lineages without isolated representatives (🔴).
– Uncultivated organisms clearly comprise the majority of
life’s current diversity
• Domain Bacteria includes more major lineages of
organisms than the other Domains.
– Domain bacteria is the most diverse domain
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Phyla never grown in the lab
Hug et al. 2016. Nature Microbiology.
Why can’t we cultivate these
organisms?
• Cryptic nutrient requirements
• Auxotrophy
• Very slow growth rates
• Require specific metabolic partners
• Require host to assist in reproduction
46
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Bacteroids & Spirochetes
Hug et al. 2016. Nature Microbiology.
Bacteroidetes and Spirochaetes
• Bacteroidetes
– Very diverse phylum
– mostly anaerobic fermenters
– Common in guts of animals
• Spirochaetes
– Found in sediments and some are pathogens
– Mostly heterotrophs with internal polar
flagella
– May be progenitors for eukaryotic flagella
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Green phototrophic bacteria
Hug et al. 2016. Nature Microbiology.
Green phototrophic bacteria
• Chloroflexi (green non-sulfurs)
– thermophilic phototrophs and heterotrophs
– Single type of photosystem, Cyclic photophosphorylation to get
energy (ATP) from light
– Most fix C via the hydroxypropionate pathway
• Chlorobi (green sulfurs)
– Fix C using H2 or sulfur as electron donors for reverse TCA cycle,
strict photolithoautotrophs
– Energy is generated via cyclic photophosphorylation
– Most can fix N
• Cyanobacteria
– All carry out oxygenic photosynthesis with two photosystems to
get energy and reducing power
– fix CO2 via the Calvin cycle
– Most can fix N
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Thermophilic bacteria
Hug et al. 2016. Nature Microbiology.
Thermophilic bacteria
• Aquifex
– thermophilic or extremely thermophilic
• Thermotoga
– thermophilic, anaerobic fermentative
organisms
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Phylum Proteobacteria
Hug et al. 2016. Nature Microbiology.
Proteobacteria
• Phylum so diverse that they are mostly are discussed
by classes
– Alphaproteobacteria
– Betaproteobacteria
– Gammaproteobacteria
– Deltaproteobacteria
– Epsilonproteobacteria
• In the new ToL, the phylum proteobacteria is not
monophyletic!
– Because of this the classes are identified individually.
– For example, the Deltaproteobacteria branch away from
the other Proteos.
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Gram-positive bacteria
Hug et al. 2016. Nature Microbiology.
Gram-positive bacteria
• Firmicutes
– aka low G+C Gram positive bacteria
– Almost all Heterotrophs, Anaerobes use
substrate-level phosphorylation rather
than anaerobic respiration
• Actinobacteria
– Aka high G+C Gram positive bacteria
– Filamentous, aerobic respirers
– Known antibiotic producers
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Deinococci, Chlamydiae & Planctomycetes
Hug et al. 2016. Nature Microbiology.
Deinococci, Chlamydiae &
Planctomycetes
• Deinococcus/Thermus
– Deinococcus, extremely DNA-damage stress
resistant mesophiles
– Thermus, thermophilic oligotrophs
• Chlamydiae
– Obligate intracellular pathogens or parasites
– Reduced genomes
• Planctomycetes
– Heterotrophic oligotrophs
– Compartmentalization via complex inner
membranes
Activity for Review of
Unit 08.3 Rare bacteria
The Candidate Phyla Radiation (CPR) contain
the most deeply-rooted organisms in the
bacteria. What kind of traits do you predict
that they will have?
59
Unit 8: Rare and Uncultured Microbes
LECTURE LEARNING GOALS
1. Describe the phyla containing rare bacteria:
Deinococcus/Thermus, Chlamydia &
Planctomycetes.
2. Describe the sequencing methods used to
understand uncultured microbes. Explain the
Eocyte hypothesis and how this model differs from
the three domain tree of life.
3. For the cultured microbes, describe major
characteristics for the 13 bacterial phyla, and
explain why some microbe remain uncultivated.
Next class is Unit 9: Diversity of the Human Microbiome
Reading for next class: Brown Ch. 16, Walter & Ley (moodle) 60

Weitere ähnliche Inhalte

Was ist angesagt?

Lecture 02 (2 04-2021) phylogeny
Lecture 02 (2 04-2021) phylogenyLecture 02 (2 04-2021) phylogeny
Lecture 02 (2 04-2021) phylogenyKristen DeAngelis
 
Lecture 06 (2 23-2021) microbial mats
Lecture 06 (2 23-2021) microbial matsLecture 06 (2 23-2021) microbial mats
Lecture 06 (2 23-2021) microbial matsKristen DeAngelis
 
Microbial Evolution
Microbial EvolutionMicrobial Evolution
Microbial EvolutionAmjad Afridi
 
Lecture 11 (3 11-2021) acellular life
Lecture 11 (3 11-2021) acellular lifeLecture 11 (3 11-2021) acellular life
Lecture 11 (3 11-2021) acellular lifeKristen DeAngelis
 
Evolutionary history of archaea and bacteria
Evolutionary history of archaea and bacteriaEvolutionary history of archaea and bacteria
Evolutionary history of archaea and bacteriameghan06
 
Microbial phylogeny
Microbial phylogenyMicrobial phylogeny
Microbial phylogenyaquib59
 
Bacterial Cell Differentiation
Bacterial Cell DifferentiationBacterial Cell Differentiation
Bacterial Cell DifferentiationN Poorin
 
1407 protists presentation
1407 protists presentation 1407 protists presentation
1407 protists presentation C Ebeling
 
Classification and bacteria
Classification and bacteriaClassification and bacteria
Classification and bacteriamikeu74
 
B.Sc. microbiology II Bacteriology Unit I Classification of Microorganisms
B.Sc. microbiology II Bacteriology Unit I Classification of MicroorganismsB.Sc. microbiology II Bacteriology Unit I Classification of Microorganisms
B.Sc. microbiology II Bacteriology Unit I Classification of MicroorganismsRai University
 
Classification of microorganisms
Classification of microorganismsClassification of microorganisms
Classification of microorganismsahsankamal21
 
Bacteria Notes 10/26
Bacteria Notes 10/26Bacteria Notes 10/26
Bacteria Notes 10/26Deb
 
Viruses And Bacteria
Viruses And BacteriaViruses And Bacteria
Viruses And BacteriaTia Hohler
 
Classification three domain system
Classification  three domain systemClassification  three domain system
Classification three domain systemDivya Chetnani
 

Was ist angesagt? (20)

Lecture 02 (2 04-2021) phylogeny
Lecture 02 (2 04-2021) phylogenyLecture 02 (2 04-2021) phylogeny
Lecture 02 (2 04-2021) phylogeny
 
Lecture 06 (2 23-2021) microbial mats
Lecture 06 (2 23-2021) microbial matsLecture 06 (2 23-2021) microbial mats
Lecture 06 (2 23-2021) microbial mats
 
Microbial Evolution
Microbial EvolutionMicrobial Evolution
Microbial Evolution
 
Lecture 11 (3 11-2021) acellular life
Lecture 11 (3 11-2021) acellular lifeLecture 11 (3 11-2021) acellular life
Lecture 11 (3 11-2021) acellular life
 
Evolutionary history of archaea and bacteria
Evolutionary history of archaea and bacteriaEvolutionary history of archaea and bacteria
Evolutionary history of archaea and bacteria
 
Evolutionary tendencies in Monera by sohail
Evolutionary tendencies in Monera by sohailEvolutionary tendencies in Monera by sohail
Evolutionary tendencies in Monera by sohail
 
Microbial phylogeny
Microbial phylogenyMicrobial phylogeny
Microbial phylogeny
 
Bacterial Cell Differentiation
Bacterial Cell DifferentiationBacterial Cell Differentiation
Bacterial Cell Differentiation
 
1407 protists presentation
1407 protists presentation 1407 protists presentation
1407 protists presentation
 
Micro Ch 10
Micro Ch 10Micro Ch 10
Micro Ch 10
 
Classification and bacteria
Classification and bacteriaClassification and bacteria
Classification and bacteria
 
B.Sc. microbiology II Bacteriology Unit I Classification of Microorganisms
B.Sc. microbiology II Bacteriology Unit I Classification of MicroorganismsB.Sc. microbiology II Bacteriology Unit I Classification of Microorganisms
B.Sc. microbiology II Bacteriology Unit I Classification of Microorganisms
 
Classification of microorganisms
Classification of microorganismsClassification of microorganisms
Classification of microorganisms
 
Bacterial taxonomy & classification
Bacterial taxonomy & classificationBacterial taxonomy & classification
Bacterial taxonomy & classification
 
Bacteria Notes 10/26
Bacteria Notes 10/26Bacteria Notes 10/26
Bacteria Notes 10/26
 
Chapter 27
Chapter 27Chapter 27
Chapter 27
 
Bacteria1
Bacteria1Bacteria1
Bacteria1
 
Viruses And Bacteria
Viruses And BacteriaViruses And Bacteria
Viruses And Bacteria
 
Classification three domain system
Classification  three domain systemClassification  three domain system
Classification three domain system
 
Cells
CellsCells
Cells
 

Ähnlich wie Lecture 08 (3 2-2021) rares

Cell structure of bacteria and normal flora
Cell structure of bacteria and normal floraCell structure of bacteria and normal flora
Cell structure of bacteria and normal floraSamer Bio
 
Model organism
Model organismModel organism
Model organismpavithra M
 
viruses algae fungi bacteria.pdf
viruses algae fungi bacteria.pdfviruses algae fungi bacteria.pdf
viruses algae fungi bacteria.pdfRafiaRayanabtbc
 
121 lecture section 1 01.09.11.ppt
121 lecture section 1 01.09.11.ppt121 lecture section 1 01.09.11.ppt
121 lecture section 1 01.09.11.pptsteffanysulit2
 
threedomainsoflife-bp211525-220328171534.pptx
threedomainsoflife-bp211525-220328171534.pptxthreedomainsoflife-bp211525-220328171534.pptx
threedomainsoflife-bp211525-220328171534.pptxSanjay236837
 
Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02Cleophas Rwemera
 
Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02Cleophas Rwemera
 
Introduction to microbiology 081210 fv
Introduction to microbiology 081210 fvIntroduction to microbiology 081210 fv
Introduction to microbiology 081210 fvMuhammedibrahim48
 
Introduction to Microbiology lecture 1.ppt
Introduction to Microbiology lecture 1.pptIntroduction to Microbiology lecture 1.ppt
Introduction to Microbiology lecture 1.pptHassamMughal4
 
Introduction to Microbiology 081210 FV.ppt
Introduction to Microbiology 081210 FV.pptIntroduction to Microbiology 081210 FV.ppt
Introduction to Microbiology 081210 FV.pptharpreet363708
 
Introduction to Microbiology 081210 FV.pptx
Introduction to Microbiology 081210 FV.pptxIntroduction to Microbiology 081210 FV.pptx
Introduction to Microbiology 081210 FV.pptxNishitaChauhan14
 
Introduction to Microorganism
Introduction to MicroorganismIntroduction to Microorganism
Introduction to MicroorganismNishitaChauhan14
 
Introduction to Microbiology 081210 FV.ppt
Introduction to Microbiology 081210 FV.pptIntroduction to Microbiology 081210 FV.ppt
Introduction to Microbiology 081210 FV.pptAyesha126266
 
Introduction to Microbiology, History, m
Introduction to Microbiology, History, mIntroduction to Microbiology, History, m
Introduction to Microbiology, History, mRajakumari Rajendran
 
Introduction_to_Microbiology_081210_FV[1].ppt
Introduction_to_Microbiology_081210_FV[1].pptIntroduction_to_Microbiology_081210_FV[1].ppt
Introduction_to_Microbiology_081210_FV[1].pptKingslyNdanga1
 
Microbiology Unit 2-3: Bacteria
Microbiology Unit 2-3: BacteriaMicrobiology Unit 2-3: Bacteria
Microbiology Unit 2-3: Bacteriavsdvoet
 
Bacteria Introduction
Bacteria IntroductionBacteria Introduction
Bacteria IntroductionRinaldo John
 

Ähnlich wie Lecture 08 (3 2-2021) rares (20)

Classification of microrganisms
Classification of microrganismsClassification of microrganisms
Classification of microrganisms
 
Presentation2
Presentation2Presentation2
Presentation2
 
Cell structure of bacteria and normal flora
Cell structure of bacteria and normal floraCell structure of bacteria and normal flora
Cell structure of bacteria and normal flora
 
Model organism
Model organismModel organism
Model organism
 
viruses algae fungi bacteria.pdf
viruses algae fungi bacteria.pdfviruses algae fungi bacteria.pdf
viruses algae fungi bacteria.pdf
 
121 lecture section 1 01.09.11.ppt
121 lecture section 1 01.09.11.ppt121 lecture section 1 01.09.11.ppt
121 lecture section 1 01.09.11.ppt
 
Evolution
Evolution Evolution
Evolution
 
threedomainsoflife-bp211525-220328171534.pptx
threedomainsoflife-bp211525-220328171534.pptxthreedomainsoflife-bp211525-220328171534.pptx
threedomainsoflife-bp211525-220328171534.pptx
 
Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02
 
Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02
 
Introduction to microbiology 081210 fv
Introduction to microbiology 081210 fvIntroduction to microbiology 081210 fv
Introduction to microbiology 081210 fv
 
Introduction to Microbiology lecture 1.ppt
Introduction to Microbiology lecture 1.pptIntroduction to Microbiology lecture 1.ppt
Introduction to Microbiology lecture 1.ppt
 
Introduction to Microbiology 081210 FV.ppt
Introduction to Microbiology 081210 FV.pptIntroduction to Microbiology 081210 FV.ppt
Introduction to Microbiology 081210 FV.ppt
 
Introduction to Microbiology 081210 FV.pptx
Introduction to Microbiology 081210 FV.pptxIntroduction to Microbiology 081210 FV.pptx
Introduction to Microbiology 081210 FV.pptx
 
Introduction to Microorganism
Introduction to MicroorganismIntroduction to Microorganism
Introduction to Microorganism
 
Introduction to Microbiology 081210 FV.ppt
Introduction to Microbiology 081210 FV.pptIntroduction to Microbiology 081210 FV.ppt
Introduction to Microbiology 081210 FV.ppt
 
Introduction to Microbiology, History, m
Introduction to Microbiology, History, mIntroduction to Microbiology, History, m
Introduction to Microbiology, History, m
 
Introduction_to_Microbiology_081210_FV[1].ppt
Introduction_to_Microbiology_081210_FV[1].pptIntroduction_to_Microbiology_081210_FV[1].ppt
Introduction_to_Microbiology_081210_FV[1].ppt
 
Microbiology Unit 2-3: Bacteria
Microbiology Unit 2-3: BacteriaMicrobiology Unit 2-3: Bacteria
Microbiology Unit 2-3: Bacteria
 
Bacteria Introduction
Bacteria IntroductionBacteria Introduction
Bacteria Introduction
 

Mehr von Kristen DeAngelis

03_Microbio590B_sequencing_2022.pdf
03_Microbio590B_sequencing_2022.pdf03_Microbio590B_sequencing_2022.pdf
03_Microbio590B_sequencing_2022.pdfKristen DeAngelis
 
02_Microbio590B_genomics_2022.pdf
02_Microbio590B_genomics_2022.pdf02_Microbio590B_genomics_2022.pdf
02_Microbio590B_genomics_2022.pdfKristen DeAngelis
 
01_Microbio590B_intro_2022.pdf
01_Microbio590B_intro_2022.pdf01_Microbio590B_intro_2022.pdf
01_Microbio590B_intro_2022.pdfKristen DeAngelis
 
MorrillMicrobeMadness_HowtoPlay_Bracket.pdf
MorrillMicrobeMadness_HowtoPlay_Bracket.pdfMorrillMicrobeMadness_HowtoPlay_Bracket.pdf
MorrillMicrobeMadness_HowtoPlay_Bracket.pdfKristen DeAngelis
 
MorrillMicrobeMadness_2022.pdf
MorrillMicrobeMadness_2022.pdfMorrillMicrobeMadness_2022.pdf
MorrillMicrobeMadness_2022.pdfKristen DeAngelis
 
Evidence based stem teaching_13feb2020
Evidence based stem teaching_13feb2020Evidence based stem teaching_13feb2020
Evidence based stem teaching_13feb2020Kristen DeAngelis
 
Evidence-based STEM teaching lecture
Evidence-based STEM teaching lectureEvidence-based STEM teaching lecture
Evidence-based STEM teaching lectureKristen DeAngelis
 
Evidence-based STEM Undergraduate Teaching
Evidence-based STEM Undergraduate TeachingEvidence-based STEM Undergraduate Teaching
Evidence-based STEM Undergraduate TeachingKristen DeAngelis
 

Mehr von Kristen DeAngelis (16)

10_Hypothesis_2022.pdf
10_Hypothesis_2022.pdf10_Hypothesis_2022.pdf
10_Hypothesis_2022.pdf
 
09_MeetTheIsolates_2022.pdf
09_MeetTheIsolates_2022.pdf09_MeetTheIsolates_2022.pdf
09_MeetTheIsolates_2022.pdf
 
08_Annotation_2022.pdf
08_Annotation_2022.pdf08_Annotation_2022.pdf
08_Annotation_2022.pdf
 
07_Phylogeny_2022.pdf
07_Phylogeny_2022.pdf07_Phylogeny_2022.pdf
07_Phylogeny_2022.pdf
 
06_Alignment_2022.pdf
06_Alignment_2022.pdf06_Alignment_2022.pdf
06_Alignment_2022.pdf
 
05_Microbio590B_QC_2022.pdf
05_Microbio590B_QC_2022.pdf05_Microbio590B_QC_2022.pdf
05_Microbio590B_QC_2022.pdf
 
04_Assembly_2022.pdf
04_Assembly_2022.pdf04_Assembly_2022.pdf
04_Assembly_2022.pdf
 
03_Microbio590B_sequencing_2022.pdf
03_Microbio590B_sequencing_2022.pdf03_Microbio590B_sequencing_2022.pdf
03_Microbio590B_sequencing_2022.pdf
 
02_Microbio590B_genomics_2022.pdf
02_Microbio590B_genomics_2022.pdf02_Microbio590B_genomics_2022.pdf
02_Microbio590B_genomics_2022.pdf
 
01_Microbio590B_intro_2022.pdf
01_Microbio590B_intro_2022.pdf01_Microbio590B_intro_2022.pdf
01_Microbio590B_intro_2022.pdf
 
MorrillMicrobeMadness_HowtoPlay_Bracket.pdf
MorrillMicrobeMadness_HowtoPlay_Bracket.pdfMorrillMicrobeMadness_HowtoPlay_Bracket.pdf
MorrillMicrobeMadness_HowtoPlay_Bracket.pdf
 
MorrillMicrobeMadness_2022.pdf
MorrillMicrobeMadness_2022.pdfMorrillMicrobeMadness_2022.pdf
MorrillMicrobeMadness_2022.pdf
 
Microbial mittens
Microbial mittensMicrobial mittens
Microbial mittens
 
Evidence based stem teaching_13feb2020
Evidence based stem teaching_13feb2020Evidence based stem teaching_13feb2020
Evidence based stem teaching_13feb2020
 
Evidence-based STEM teaching lecture
Evidence-based STEM teaching lectureEvidence-based STEM teaching lecture
Evidence-based STEM teaching lecture
 
Evidence-based STEM Undergraduate Teaching
Evidence-based STEM Undergraduate TeachingEvidence-based STEM Undergraduate Teaching
Evidence-based STEM Undergraduate Teaching
 

Kürzlich hochgeladen

VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 

Kürzlich hochgeladen (20)

VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 

Lecture 08 (3 2-2021) rares

  • 1. Be a Microbio Peer Advisor! • Work with a great team. • Practice leadership skills. • Use your unique skills to build community. • Help us all stay connected. • Show your enthusiasm for microbiology. Applications due March 8th! http://bit.ly/micropa_app Or contact Heather Reed at hreed@umass.edu
  • 2. COVID Conversations: A Q&A on the Microbiology of COVID-19 Tuesday, March 16th @ 5 pm Hosted by Dr. Mandy Muller and Dr. Wilmore Webley of the Microbiology Department Register using barcode below or at www.micro.umass.edu !
  • 3.
  • 4. The SARS-CoV-2 genome is highly reduced… and has no 16S ribosomal RNA genes ul Qamar et al., 2020
  • 5. RARE AND UNCULTURED MICROBES Unit 08, 3.2.2021 Reading for today: Brown Ch. 13 & 14 Reading for next class: Brown Ch. 16, Walter & Ley (moodle) Dr. Kristen DeAngelis Office Hours by appointment deangelis@microbio.umass.edu Poll Q
  • 6. Unit 8: Rare and Uncultured Microbes LECTURE LEARNING GOALS 1. Describe the phyla containing rare bacteria: Deinococcus/Thermus, Chlamydia & Planctomycetes. 2. Describe the sequencing methods used to understand uncultured microbes. Explain the Eocyte hypothesis and how this model differs from the three domain tree of life. 3. For the cultured microbes, describe major characteristics for the 13 bacterial phyla, and explain why some microbe remain uncultivated. 6
  • 7. Unit 8: Rare and Uncultured Microbes LECTURE LEARNING GOALS 1. Describe the phyla containing rare bacteria: Deinococcus/Thermus, Chlamydia & Planctomycetes. 2. Describe the sequencing methods used to understand uncultured microbes. Explain the Eocyte hypothesis and how this model differs from the three domain tree of life. 3. For the cultured microbes, describe major characteristics for the 13 bacterial phyla, and explain why some microbe remain uncultivated. 7
  • 9. Deinococci, Chlamydia & Planctomycetes • There are 13 main phyla, and we are talking about three with few cultured representatives • The Chlamydia & Planctomycetes are closely related • Deinococcus-thermus is one of the more deeply branching phyla.
  • 11. Phylum Deinococcus-Thermus • There are two well-known genera in this phylum, Deinococcus and Thermus – These two genera are phenotypically and phylogenetically quite different • Examples – Deinococcus radiodurans – Thermus aquaticus
  • 13. Deinococcus radiodurans • D. radiodurans survives high exposure to gamma-irradiation – E. coli can withstand up to 500 Gy (Grays, Joules per kilogram) – For comparison, 10 Gy is lethal to humans – maintains several copies of the each of its two chromosomes, as the mechanism of DNA stress resistance • cells divide by forming a septal curtain – It closes in like the shutter of a camera – There are two perpendicular curtains formedin cell division, producing tetrads
  • 14. Thermus aquaticus Phylum Deinococcus-Thermus • Isolated from many alkaline hot springs in Yellowstone NP • Pink colonies, especially when grown in light due to pigments • Its DNA polymerase is highly heat resistant and error-correcting – Taq polymerase is commonly used in PCR
  • 15. Phylum Planctomycetes Fig. 13.12 P. bekefii Fig. 13.13 P. bekefii
  • 16. Phylum Planctomycetes • Diversity is unclear, because they are so few cultivated • Metabolism of almost all are aerobic, heterotrophic, mesophilic oligotrophs • Habitats are mostly aquatic and especially eutrophic environments, though sequences are detected in a wide range of environments including wastewater and soils
  • 17. Blastopirellula marina Phylum Planctomycetes • Common freshwater species • Reproduce by budding • Internal membrane-defined compartmentalization – Central pirellulosome contains the riboplasm and nucleoid (genome) – Riboplasm contains ribosomes and DNA – Paryphoplasm contains RNA but not ribosomes
  • 19. Phylum Chlamydiae • Low phylogenetic and phenotypic diversity – Few cultured representatives – Uncultured diversity seems to be much greater • Metabolism – Greatly reduced genomes – Remain capable of • information processing (transcription, translation, replication) • cell envelope • central metabolism • Habitat: Obligate intracellular parasites transmitted via small, metabolically inert particles
  • 20. Chlamydia trachomatis Phylum Chlamydiae • Human pathogen that causes the most common sexually transmitted disease (STD) in the U.S. • Most infections are asymptomatic, but untreated infections can cause sterility • Repeated ocular infection in children can cause blindness C. trachomatis elementary bodies attached to human sperm. From Courtney S. Hossenzadeh in Microbiology Today.
  • 22. Developmental cycle of Chlamydia • Biphasic life cycle – Elemental bodies are infectious and metabolically inert – Replication bodies are much larger, noninfectious and osmotically fragile • RBs live inside the cell, metabolize, grow and and divide within the endocytic vessicles • When resources in the cell become limited, most RBs differentiate into EBs and are released from the cell • Not all infectious cycles end in host cell lysis; some species are released by exocytosis
  • 23. Reductive evolution • Over evolutionary time, parasites rely more on the host for the things it needs and may simplify its genome • This reduction allows the organism to devote more resources to reproduction
  • 24. Activity for Review of Unit 08.1 Rare phyla Ernst Haeckl’s Tree of Life was wrong because it’s based on morphology. Today, scientists are using Machine Learning to identify microbes by morphology. What are some distinct morphologies, and which organisms are they linked to? 24
  • 25. Unit 8: Rare and Uncultured Microbes LECTURE LEARNING GOALS 1. Describe the phyla containing rare bacteria: Deinococcus/Thermus, Chlamydia & Planctomycetes. 2. Describe the sequencing methods used to understand uncultured microbes. Explain the Eocyte hypothesis and how this model differs from the three domain tree of life. 3. For the cultured microbes, describe major characteristics for the 13 bacterial phyla, and explain why some microbe remain uncultivated. 25 Poll Q
  • 26. Bacterial phyla with few to no cultivated representatives
  • 27. Bacterial phyla with few to no cultivated representatives • The 13 “main” phyla were described by Carl Woese in his classic 1987 paper • Since then, sequencing revealed that microbial diversity is much greater than this! • Most cultivated, characterized bacteria fall into one of five phyla – Proteoabcteria, Firmicutes, Actinobacteria, Bacteroidetes and Cyanobacteria – Animal diversity is similar: most animal species belong to a few animal phyla e.g. nematodes (round worms) and arthropods (insects)
  • 28. Molecular approaches aka ‘Omics • Amplicon-based sequencing – limited capacity for discovery – Better for phylogenetics because traits can be aligned • Shotgun sequencing – Lots of room for discovery – Half of sequences have no known homology
  • 29. Assembling whole genomes from metagenomic data using binning • Short sequences are “binned” based on shared characteristics – GC content – taxonomy – Coverage (sequence depth) – K-mer frequency http://dx.doi.org/10.3389/fmicb.2015.01451
  • 30. Detecting unculturable bacteria • Genomics – sequencing whole genomes, DNA • Transcriptomics – sequencing RNA from genomes • Proteomics – sequencing proteins • Metabolomics – identification of all metabolites, usually by analytical chemistry • Meta- – Add the prefix “meta-” to any of the above, and it refers to sequencing mixed communities instead of single species – For example, Metagenomics – sequencing mixed communities – For example, Metatranscriptomics – sequencing RNA from mixed communities
  • 31. New Tree of Life
  • 32. Slides thanks to Jonathan Eisen! @phylogenomics
  • 33. A “new” tree of life • Shotgun sequencing from a diversity of environments, including filtration to include very small organisms • Based largely on metagenome-assembled genomes (MAGs) • Tree constructed based on aligned and concatenated a set of 16 ribosomal protein sequences from each organism • Two surprising attributes – Topology: Recovery of a two-domain tree of life – Uncultured diversity is the majority (e.g. the CPR)
  • 34. 3 Domain ToLs • Woesian tree (top) – Based on structural RNA sequences • Alternative 3-domain ToL (middle) – Based on protein structures • NOT a ToL (bottom) – No tree places the root in the Eukarya – “Prokaryote” is NOT a monophyletic group – LUCA was not a eukaryote 34 34 Bacteria Archaea Eukaryotes root Bacteria Archaea Eukaryotes root Bacteria Archaea root
  • 36. Eocyte hypothesis • some analyses of the protein translation elongation factors, paralogs used to root the 3-domains tree, do not actually recover the 3 domains • These show a tree where the eukaryotic proteins branch as phylum of Archaea called the Crenarchaeota (aka the eocytes) • shapes of ribosomes in the Crenarchaeota and eukaryotes are more similar to each other than to either bacteria or the second major kingdom of archaea, the Euryarchaeota.
  • 37. The two-domain Eocyte ToL vs the three-domain ToL 37 Eukarya Eukarya Bacteria Bacteria Archaea Archaea
  • 38. • These are competing hypotheses for the origin of the domain Eukarya. – (A) The rooted 3-domains tree posits that the Archaea, consisting of 2 kingdoms Euryarchaeota and Crenarchaeota (eocytes), are monophyletic and more closely related to the eukaryotes than to Bacteria. – (B) An alternative hypothesis, the eocyte tree, posits that the Archaea are paraphyletic, with the eocytes (Crenarchaeota) most closely related to the eukaryotes. – Paraphyletic = monophyletic except for one group Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R., Embley, T. M. (2008). "The archaebacterial origin of eukaryotes". Proc Natl Acad Sci U S A 105 (51): 20356-61. The two-domain Eocyte ToL vs the three-domain ToL
  • 39. 5 Eukaryotic supergroups: • Excavates • Chromalveolates • Plantae • Rhizaria • Unikonts Bacteria Eukaryotes Euryarchaea Crenarchaea
  • 40. The Eocytes • Domain Eukarya still has 5 supergroups: Excavates, Chromalveolates, Plantae, Rhizaria, & Unikonts – 92 bacterial phyla – we cover 13 in this class ! – 25 Archaeal phyla • Crenarchaeota (aka the Eocytes) • In this tree, Archaea are a polyphyletic group – Euryarchaeota – Other phyla including Thaumarchaeota, Nanoarchaeum, Koryarchaeum 40
  • 41. Activity for Review of Unit 08.2 Eocyte hypothesis • Based on what you know about how to make a tree, and how to make and root a tree of life, why do you think that there are so many models (trees) of the phylogeny of life? 41
  • 42. Unit 8: Rare and Uncultured Microbes LECTURE LEARNING GOALS 1. Describe the phyla containing rare bacteria: Deinococcus/Thermus, Chlamydia & Planctomycetes. 2. Describe the sequencing methods used to understand uncultured microbes. Explain the Eocyte hypothesis and how this model differs from the three domain tree of life. 3. For the cultured microbes, describe major characteristics for the 13 bacterial phyla, and explain why some microbe remain uncultivated. 42 Poll Q
  • 43. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Hug et al. 2016. Nature Microbiology. New View of the Domain Bacteria
  • 44. Hug et al. 2016. Nature Microbiology. New View of the Domain Bacteria • And a new phylum: the Candidate Phyla Radiation – “CPR” – all members have small genomes and most have restricted metabolic capacities. – Most are likely symbionts, with greatly reduced genomes. • A striking feature of this tree is the large number of major lineages without isolated representatives (🔴). – Uncultivated organisms clearly comprise the majority of life’s current diversity • Domain Bacteria includes more major lineages of organisms than the other Domains. – Domain bacteria is the most diverse domain
  • 45. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Phyla never grown in the lab Hug et al. 2016. Nature Microbiology.
  • 46. Why can’t we cultivate these organisms? • Cryptic nutrient requirements • Auxotrophy • Very slow growth rates • Require specific metabolic partners • Require host to assist in reproduction 46
  • 47. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Bacteroids & Spirochetes Hug et al. 2016. Nature Microbiology.
  • 48. Bacteroidetes and Spirochaetes • Bacteroidetes – Very diverse phylum – mostly anaerobic fermenters – Common in guts of animals • Spirochaetes – Found in sediments and some are pathogens – Mostly heterotrophs with internal polar flagella – May be progenitors for eukaryotic flagella
  • 49. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Green phototrophic bacteria Hug et al. 2016. Nature Microbiology.
  • 50. Green phototrophic bacteria • Chloroflexi (green non-sulfurs) – thermophilic phototrophs and heterotrophs – Single type of photosystem, Cyclic photophosphorylation to get energy (ATP) from light – Most fix C via the hydroxypropionate pathway • Chlorobi (green sulfurs) – Fix C using H2 or sulfur as electron donors for reverse TCA cycle, strict photolithoautotrophs – Energy is generated via cyclic photophosphorylation – Most can fix N • Cyanobacteria – All carry out oxygenic photosynthesis with two photosystems to get energy and reducing power – fix CO2 via the Calvin cycle – Most can fix N
  • 51. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Thermophilic bacteria Hug et al. 2016. Nature Microbiology.
  • 52. Thermophilic bacteria • Aquifex – thermophilic or extremely thermophilic • Thermotoga – thermophilic, anaerobic fermentative organisms
  • 53. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Phylum Proteobacteria Hug et al. 2016. Nature Microbiology.
  • 54. Proteobacteria • Phylum so diverse that they are mostly are discussed by classes – Alphaproteobacteria – Betaproteobacteria – Gammaproteobacteria – Deltaproteobacteria – Epsilonproteobacteria • In the new ToL, the phylum proteobacteria is not monophyletic! – Because of this the classes are identified individually. – For example, the Deltaproteobacteria branch away from the other Proteos.
  • 55. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Gram-positive bacteria Hug et al. 2016. Nature Microbiology.
  • 56. Gram-positive bacteria • Firmicutes – aka low G+C Gram positive bacteria – Almost all Heterotrophs, Anaerobes use substrate-level phosphorylation rather than anaerobic respiration • Actinobacteria – Aka high G+C Gram positive bacteria – Filamentous, aerobic respirers – Known antibiotic producers
  • 57. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Deinococci, Chlamydiae & Planctomycetes Hug et al. 2016. Nature Microbiology.
  • 58. Deinococci, Chlamydiae & Planctomycetes • Deinococcus/Thermus – Deinococcus, extremely DNA-damage stress resistant mesophiles – Thermus, thermophilic oligotrophs • Chlamydiae – Obligate intracellular pathogens or parasites – Reduced genomes • Planctomycetes – Heterotrophic oligotrophs – Compartmentalization via complex inner membranes
  • 59. Activity for Review of Unit 08.3 Rare bacteria The Candidate Phyla Radiation (CPR) contain the most deeply-rooted organisms in the bacteria. What kind of traits do you predict that they will have? 59
  • 60. Unit 8: Rare and Uncultured Microbes LECTURE LEARNING GOALS 1. Describe the phyla containing rare bacteria: Deinococcus/Thermus, Chlamydia & Planctomycetes. 2. Describe the sequencing methods used to understand uncultured microbes. Explain the Eocyte hypothesis and how this model differs from the three domain tree of life. 3. For the cultured microbes, describe major characteristics for the 13 bacterial phyla, and explain why some microbe remain uncultivated. Next class is Unit 9: Diversity of the Human Microbiome Reading for next class: Brown Ch. 16, Walter & Ley (moodle) 60