3. Leading person of mathematicians.
1858 – 1932
Giuseppe Peano
1831 –
1916
Richard Dedekind
1953
Andrew Wiles
1499 –
1545
Chistoph Rudolff
288 a.C –
212 a.C
Arquímides de Siracusa
1510 –
1558
Robert Recorde
200 – 284
Diofanto de Alejandría
1596 – 1650
Rene Descartes
4. Types of Numbers
Numbers
Naturals use to count and order the elements, 0 is the first element and the
suspensive points mean that the natural numbers have infinite elements.
Identify with this sign N
The additions are ever closed
Principle inductions
Integers is an extension of natural Numbers.
Identify with this sing z
z- and z+
It is closed in add, subtractions and multiplications
Rational Numbers Q could be represented in form of fractions or decimals.
Exact. Only has one number after the decimal point
Pure periodic. The amount after the decimal points is repeated in one or more
numbers.
Periodic mixed. One part is not exact, and one part is periodic or is repeated.
Densidad de números racionales: existencia entre dos números racionales, de
infinitos números racionales.
Irrational Numbers the set of irrational numbers could be represent with
letter I
Nonrational Numbers
Irrational Number cannot be expressed as a quotient of integers.
Can be express in decimal form but the irrational Numbers neither terminate nor repeat.
Real Numbers es la unión del conjunto de números racionales Q con el conjunto de números
irracionales I, se representa con la letra R
5. Exponents: Potentiation of reals Numbers
Is the operation that allow express in simplified
form the multiplications of various equals factors.
Properties or
rules
Product rule 𝑏𝑚
× 𝑏𝑛
= 𝑏𝑛+𝑚
add exponent and keep the base
Quotient rule
𝑏𝑚
𝑏𝑛 = 𝑏𝑚−𝑛
subtract the exponent and keep the base
Power rule 𝑏𝑚 𝑛
= 𝑏𝑚⋅𝑛
multiply the exponent keep the base
Power of a product rule 𝑎𝑥𝑏 𝑛
= 𝑎𝑛
× 𝑏𝑛
Power of a quotient rule
𝑎
𝑏
𝑛
=
𝑎𝑛
𝑏𝑛
Exponentiation with negative exponent
𝑎
𝑏
−𝑛
=
𝑏
𝑎
𝑛
The elements
Base and exponent = the answer is potentiation.
Zero exponent all Number at 0 exponent is equal 1.
6. Radicals of reals Numbers
Nth roots of a real
Numbers is another
real Numbers, if and
if the nth roots is
the same power.
𝑛
𝑎 = 𝑏 ↔ 𝑏𝑛
= 𝑎
Situation
Index even and sub radical is even real number
Index even and sub radical is negative not have answer
Index odd and the sub radical is real Number positive
Index odd and the sub radical is real Number negative
Properties or rules
Root of a product
𝑛
𝑎 × 𝑏 = 𝑛
𝑎 ×
𝑛
𝑏
Root of a quotient
𝑛 𝑎
𝑏
=
𝑛
𝑎
𝑛
𝑏
Root of a root
𝑛 𝑚
𝑎 = 𝑛𝑥𝑚
𝑎
Root of a power
𝑛
𝑎𝑚 = 𝑎
𝑚
𝑛
Nth root of a positive Number to nth power
𝑛
𝑎𝑛 = 𝑎
7. Radicals of reals Numbers
Simplifying expression
with radicals
Discompose in common factors
Is simplified when the exponent in the sub radical are
minor that the index.
The GCD of the exponents of the factors of the sub
radical quantity and of the index the root must be equal to
1
Applied the root properties of a product
Some expression must simplify if the exponent in sub
radical is higher or equal than the index.
8. Radicals of reals Numbers
Arithmetic operation
To add and subtract radicals simplify each radical and
reduce like radicals.
Multiplies radical with like index
Multiplies the coefficient among if, and the amount of sub
radicals, after simplify the result.
Multiplies radicals with different index
Reduce the radicals to radicals with same index.
To calculate the common index use the following step
Calculate the LCM among
index of the radicals
Divide the common index of
each root and rise the sub
radical amount of each result.
Division of radicals
Divide the coefficient among if and the sub radicals amount write inside of
the common radical, simplify in the minor grade
If the radicals are different convert to common radicals
Rationalization
Rationalization with monomials denominators
Amplify the fraction in such
a way that the radicals Will
have exactly root.
Rationalization with binomials denominators
Amplify the fraction by the
conjugate of the
denominator and then
simplify the expression.
9. Real Intervals
Real Intervals is a subsets of the reals Numbers
that contain all the Numbers understood
among two points in a numerical line.
The elements in intervals are infinite
Classification
Open : set of Numbers understood among
point a and b not include a and b
Close : set of Numbers understood among
points a and b include a and b
Semi open: set of Numbers formed by one of
extreme and all the Numbers among a and b.
Semi closed: set of Numbers formed by one of
the extreme and all the Numbers among a and b
Infinite: set of Numbers formed by all the reals
Numbers higher or equals, lower or equal. Higher
or lower that one of extreme.
10. Scientific Notation
Both very large and very small Numbers
frequently occurs in many fields of science.
A positive Number is written in scientific notation if it is written
as the product of a Number a, where 1 ≤ 𝑎 < 10, 𝑎𝑛𝑑 an integer
power r of 10: 𝑎 × 10𝑟
To write a Number in scientific notation
Move the decimal point in the original Number to the left
or right so that the new Number has a value between 1
and 10
Count the Number of the decimal places the decimal
point. If the original Number is greater than 10 is
positive but is less tan 1 is negative.
Multiply the new Number in step 1 by 10 raised to an
exponent equal to the count found in step two
Types of amounts
Whole amount: put the point at the right of the amount of greater
value and multiplies by 10
Decimal amount: displace the decimal point until it is located at the
right of the positional greater amount
Decimal amount with whole part zero: displace the point until it is
located at the left of the first decimal place different of zero
11. ◦ Par ordenado
◦ Punto de par ordenada
◦ Vector del par ordenado
◦ En lugar de x se le llama componente real de z
◦ En lugar de y parte imaginaria del complejo z
◦ Suma de complejos 𝑎, 𝑏 + 𝑐, 𝑑 = 𝑎 + 𝑐, 𝑏 + 𝑑
◦ Sumo las partes reales y aparte las partes imaginarias
◦ Producto de complejos 𝑎, 𝑏 ⋅ 𝑐, 𝑑 = 𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐
◦ Los complejos de la forma 𝑎, 0 = 𝑎
◦ El complejo 0,1 = ⅈ defininción
◦ 𝑦 𝑒𝑠 𝑒𝑙 𝑟𝑒𝑎𝑙 𝑎, ⅈ 𝑒𝑠 𝑙𝑎 𝑑𝑒𝑓ⅈ𝑛ⅈ𝑐ⅈó𝑛 = 𝑦, 0 0,1 = 0 − 0, 𝑦 + 0 = 0, 𝑦
◦ 𝑎, 𝑏 = 𝑎,0 0, 𝑏 = 𝑎 + 𝑏ⅈ
◦ ⅈ2
= ⅈ ⋅ ⅈ = 0,1 0,1 = 0 − 1,0 + 0 = −1,0 = ⅈ2
= −1
-4
-3
-2
-1
0
1
2
3
4
-4 -3 -2 -1 0 1 2 3 4
Y-Values
12. Complex Numbers
The equation 𝑥2
+ 𝑎 = 0 where a is a
real positive number, no have solution in
the set of real numbers. But the square of
a real number is no negative and when
they are adding with other positive
number their result it is no zero
Imaginary Numbers are identified with letter i and is
defined as ⅈ = −1 where ⅈ2
= −1
A complex Number is a Number can be written in
the form 𝑎 + 𝑏ⅈ
Where a and b are real Numbers. A complex
Number that can be written in the form 0 + 𝑏ⅈ
𝑏 ≠ 0 is also called a pure imaginary number.
Potentiation of complex Numbers
The potentiation of unit imaginary is obtained to applied the
properties of the potentiation and the definition of ⅈ 𝑒 ⅈ2
.
ⅈ1
= ⅈ
ⅈ2
= −1
ⅈ3
= ⅈ × ⅈ2
= ⅈ × −1 = −ⅈ
ⅈ4
= ⅈ2
× ⅈ2
= −1 𝑥 −1 = 1
The exponent is expressed like 𝑎4𝑛+𝑟
where n is a integer
number and r is a integer positive number minor that 4
Then applied the properties if potentiation.
Set of complex Numbers
𝐶 = 𝑎 + 𝑏ⅈ: 𝑎, 𝑏 ∈ 𝑅, ⅈ = −1
A is real part and bi is imaginary part
𝑅 ⊂ 𝐶
13. Arithmetical operation
Addition and subtraction
add and subtract the real parts and the
imaginary parts 𝑧 ± 𝑤 = 𝑎 ± 𝑐 + 𝑏 ± 𝑑 ⅈ
Multiplication
Apply the distributive property
Solve the power of i
Reduce like terms
𝑧𝑥𝑤 = 𝑎𝑐 − 𝑏𝑑 + 𝑎𝑑 + 𝑏𝑐 ⅈ
Division
Multiplies the dividend
and the divisor by the
conjugant of the divisor.
Solve the indicated
operation.
Complex Numbers
14. First grade equations in one
variable
Equation
Is mathematical statement that two
expression have equal value.
Members: expression that have at each side of the equal. The
expression in the right side is second term and the expression in
the left side is first term
Incognita or variable unknown value
Terms: are separate by sing like add or subtract, is
impossible use time and divide
Grade relative add of exponent
Grade absolute is the greater exponent of the variable
Independent term: no have variable
Solution
Is the value that could take the variable for the
equality is real.
15. Isolate of variable
Transposition of term
Change term of a member to other
without the equation change.
Other form is duplicate the term in
both members with different sing
Isolate the variable is that the
variable is alone.
Ever do you could look that the term is
divide at change is multiplies and vice
versa.
16. First grade inequations
in one variable
Is an inequality that can be written
in the form 𝑎𝑥 + 𝑏 < 𝑐 where a,
b and c are real numbers and a in
not 0
Indicate that one amount is greater o les the
other amount
properties
If add or subtract the same Number in both
members the inequality is conservator.
If multiplies or divide for a positive Number
both members. The inequality is conservator.
if multiplies or divide for a negative
Number both members. Change the
inequality.
Solution
Calculate the values of the variable to allow the
inequality
Realize the same steps of the equalities
Apply the properties of the inequalities
Represent with a real interval.
17. Second grade equations
𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0
c𝑜𝑛 𝑎, 𝑏, 𝑐 ∈ 𝑅 𝑦 𝑎 ≠ 0
incomplete
Are all where b=0 ó c=0
All quadratic equations have two
reals root different, two complex
root different or only one real root.
𝑎𝑥2 = 0 have one solutions
𝑎𝑥2 ± 𝑏𝑥 = 0 have two solutions
𝑎𝑥2 ± 𝑐 = 0 have two solutions
Complete
Are all where 𝑏 ≠ 𝑂 𝑦 𝑐 ≠ 0
𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0
Solution by factorization
Write the equation in form 𝑎𝑥2 +
𝑏𝑥 + 𝑐 = 0
Factorization if is possible
Equality to 0
Solve each equations of first
grade to calculate the solutions
General form
𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐
2𝑎
Write the equations in this form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0
Substitute the values of a, b, c
Realize the operations indicated in the general form.
18. Cartesian
plane
Two numerical lines
called axes
Axis x is abscissa
Axis y is ordinates
Have four
quadrants
Use a coordinates
8
3.2
-8
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
-10 -5 0 5 10
1st
quadrant
2nd
quadrant
3rd
quadrant
4th
quadrant
20. Distance between two points
The distance between two
points is the length of the line
segment that joins sayings points
When the points are locates only in abscissas axis
or in ordinates axis
The absolute value is the difference between the
abscissas and ordinates
Use a Pythagoras theorem
𝑃𝑄 2
= 𝑃𝑅 2
+ 𝑄𝑅 2
𝑑2
= 𝑥2 − 𝑥1
2
+ 𝑦2 − 𝑦1
2
𝑑 = 𝑥2 − 𝑥1
2 + 𝑦2 − 𝑦1
2
22. Line Equations
The line equation of first grade
have the form 𝑦 = 𝑚𝑥 + 𝑏
Where m represent the slope
b the ordinate or intercepted whit
the axis y
The slop in the line is defined as the ratio between the
vertical variation and horizontal variation.
General equation 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0
23. Parallel line equation
Two lines could be
Parallels perpendiculars
Parallels secants
𝑙1 = 𝑦1 = 𝑚1𝑥1 + 𝑏1
𝑙2 = 𝑦2 = 𝑚2𝑥2 + 𝑏2
To find the explicit
equation of a parallel
line
If is expressed in explicit form only identify
the slope
In other form use a formula 𝑚 = −
𝐴
𝐵
Apply the procedure to determine the line equation.
You could write a parallel line equation through the
explicit equation or slope point equation.
24. Perpendicular line equations
If the lines are cut
in one point are
called a secant
This secant could be called perpendicular
If possible, when form a right angle
And if the product of their slopes are
equal to -1
𝑚1 = −
𝐴
𝐵
𝑚2 = −
𝐴
𝐵
𝑚1𝑥𝑚2
25. 2 x 2 System only have two
equations and two variables or
unknowns.
Methods to solve 2 x 2 System
Graphic: is graphic representation of the lines that
correspond to the equation system
Lines that cut in alone point, include that the system have only one
answer for this reason are called Determinate or consistent.
Lines that match in all points, have infinite solutions and are called
indeterminate
Parallel not have solutions, and not have match points, are called
inconsistent.
Substitution need three steps
Isolate one of the variable in anyone of the equations system
Substitute the resultant expression in the other equations and isolate
the remaining variable
The obtained value in the 2-step substitute in anyone of the equations
or in the first isolate equations
Equalization
Isolate the variable in both equations
Equalizes the obtained expression and isolate the variable
This value is substitute in anyone of the equations.
Elimination or reductions
Simplify both equations in only one
Amplify one of the equations in such a way that the coefficient
that variables are opposite.
Finally substitute the value of the variable in anyone of the
equations.
Inconsistent
Indeterminant
Consistent
Determinants or Cramer's
Associated Number to an array to rows and columns
The determinant value is equivalent to at the difference between the
product of the principal diagonal and the product of the secondary
diagonal.
26. Equations system with three variable first
grade
3x3 System have three
equations and three
variables or unknowns
Substitution
Isolate one of the variables in
anyone of the equations
Substitute the isolate expression in
the remaining equations
realize the operations
Forming a 2 x 2 system
Select an equations and substitute
the values of the obtained variables
Method of elimination,
add and subtractions
Select two equations anyone
Select one variable to eliminate.
Amplify the coefficient value in one
equations with opposite sing
Repeat the step select one
equations and the remaining
equations.
You have a 2 x 2 System solve the
system
Select an equations and substitute
the values of the obtained variables
Method of Cramer o
method of determinant
Work with the coefficient
Method of Sarrus o
cofactor method
Work with the coefficient
29. Angles
the space (measured in degrees)
between two intersecting lines or
surfaces at or close to the point where
they meet.
In other words, is amplitude of rotation
of a semi-straight on their origin.
Sexagesimal system have a Sexagesimal
degree is
1
360
parts of angle generate for
a complete rotation of one side.
Minutes
Seconds
Conversion degree to sexagesimal
degree
Multiplies the decimal part by 60
Multiplies the decimal part of the result
in first step
Divide minutes by 60
Divide second by 3600
Measure of angles with protractor
Protractor is divided by sexagesimal degrees
Central angle with center in the origin and radio is
that formed to radios the unit of measure is radian
Classifications of angles
Angle in normal position initial side match with positive semiaxis and their vertex is in the origin.
Quadrantal angle is the angle whose initial side is in the positive semiaxis, and the final side is localized in
one of the semiaxis of the cartesian plane
Coterminal angle are when their initial sides and final sides are the same. Regardless magnitude and direction.
In cartesian plane the final side could realize more tan one turn in negative or positive direction
Reference angle acute angle that form the final side of the angle with one of the semiaxis of axis x
If the final side are in the second quadrant their
reference angles need this formula 𝜃𝑅 = 180° − 𝜃
If the final side are in the third quadrant their
reference angle need this formula 𝜃𝑅 = 𝜃 − 1800
If the final side are in the fourth quadrant their
reference angle need this formula 𝜃𝑅 = 3600
− 𝜃
30. ℎ2
= 𝑎2
+ 𝑏2
ℎ = 𝑎2 + 𝑏2
Opposite cateto is situated in front of the given angle formula
𝑎2
= 𝑐2
− 𝑏2
= 𝑎 = 𝑐2 − 𝑏2
Adjacent cateto is situated next to the given angle and that is not the Hypothenuse formula
𝑏2
= 𝑐2
− 𝑎2
= 𝑏 = 𝑐2 − 𝑎2
The square of the length of the hypothenuse is equal to add of the squares of the lengths of
the hick.
31. To solve rectangle triangle
Unknowns the measures of
one of the sides of acute
angle
Use a trigonometric ratio
depend on the side that you
known
Known the length of the
sides
Use inverse trigonometric
ratio to calculate the measure
of the inner angle unknowns
Use a Pythagoras Theorem
Or use a trigonometric ratio
that relation the length with
the unknown side with the
measure of one of the sides
and the given angle
32. Trigonometric functions in the plane
Trigonometric functions in the
plane
Unit Circle
Center is in the origin point of the cartesian plane and whose
radius is equal to 1
The equations related is 𝑥2 + 𝑦2 = 1
The distance of all point that belongs at unit circle of the
cartesian plane is equal to 1
Relation between trigonometric
functions and the unit circle
Build and angle Ɵ ⅈn normal position, whose final side
intersects the unit circle at a point 𝑅 𝑥, 𝑦
Trace a perpendicular segment at x axis to form rectangle
triangle.
Se establecen funciones trigonométricas de la siguiente forma
𝑠𝑒𝑛𝜃 =
𝑦
1
= 𝑦 tan 𝜃 =
𝑦
𝑥′ 𝑥 ≠ 0 s𝑒𝑛𝜃 =
1
𝑥′ 𝑥 ≠ 0 cos 𝜃 =
𝑥
1
= 𝑥
csc 𝜃 =
1
𝑦′
𝑦 ≠ 0 cot 𝜃 =
𝑥
𝑦′
𝑦 ≠ 0
Domain of the trigonometric
functions
The domain of the trigonometric functions depends on the coordinates
𝑥, 𝑦 𝑎𝑛 𝑑 th 𝑝𝑜ⅈ𝑛𝑡 𝑅 𝑥, 𝑦
33. Trigonometric functions of quadrantal angles
Trigonometric functions of quadrantal angles
Values of the trigonometric functions for
quadrantal angles of 0° and 360°
The final side of the quadrantal angles of 0 and 360 coincide, and the value of trigonometric
functions are the same.
cos = 𝜃 = 𝑥 = 1 𝑠𝑒𝑛𝜃 = 𝑦 = 0
tan 𝜃 =
𝑦
𝑥
= 0 sec 𝜃 =
1
𝑥
=
1
1
= 1
cot 𝜃 =
𝑥
𝑦
=
1
0
𝑛𝑜 𝑑𝑒𝑓ⅈ𝑛ⅈ𝑑𝑜 csc 𝜃 =
1
𝑦
=
1
0
𝑛𝑜 𝑑𝑒𝑓ⅈ𝑛ⅈ𝑑𝑜
Values of the trigonometric functions for
quadrantal angle of 90°
The point of intersection of the unit circle with the final angle of 90° is (0,1)
cos 900 = 𝑥 = 0 𝑆e𝑛900 = 𝑦 = 1
tan 900 =
𝑦
𝑥
=
1
0
𝑛𝑜 𝑑𝑒𝑓ⅈ𝑛ⅈ𝑑𝑜 sec 900 =
1
𝑥
=
1
0
𝑛𝑜 𝑑𝑒𝑓ⅈ𝑛ⅈ𝑑𝑜
csc 900 =
1
𝑦
=
1
1
= 1 cot 900 =
𝑥
𝑦
=
0
1
= 0
Values of the trigonometric functions for
quadrantal angle of 180°
The point of intersection of the unit circle with the final side of the angle of 180° is
(-1,0)
Cos 1800 = 𝑥 = 1 tan 180° =
𝑦
𝑥
=
0
−1
= 0
Sen 180°= y = 0 sec 180° =
1
𝑥
=
1
−1
= −1
Csc 180°=
1
𝑦
=
1
0
no defined cot 180°=
𝑥
𝑦
=
−1
0
no defined
Values of the trigonometric functions for
quadrantal angle of 270°
Cos 270° = x = 0 sec 270° =
1
𝑥
=
1
0
no definido
Sen 270° = y = -1 Csc 270° =
1
𝑦
=
1
−1
= −1
Tan 270° =
𝑦
𝑥
=
−1
0
𝑛𝑜 𝑑𝑒𝑓ⅈ𝑛ⅈ𝑑𝑜 Cot 270° =
𝑥
𝑦
=
0
−1
= 0
36. Sine law
Sine rule
Study the triangle ABC shown
below. Let B stands for the
angle at B. Let C stand for the
angle at C and so on. Also, let
b = AC, a = BC and c = AB
39. Trigonometric identities
Una identidad
trigonométrica es una
igualdad entre razones
trigonométricas que
son verdades para todo
valor de la variable
(ángulo) que
intervenga en dicha
igualdad.
Dichas identidades se
44. Vectors in the plane
◦ un vector no es más que un trozo de recta, en el que se diferencia claramente su origen y su extremo.
◦ Un vector es un segmento orientado con un punto inicial u origen y uno final a extremo que termina con una
flecha.
◦ DEFINICIÓN: COMPONENTES DE UN VECTOR. Son dos valores que vienen dados en forma de par de
números, los cuáles indican las unidades que tenemos que desplazarnos horizontalmente y verticalmente
respectivamente, para llegar desde el origen del vector al extremo de éste.
◦ 𝐴𝐵
◦ CARACTERÍSTICAS DE UN VECTOR. MÓDULO DIRECCIÓN Y SENTIDO
◦ Magnitud o Módulo: Es el tamaño que tiene el segmento orientado.
◦ Dirección: Es la inclinación que tiene el vector respecto al eje de abscisas ( eje de las X).
◦ Esta inclinación se mide a través del ángulo menor que forma el vector con el eje OX ó un eje paralelo a éste.
◦ Sentido: Es la orientación que adopta el vector. Podemos diferenciar entre Norte, Sur, Este, Oeste, Noreste,
Noroeste, Sureste, Suroeste.
51. ¿Qué son las coordenadas cartesianas?
Antes de saber para qué sirven las coordenadas cartesianas, vamos a explicar qué son. Las coordenadas cartesianas,
también conocidas como coordenadas rectangulares, son un tipo de coordenadas ortogonales que se usan en espacios
euclídeos.
Las coordenadas cartesianas se utilizan para representar gráficamente una relación matemática o movimiento en posición
física. Además, se caracterizan por tener como referencia unos ejes ortogonales que concurren entre sí en el llamado punto
de origen.
56. ◦ Para calcular la magnitud se utiliza la siguiente
formula:
◦ |AB| = √ [ (ABx)2 + (ABy)2]
57. Producto punto (producto escalar, producto interior)
Módulo de un vector El módulo de un vector es un número
siempre positivo y solamente el vector nulo tiene módulo cero.
Para calcular el modulo utilizamos la siguiente formula:
Angulo entre dos vectores Para hallar el ángulo entre dos
vectores utilizamos la siguiente formula:
58. Point product(producto escalar, producto interior)
◦
𝐷𝑜𝑠 𝑑ⅈ𝑚𝑒𝑛𝑠ⅈ𝑜𝑛𝑒𝑠
𝑢 = 𝑎, 𝑏
𝑣 = 𝑐, 𝑑
◦ 𝜈 ⋅ 𝑣 = 𝑎𝑐 + 𝑏𝑑
Producto punto
El producto punto o producto escalar de dos
vectores es una operación que da como resultado
un número real. Hay distintas formas de definir
esta operación, una de ellas es por medio de
multiplicar el producto de los módulos de los
vectores por el coseno del ángulo que forman,
esto es
𝑇𝑟𝑒𝑠 𝑑ⅈ𝑚𝑒𝑛𝑠ⅈ𝑜𝑛𝑒𝑠
𝑈 = 𝑎1, 𝑎2, 𝑎3
𝑣 = 𝑏1, 𝑏2, 𝑏3
𝜈 ⋅ 𝑣 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3
59. Properties
◦ 𝑎. 𝑎 = 𝑎 2 el producto punto de un vector 𝑎 multiplicado por si mismo es igual a la norma de ese
mismo vector elevado al cuadrado.
◦
𝑎 𝑎1𝑏, 𝑐
𝑎 ⋅ 𝑎 = 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 = 𝑎2
, 𝑏2
, 𝑐2
= 𝑎 2
𝑎 = 𝑎2, 𝑏2, 𝑐2
𝑎 2 = 𝑎2, 𝑏2, 𝑐2 2
𝑎 2 = 𝑎2, 𝑏2, 𝑐2
◦ 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 = 𝑎, 𝑎, 𝑎 𝑏, 𝑏, 𝑏 Propiedad conmutativa
◦ 𝑎 ⋅ 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3
◦ 𝑏 ⋅ 𝑎 = 𝑏1𝑎1 + 𝑏2𝑎2 + 𝑏3𝑎3
60. Properties
◦ 𝑎 𝑏 + 𝑐 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 El producto punto con la suma de vectores es igual a distribuir el producto punto por el
vector más el producto punto por el vector dos.
◦ 𝑘𝑎1 ⋅ 𝑏 = 𝑘 𝑎 ⋅ 𝑏 = 𝑎 ⋅ 𝑘𝑏 𝑎, 𝑎, 𝑎 𝑏, 𝑏, 𝑏
◦ 𝑘𝑎 ⋅ 𝑏 = 𝑘𝑎1
, 𝑘𝑎2
, 𝑘𝑎3
. 𝑏1, 𝑏2, 𝑏3 = 𝑘𝑎1𝑏1 + 𝑘𝑎2𝑏2 + 𝑘𝑎3𝑏3
◦ 𝑘 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3
◦ 𝑘 𝑎 ⋅ 𝑏
◦ 0 ⋅ 𝑏 = 0 vector cero con el producto punto por cualquier vector es igual al escalar cero, en dos dimensiones el vector
es (0,0) y en tres dimensiones es (0,0,0)
61. Unit vectors
◦ 𝑣 = 𝑣 = 1
◦ Se denomina vector unitario a aquel vector que tiene por módulo la unidad. Podemos calcular un vector unitario en la dirección del vector
sin más que dividir por su módulo
𝑣 =
3
5
,
4
5
= 𝑣 =
3
5
2
+
4
5
2
𝑣 =
9
25
+
16
25
25
25
= 1
Sí me encuentro con un vector que no es Unitario en la misma dirección que el vector Unitario, para obtener la respuesta solo dividimos el
vector por la norma del vector, y ahí obtendremos un vector unitario.
𝑣
𝑣
66. Angle
between
vectors
◦ Ángulo de dos vectores
Dados dos vectores u , v ,
si elegimos un origen
común para ambos, se
llama ángulo de dos
vectores al menor de los
ángulos que forman. Este
ángulo, como ya sabemos,
cumple el siguiente
convenio: positivo si
avanzamos en sentido
antihorario, y negativo en
sentido horario.
74. Proyección
ortogonal de
un vector
◦ Pro𝑦𝑣𝑈 o cuál quiere decir que
estamos ante la proyección de u
sobre v
◦ Pro𝑦𝑣𝑈 =
𝑣⋅𝑈
𝑣 2 𝑣
◦ Pro𝑦𝑣𝑈 = comp𝑣𝑈
76. Matrices
𝑎 𝑎
𝑎 𝑎
columna
fila
𝐴 =
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝐶 =
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎
𝑎 𝑎
𝑎 𝑎
2 columnas
2 filas
3 columnas
3 filas
5columnas
3 filas
Matriz de tamaño 2x2
Matriz de tamaño 3x3
Matriz de tamaño 3x5
Siempre serán nombradas con la letra mayúscula.
77. ◦ Las matrices pueden tener entradas en ℝ 𝑜 ℂ 𝑜 ℚ etc.
◦ 𝐴 =
2 + ⅈ −3ⅈ 4
7ⅈ 0 5 − 7ⅈ
𝐴 ∈ 𝑀2×3 ℂ
Matrices
78. Matrices
◦
𝑎11 𝑎12 … 𝑎ln
𝑎21 𝑎22 …
⋮ ⋮ ⋱
𝑎𝑚1 𝑎𝑚2 …
𝑎2𝑛
⋮
𝑎𝑚𝑛
◦𝑎11 este es el
elemento de la fila uno
columna uno.
Vector fila
Vector Columna
Usan letras como la 𝑣𝑦𝑢
79. ◦ SUMA Y RESTA O ADICIÓN Y SUSTRACCIÓN
◦ Para sumar y restar ambas deben ser del mismo tamaño o tener la misma dimensión, de no suceder así no se
podría resolver la ecuación.
◦ Producto
◦ Podemos multiplicar cualquier número por la matriz
◦ Sólo debemos multiplicar el escalar por cada número de toda la matriz que se nos presente
◦ Igualdad de matrices
◦ Las matrices serán like term si y sólo si tiene
◦ Misma dimensión y los mismos elementos.
◦ DIVISION DE MATRICES
◦ Determinar el inverso multiplicativo del numero real es posible determinar la división
95. ◦ PROPIEDADES DE LA MATRIZ INVERSA
◦ 1. La matriz inversa si existe es única.
◦ 2. (A-1)-1 = A, es decir, la inversa de la inversa es la matriz inicial.
◦ 3. (A·B)-1 = B-1·A-1
◦ 4. |A-1| = 1 / |A|