SlideShare ist ein Scribd-Unternehmen logo
1 von 34
Agitación y mezclas
de líquidos
Agitación
La agitación se refiere a
forzar un fluido por
medios mecánicos para
que adquiera un
movimiento circulatorio en
el interior de un
recipiente.
Los objetivos de la agitación pueden ser:
 Mezcla de dos líquidos miscibles (ej: alcohol y agua)
 Disolución de sólidos en líquido (ej.: azúcar y agua)
 Mejorar la transferencia de calor (ej.,en calentamiento o
enfriamiento)
 Dispersión de un gas en un líquido (ej.,oxígeno en caldo
de fermentación)
 Dispersión de partículas finas en un líquido
 Dispersión de dos fases no miscibles (ej.,grasa en la
leche)
Equipo de agitación
 Consiste en un recipiente cilíndrico (cerrado o
abierto), y un agitador mecánico, montado en un
eje y accionado por un motor eléctrico.
 Las proporciones del tanque varían ampliamente,
dependiendo de la naturaleza del problema de
agitación.
 El fondo del tanque debe ser redondeado, con el
fin de eliminar los bordes rectos o regiones en las
cuales no penetrarían las corrientes del fluido.
Equipo de agitación
 La altura del líquido, es aproximadamente
igual al diámetro del tanque.
 Sobre un eje suspendido desde la parte
superior, va montado un agitador.
 El eje está accionado por un motor,
conectado a veces, directamente al mismo,
pero con mayor frecuencia, a través de una
caja de engranajes reductores.
Clases de Agitadores
Los agitadores se dividen en
• Los que generan corrientes paralelas al eje
del impulsor que se denominan impulsores de
flujo axial;
• y aquellos que generan corrientes en
dirección radial tangencial que se llaman
impulsores de flujo radial.
Tipos de agitadores
 Los tres tipos principales de agitadores
son,
• paletas
• turbina
• hélice
• Consiste en una hoja plana sujeta a un eje rotatorio.
• El flujo de líquido tiene una componente radial grande en el
plano de la pala y también un gran componente rotacional.
• Los agitadores de pala son de construcción relativamente fácil.
• Los agitadores de pala sencillos producen una acción de
mezcla suave, que es con frecuencia la conveniente para el
trabajo con materiales cristalinos frágiles.
• Son útiles para operaciones de simple mezcla, como, por
ejemplo, la mezcla de líquidos miscibles o la disolución de
productos sólidos.
Agitadores de paleta o pala
Agitadores de Palas o paletas
Agitador de paletas
 Los agitadores industriales de paletas giran a una
velocidad comprendida entre 20 y 150 rpm.
 La longitud del rodete de un agitador de paletas es del
orden de 50 al 80% del diámetro interior del tanque.
 La anchura de la paleta es de un sexto a un décimo de
su longitud.
 A velocidades muy bajas, un agitador de paletas produce
una agitación suave, en un tanque sin placas deflectoras
o cortacorrientes, las cuales son necesarias para
velocidades elevadas. De lo contrario el líquido se mueve
como un remolino que gira alrededor del tanque, con
velocidad elevada pero con poco efecto de mezcla.
Están constituidos por un componente impulsor con más de
cuatro hojas, montadas sobre el mismo elemento y fijas a un eje
rotatorio.
Los agitadores de turbina se pueden utilizar para procesar
numerosos materiales.
AGITADORES DE TURBINA
Agitadores de turbina típicos
 Los agitadores de turbina son eficaces para un amplio intervalo de
viscosidades; en líquidos poco viscosos, producen corrientes intensas,
que se extienden por todo el tanque y destruyen las masas de líquido
estancado.
 En las proximidades del rodete existe una zona de corrientes rápidas,
de alta turbulencia e intensos esfuerzos cortantes. Las corrientes
principales son radiales y tangenciales. Las componentes tangenciales
dan lugar a vórtices y torbellinos, que se deben evitar por medio de
placas deflectoras o un anillo difusor, con el fin de que el rodete sea
más eficaz.
 El agitador de turbina semiabierto, conocido como agitador de disco
con aletas, se emplea para dispersar o disolver un gas en un líquido.
El gas entra por la parte inferior del eje del rodete; las aletas lanzan
las burbujas grandes y las rompen en muchas pequeñas, con lo cual
se aumenta grandemente el área interfacial entre el gas y el líquido.
AGITADORES DE HÉLICE
• Poseen elementos impulsores de hojas cortas
(corrientemente de menos de ¼ del diámetro
del tanque); giran a gran velocidad (de 500 a
varios millares de r.p.m).
• Las hélices no son muy efectivas si van
montadas sobre ejes verticales situados en el
centro del depósito de mezcla.
Tanto la componente radial como la longitudinal contribuyen,
generalmente, a la mezcla, pero no siempre la componente
rotatoria.
La velocidad de flujo creada, en un depósito, por un mezclador
de hélice tiene tres componentes:
(a)Una componente radial que actúa en dirección
perpendicular al eje.
(b)Una componente longitudinal que actúa paralelamente
al eje.
(c)Una componente rotatoria que actúa en dirección
tangencial al círculo de rotación del eje.
Formas de flujo en los sistemas agitados por
hélices
AGITADORES PARA TANQUES CERRADOS Y
TANQUES ABIERTOS DE MONTAJE FIJO
 Estos tipos de agitadores son recomendados
para su aplicación, y todo depende de los
requisitos de su proceso. Los hay de
acoplados directo, estos están diseñados para
aplicaciones de baja viscosidad, o volumen
pequeños, o aplicaciones en que se requiere
trituramientos del producto. Los agitadores de
acoplado de engranaje (caja reductora), son
eficientemente usados en productos con mas
alta viscosidad o aplicaciones con un volumen
mas elevado.
Tipos de Flujo en Tanques
Agitados
 El tipo de flujo que se produce en un tanque agitado,
depende del tipo de rodete, de las características del
fluido y del tamaño y proporciones del tanque, placas
deflectoras y agitador.
 La velocidad del fluido en un punto del tanque tiene
tres componentes y el tipo de flujo global en el
mismo, depende de las variaciones de estas tres
componentes de la velocidad, de un punto a otro.
 La primera componente de velocidad es radial y
actúa en dirección perpendicular al eje del rodete. La
segunda es longitudinal y actúa en dirección paralela
al eje. La tercera es tangencial o rotacional, y actúa
en dirección tangencial a la trayectoria circular
descrita por el rodete.
Tipos de Flujo en Tanques
Agitados
Formas de evitar remolinos:
 Colocando el agitador fuera del eje central del
tanque En tanques pequeños se debe colocar el
rodete separado del centro del tanque, de tal
manera que el eje del agitador no coincida con el eje
central del tanque. En tanques mayores el agitador
puede montarse en forma lateral, con el eje en un
plano horizontal, pero no en la dirección del radio.
Formas de evitar remolinos:
 Instalando placas deflectoras Estas son placas
verticales perpendiculares a la pared del tanque. En
tanques pequeños son suficientes 4 placas
deflectoras, para evitar remolinos y formación de
vórtice. El ancho de las placas no debe ser mayor
que un doceavo del diámetro del tanque. Cuando se
usan agitadores de hélice, el ancho de la placa
puede ser de un octavo del diámetro del tanque.
Deflectores o bafles
 Cuando se emplean agitadores de aspas para agitar
fluidos de baja viscosidad en tanques sin deflectores
(o bafles) se genera un vórtice. La profundidad del
vórtice crece con la velocidad hasta que
eventualmente el vórtice pasa por el agitador.
 La eficiencia del mezclado en un sistema con vórtice
es usualmente menor que la correspondiente en el
sistema sin ella. Para eliminar esta problemática,
comúnmente se colocan cuatro deflectores al tanque
con un ancho de 1/10 el diámetro del tanque.
 Para líquidos de alta velocidad su misma resistencia
natural a fluir amortigua la formación del vórtice al
grado que el ancho de los bafles puede reducirse a
1/20 del diámetro del tanque.
 Para fluidos viscosos se recomienda colocar los
deflectores a una distancia de la pared igual al
ancho del deflector para evitar zonas estancadas
detrás de estos.
Deflectores o bafles
Rango de viscosidades para agitadores
Potencia consumida por el
agitador
Las variables que pueden ser controladas y
que influyen son:
 Dimensiones principales del tanque y del
rodete: Diámetro del tanque (Dt), Diámetro del
rodete (Da), altura del líquido (H), ancho de la
placa deflectora (J), distancia del fondo del
tanque hasta el rodete (E), y dimensiones de
las paletas.
 Viscosidad (μ) y densidad (ρ) del fluido.
 Velocidad de giro del agitador (N).
Cálculo de Potencia
 El cálculo de la potencia consumida se hace a través de
números adimensionales, relacionando por medio de gráficos
el número de Reynolds y el Número de Potencia. Estas
gráficas dependerán de las características geométricas del
agitador y de si están presentes o no, las placas deflectoras.
Y
Fr
X
P NNCN )()( Re=
NP= Nº Potencia
NRe = Nº Reynolds
NFr= Nº de Froude
Número de Reynolds = esfuerzo de inercia / esfuerzo cortante
µ
ρND
N a
2
Re =
Número de Froude = esfuerzo de inercia / esfuerzo gravitacional
g
DN
N a
2
Fr =
Número de Potencia = esfuerzo de frotamiento / esfuerzo de inercia
ρ
53
a
P
DN
P
N =
Esquematización de una curva de potencia

Weitere ähnliche Inhalte

Was ist angesagt?

Ramirez navas --problemas-secado
Ramirez navas --problemas-secadoRamirez navas --problemas-secado
Ramirez navas --problemas-secadoLiz Centeno
 
Operaciones unitarias
Operaciones unitariasOperaciones unitarias
Operaciones unitariasAmanda Rojas
 
Centrifugacion (1)
Centrifugacion (1)Centrifugacion (1)
Centrifugacion (1)Juan Gómez
 
Guia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionadaGuia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionadaStephanie Melo Cruz
 
Documents.tips solucionario geankoplis-procesos-de-transporte-y-operaciones-u...
Documents.tips solucionario geankoplis-procesos-de-transporte-y-operaciones-u...Documents.tips solucionario geankoplis-procesos-de-transporte-y-operaciones-u...
Documents.tips solucionario geankoplis-procesos-de-transporte-y-operaciones-u...Yovanny Tigua
 
Mendoza ventura jesus balance de materia y energia cristalizacion
Mendoza ventura jesus balance de materia y energia cristalizacionMendoza ventura jesus balance de materia y energia cristalizacion
Mendoza ventura jesus balance de materia y energia cristalizacionJesus Noel Mendoza Ventura
 
Coeficientes de Transferencia de Masa
Coeficientes de Transferencia de MasaCoeficientes de Transferencia de Masa
Coeficientes de Transferencia de Masajhonathan
 
EXTRACCIÓN SOLIDO - LIQUIDO
EXTRACCIÓN SOLIDO - LIQUIDO EXTRACCIÓN SOLIDO - LIQUIDO
EXTRACCIÓN SOLIDO - LIQUIDO JAlfredoVargas
 
TRANSFERENCIA DE MASA
TRANSFERENCIA DE MASATRANSFERENCIA DE MASA
TRANSFERENCIA DE MASANanny Alvarez
 
Exposición 1 (equilibrio líquido vapor)
Exposición 1 (equilibrio líquido  vapor)Exposición 1 (equilibrio líquido  vapor)
Exposición 1 (equilibrio líquido vapor)Jhonás A. Vega
 
Operaciones unitarias tablas
Operaciones unitarias tablasOperaciones unitarias tablas
Operaciones unitarias tablasESPOL
 

Was ist angesagt? (20)

Ramirez navas --problemas-secado
Ramirez navas --problemas-secadoRamirez navas --problemas-secado
Ramirez navas --problemas-secado
 
Operaciones unitarias
Operaciones unitariasOperaciones unitarias
Operaciones unitarias
 
Centrifugacion (1)
Centrifugacion (1)Centrifugacion (1)
Centrifugacion (1)
 
Reduccion de tamaño
Reduccion de tamañoReduccion de tamaño
Reduccion de tamaño
 
Guia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionadaGuia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionada
 
Agitación
AgitaciónAgitación
Agitación
 
Documents.tips solucionario geankoplis-procesos-de-transporte-y-operaciones-u...
Documents.tips solucionario geankoplis-procesos-de-transporte-y-operaciones-u...Documents.tips solucionario geankoplis-procesos-de-transporte-y-operaciones-u...
Documents.tips solucionario geankoplis-procesos-de-transporte-y-operaciones-u...
 
Tipos de Reactores
Tipos de ReactoresTipos de Reactores
Tipos de Reactores
 
Mendoza ventura jesus balance de materia y energia cristalizacion
Mendoza ventura jesus balance de materia y energia cristalizacionMendoza ventura jesus balance de materia y energia cristalizacion
Mendoza ventura jesus balance de materia y energia cristalizacion
 
Coeficientes de Transferencia de Masa
Coeficientes de Transferencia de MasaCoeficientes de Transferencia de Masa
Coeficientes de Transferencia de Masa
 
Practica 4
Practica 4Practica 4
Practica 4
 
EXTRACCIÓN SOLIDO - LIQUIDO
EXTRACCIÓN SOLIDO - LIQUIDO EXTRACCIÓN SOLIDO - LIQUIDO
EXTRACCIÓN SOLIDO - LIQUIDO
 
TRANSFERENCIA DE MASA
TRANSFERENCIA DE MASATRANSFERENCIA DE MASA
TRANSFERENCIA DE MASA
 
Lechos porosos
Lechos porososLechos porosos
Lechos porosos
 
Exposición 1 (equilibrio líquido vapor)
Exposición 1 (equilibrio líquido  vapor)Exposición 1 (equilibrio líquido  vapor)
Exposición 1 (equilibrio líquido vapor)
 
Agitacion
AgitacionAgitacion
Agitacion
 
Evaporación f
Evaporación fEvaporación f
Evaporación f
 
Operaciones unitarias tablas
Operaciones unitarias tablasOperaciones unitarias tablas
Operaciones unitarias tablas
 
Evaporación
EvaporaciónEvaporación
Evaporación
 
Conversion y tamaño de reactor
Conversion y tamaño de reactorConversion y tamaño de reactor
Conversion y tamaño de reactor
 

Andere mochten auch

Molinos de Rodillos
Molinos de RodillosMolinos de Rodillos
Molinos de RodillosBessy Caroiz
 
7 Sopladores, Abanicos y Compresores (Flujo Compresible)
7 Sopladores, Abanicos y Compresores (Flujo Compresible)7 Sopladores, Abanicos y Compresores (Flujo Compresible)
7 Sopladores, Abanicos y Compresores (Flujo Compresible)Emmanuel Ortega
 
5 Bombas en flujo incompresible
5 Bombas en flujo incompresible5 Bombas en flujo incompresible
5 Bombas en flujo incompresibleEmmanuel Ortega
 
Diapositiva Reactores
Diapositiva ReactoresDiapositiva Reactores
Diapositiva Reactoresdanielaparis
 
8 Camas Empacadas y Fluidizadas (Flujo compresible)
8 Camas Empacadas y Fluidizadas (Flujo compresible)8 Camas Empacadas y Fluidizadas (Flujo compresible)
8 Camas Empacadas y Fluidizadas (Flujo compresible)Emmanuel Ortega
 
9 Agitación y Mezclado en Flujo incompresible
9 Agitación y Mezclado en Flujo incompresible9 Agitación y Mezclado en Flujo incompresible
9 Agitación y Mezclado en Flujo incompresibleEmmanuel Ortega
 
1 Ecuación de Energía Mecánica: Flujo incomplresible
1 Ecuación de Energía Mecánica: Flujo incomplresible1 Ecuación de Energía Mecánica: Flujo incomplresible
1 Ecuación de Energía Mecánica: Flujo incomplresibleEmmanuel Ortega
 
2 Pérdidas por fricción: Flujo incompresible
2 Pérdidas por fricción: Flujo incompresible2 Pérdidas por fricción: Flujo incompresible
2 Pérdidas por fricción: Flujo incompresibleEmmanuel Ortega
 
6 Flujo en Boquillas (Flujo compresible)
6 Flujo en Boquillas (Flujo compresible)6 Flujo en Boquillas (Flujo compresible)
6 Flujo en Boquillas (Flujo compresible)Emmanuel Ortega
 
3 Tuberías y Accesorios: Flujo incompresible
3 Tuberías y Accesorios: Flujo incompresible3 Tuberías y Accesorios: Flujo incompresible
3 Tuberías y Accesorios: Flujo incompresibleEmmanuel Ortega
 
Agitacion y mezclado
Agitacion y mezcladoAgitacion y mezclado
Agitacion y mezcladoSussy Vi
 
Operaciones unitarias y procesos unitarios
Operaciones unitarias y procesos unitariosOperaciones unitarias y procesos unitarios
Operaciones unitarias y procesos unitariosalvaro Llanos
 

Andere mochten auch (13)

Mezclado
MezcladoMezclado
Mezclado
 
Molinos de Rodillos
Molinos de RodillosMolinos de Rodillos
Molinos de Rodillos
 
7 Sopladores, Abanicos y Compresores (Flujo Compresible)
7 Sopladores, Abanicos y Compresores (Flujo Compresible)7 Sopladores, Abanicos y Compresores (Flujo Compresible)
7 Sopladores, Abanicos y Compresores (Flujo Compresible)
 
5 Bombas en flujo incompresible
5 Bombas en flujo incompresible5 Bombas en flujo incompresible
5 Bombas en flujo incompresible
 
Diapositiva Reactores
Diapositiva ReactoresDiapositiva Reactores
Diapositiva Reactores
 
8 Camas Empacadas y Fluidizadas (Flujo compresible)
8 Camas Empacadas y Fluidizadas (Flujo compresible)8 Camas Empacadas y Fluidizadas (Flujo compresible)
8 Camas Empacadas y Fluidizadas (Flujo compresible)
 
9 Agitación y Mezclado en Flujo incompresible
9 Agitación y Mezclado en Flujo incompresible9 Agitación y Mezclado en Flujo incompresible
9 Agitación y Mezclado en Flujo incompresible
 
1 Ecuación de Energía Mecánica: Flujo incomplresible
1 Ecuación de Energía Mecánica: Flujo incomplresible1 Ecuación de Energía Mecánica: Flujo incomplresible
1 Ecuación de Energía Mecánica: Flujo incomplresible
 
2 Pérdidas por fricción: Flujo incompresible
2 Pérdidas por fricción: Flujo incompresible2 Pérdidas por fricción: Flujo incompresible
2 Pérdidas por fricción: Flujo incompresible
 
6 Flujo en Boquillas (Flujo compresible)
6 Flujo en Boquillas (Flujo compresible)6 Flujo en Boquillas (Flujo compresible)
6 Flujo en Boquillas (Flujo compresible)
 
3 Tuberías y Accesorios: Flujo incompresible
3 Tuberías y Accesorios: Flujo incompresible3 Tuberías y Accesorios: Flujo incompresible
3 Tuberías y Accesorios: Flujo incompresible
 
Agitacion y mezclado
Agitacion y mezcladoAgitacion y mezclado
Agitacion y mezclado
 
Operaciones unitarias y procesos unitarios
Operaciones unitarias y procesos unitariosOperaciones unitarias y procesos unitarios
Operaciones unitarias y procesos unitarios
 

Ähnlich wie Agitadores

Ähnlich wie Agitadores (20)

Agitacion y mezclas de liquidos
Agitacion y mezclas de liquidosAgitacion y mezclas de liquidos
Agitacion y mezclas de liquidos
 
agitacion y disolucion
agitacion y disolucionagitacion y disolucion
agitacion y disolucion
 
Agitacion y mezclado
Agitacion y mezcladoAgitacion y mezclado
Agitacion y mezclado
 
Agitacion 1 mari
Agitacion 1 mariAgitacion 1 mari
Agitacion 1 mari
 
Agitación y Mezclado (parte 1)
Agitación y Mezclado (parte 1)Agitación y Mezclado (parte 1)
Agitación y Mezclado (parte 1)
 
MEZCLADORES
MEZCLADORESMEZCLADORES
MEZCLADORES
 
mezcla de fluidos_ GRUPO K..pptx
mezcla de fluidos_ GRUPO K..pptxmezcla de fluidos_ GRUPO K..pptx
mezcla de fluidos_ GRUPO K..pptx
 
91985276 separadores-de-la-industria-petrolera
91985276 separadores-de-la-industria-petrolera91985276 separadores-de-la-industria-petrolera
91985276 separadores-de-la-industria-petrolera
 
Flow guard
Flow guardFlow guard
Flow guard
 
Capitulo iii
Capitulo iiiCapitulo iii
Capitulo iii
 
Tanques agitados
Tanques agitadosTanques agitados
Tanques agitados
 
Hidraulica tic,s
Hidraulica tic,sHidraulica tic,s
Hidraulica tic,s
 
Mezclado
MezcladoMezclado
Mezclado
 
Laboratorio de lodos 1
Laboratorio de lodos 1Laboratorio de lodos 1
Laboratorio de lodos 1
 
pelton pdf.pdf
pelton pdf.pdfpelton pdf.pdf
pelton pdf.pdf
 
Informe (gas 1) procesos de separacion
Informe (gas 1) procesos de separacionInforme (gas 1) procesos de separacion
Informe (gas 1) procesos de separacion
 
Hidraulica
HidraulicaHidraulica
Hidraulica
 
hidraulica.ppt
hidraulica.ppthidraulica.ppt
hidraulica.ppt
 
LA TURBINA PELTON
LA TURBINA PELTONLA TURBINA PELTON
LA TURBINA PELTON
 
funcionamiento Turbina pelton
funcionamiento Turbina peltonfuncionamiento Turbina pelton
funcionamiento Turbina pelton
 

Kürzlich hochgeladen

Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfJulian Lamprea
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...silviayucra2
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíassuserf18419
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx241521559
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxLolaBunny11
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)GDGSucre
 

Kürzlich hochgeladen (10)

Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdf
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptx
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 

Agitadores

  • 2. Agitación La agitación se refiere a forzar un fluido por medios mecánicos para que adquiera un movimiento circulatorio en el interior de un recipiente.
  • 3. Los objetivos de la agitación pueden ser:  Mezcla de dos líquidos miscibles (ej: alcohol y agua)  Disolución de sólidos en líquido (ej.: azúcar y agua)  Mejorar la transferencia de calor (ej.,en calentamiento o enfriamiento)  Dispersión de un gas en un líquido (ej.,oxígeno en caldo de fermentación)  Dispersión de partículas finas en un líquido  Dispersión de dos fases no miscibles (ej.,grasa en la leche)
  • 4. Equipo de agitación  Consiste en un recipiente cilíndrico (cerrado o abierto), y un agitador mecánico, montado en un eje y accionado por un motor eléctrico.  Las proporciones del tanque varían ampliamente, dependiendo de la naturaleza del problema de agitación.  El fondo del tanque debe ser redondeado, con el fin de eliminar los bordes rectos o regiones en las cuales no penetrarían las corrientes del fluido.
  • 5. Equipo de agitación  La altura del líquido, es aproximadamente igual al diámetro del tanque.  Sobre un eje suspendido desde la parte superior, va montado un agitador.  El eje está accionado por un motor, conectado a veces, directamente al mismo, pero con mayor frecuencia, a través de una caja de engranajes reductores.
  • 6. Clases de Agitadores Los agitadores se dividen en • Los que generan corrientes paralelas al eje del impulsor que se denominan impulsores de flujo axial; • y aquellos que generan corrientes en dirección radial tangencial que se llaman impulsores de flujo radial.
  • 7.
  • 8. Tipos de agitadores  Los tres tipos principales de agitadores son, • paletas • turbina • hélice
  • 9. • Consiste en una hoja plana sujeta a un eje rotatorio. • El flujo de líquido tiene una componente radial grande en el plano de la pala y también un gran componente rotacional. • Los agitadores de pala son de construcción relativamente fácil. • Los agitadores de pala sencillos producen una acción de mezcla suave, que es con frecuencia la conveniente para el trabajo con materiales cristalinos frágiles. • Son útiles para operaciones de simple mezcla, como, por ejemplo, la mezcla de líquidos miscibles o la disolución de productos sólidos. Agitadores de paleta o pala
  • 10. Agitadores de Palas o paletas
  • 12.  Los agitadores industriales de paletas giran a una velocidad comprendida entre 20 y 150 rpm.  La longitud del rodete de un agitador de paletas es del orden de 50 al 80% del diámetro interior del tanque.  La anchura de la paleta es de un sexto a un décimo de su longitud.  A velocidades muy bajas, un agitador de paletas produce una agitación suave, en un tanque sin placas deflectoras o cortacorrientes, las cuales son necesarias para velocidades elevadas. De lo contrario el líquido se mueve como un remolino que gira alrededor del tanque, con velocidad elevada pero con poco efecto de mezcla.
  • 13. Están constituidos por un componente impulsor con más de cuatro hojas, montadas sobre el mismo elemento y fijas a un eje rotatorio. Los agitadores de turbina se pueden utilizar para procesar numerosos materiales. AGITADORES DE TURBINA
  • 15.
  • 16.  Los agitadores de turbina son eficaces para un amplio intervalo de viscosidades; en líquidos poco viscosos, producen corrientes intensas, que se extienden por todo el tanque y destruyen las masas de líquido estancado.  En las proximidades del rodete existe una zona de corrientes rápidas, de alta turbulencia e intensos esfuerzos cortantes. Las corrientes principales son radiales y tangenciales. Las componentes tangenciales dan lugar a vórtices y torbellinos, que se deben evitar por medio de placas deflectoras o un anillo difusor, con el fin de que el rodete sea más eficaz.  El agitador de turbina semiabierto, conocido como agitador de disco con aletas, se emplea para dispersar o disolver un gas en un líquido. El gas entra por la parte inferior del eje del rodete; las aletas lanzan las burbujas grandes y las rompen en muchas pequeñas, con lo cual se aumenta grandemente el área interfacial entre el gas y el líquido.
  • 17. AGITADORES DE HÉLICE • Poseen elementos impulsores de hojas cortas (corrientemente de menos de ¼ del diámetro del tanque); giran a gran velocidad (de 500 a varios millares de r.p.m). • Las hélices no son muy efectivas si van montadas sobre ejes verticales situados en el centro del depósito de mezcla.
  • 18. Tanto la componente radial como la longitudinal contribuyen, generalmente, a la mezcla, pero no siempre la componente rotatoria. La velocidad de flujo creada, en un depósito, por un mezclador de hélice tiene tres componentes: (a)Una componente radial que actúa en dirección perpendicular al eje. (b)Una componente longitudinal que actúa paralelamente al eje. (c)Una componente rotatoria que actúa en dirección tangencial al círculo de rotación del eje.
  • 19. Formas de flujo en los sistemas agitados por hélices
  • 20. AGITADORES PARA TANQUES CERRADOS Y TANQUES ABIERTOS DE MONTAJE FIJO  Estos tipos de agitadores son recomendados para su aplicación, y todo depende de los requisitos de su proceso. Los hay de acoplados directo, estos están diseñados para aplicaciones de baja viscosidad, o volumen pequeños, o aplicaciones en que se requiere trituramientos del producto. Los agitadores de acoplado de engranaje (caja reductora), son eficientemente usados en productos con mas alta viscosidad o aplicaciones con un volumen mas elevado.
  • 21. Tipos de Flujo en Tanques Agitados  El tipo de flujo que se produce en un tanque agitado, depende del tipo de rodete, de las características del fluido y del tamaño y proporciones del tanque, placas deflectoras y agitador.  La velocidad del fluido en un punto del tanque tiene tres componentes y el tipo de flujo global en el mismo, depende de las variaciones de estas tres componentes de la velocidad, de un punto a otro.
  • 22.  La primera componente de velocidad es radial y actúa en dirección perpendicular al eje del rodete. La segunda es longitudinal y actúa en dirección paralela al eje. La tercera es tangencial o rotacional, y actúa en dirección tangencial a la trayectoria circular descrita por el rodete. Tipos de Flujo en Tanques Agitados
  • 23. Formas de evitar remolinos:  Colocando el agitador fuera del eje central del tanque En tanques pequeños se debe colocar el rodete separado del centro del tanque, de tal manera que el eje del agitador no coincida con el eje central del tanque. En tanques mayores el agitador puede montarse en forma lateral, con el eje en un plano horizontal, pero no en la dirección del radio.
  • 24. Formas de evitar remolinos:  Instalando placas deflectoras Estas son placas verticales perpendiculares a la pared del tanque. En tanques pequeños son suficientes 4 placas deflectoras, para evitar remolinos y formación de vórtice. El ancho de las placas no debe ser mayor que un doceavo del diámetro del tanque. Cuando se usan agitadores de hélice, el ancho de la placa puede ser de un octavo del diámetro del tanque.
  • 25. Deflectores o bafles  Cuando se emplean agitadores de aspas para agitar fluidos de baja viscosidad en tanques sin deflectores (o bafles) se genera un vórtice. La profundidad del vórtice crece con la velocidad hasta que eventualmente el vórtice pasa por el agitador.  La eficiencia del mezclado en un sistema con vórtice es usualmente menor que la correspondiente en el sistema sin ella. Para eliminar esta problemática, comúnmente se colocan cuatro deflectores al tanque con un ancho de 1/10 el diámetro del tanque.
  • 26.  Para líquidos de alta velocidad su misma resistencia natural a fluir amortigua la formación del vórtice al grado que el ancho de los bafles puede reducirse a 1/20 del diámetro del tanque.  Para fluidos viscosos se recomienda colocar los deflectores a una distancia de la pared igual al ancho del deflector para evitar zonas estancadas detrás de estos. Deflectores o bafles
  • 27. Rango de viscosidades para agitadores
  • 28. Potencia consumida por el agitador
  • 29. Las variables que pueden ser controladas y que influyen son:  Dimensiones principales del tanque y del rodete: Diámetro del tanque (Dt), Diámetro del rodete (Da), altura del líquido (H), ancho de la placa deflectora (J), distancia del fondo del tanque hasta el rodete (E), y dimensiones de las paletas.  Viscosidad (μ) y densidad (ρ) del fluido.  Velocidad de giro del agitador (N).
  • 30. Cálculo de Potencia  El cálculo de la potencia consumida se hace a través de números adimensionales, relacionando por medio de gráficos el número de Reynolds y el Número de Potencia. Estas gráficas dependerán de las características geométricas del agitador y de si están presentes o no, las placas deflectoras. Y Fr X P NNCN )()( Re= NP= Nº Potencia NRe = Nº Reynolds NFr= Nº de Froude
  • 31. Número de Reynolds = esfuerzo de inercia / esfuerzo cortante µ ρND N a 2 Re =
  • 32. Número de Froude = esfuerzo de inercia / esfuerzo gravitacional g DN N a 2 Fr =
  • 33. Número de Potencia = esfuerzo de frotamiento / esfuerzo de inercia ρ 53 a P DN P N =
  • 34. Esquematización de una curva de potencia