SlideShare ist ein Scribd-Unternehmen logo
1 von 75
ISIS Facility, STFC                                                           School of
     Rutherford Appleton Laboratory                                             Physical Sciences


           New Vistas on Quantum Matter
            Opened by Dipolar Fermions
                                        Jorge Quintanilla
                                        University of Kent
                            & Rutherford Appleton Laboratory

                 Collaborators: Sam T. Carr (Karlsruhe)
                                Joseph J. Betouras (Loughborough)
                                Andy J. Schofield (Birmingham)
                                Masud Haque (MPI Dresden)
                                Chris Hooley (St. Andrews)
                                Ben J. Powell (Queensland)

                                      Funding: STFC, SEPNet
2010 Annual Meeting of the UK Cold-atom/Condensed Matter Physics Network, St. Andrews, 9th-10th Sept. 2010
St. Andrews, 9 September 2010            blogs.kent.ac.uk/strongcorrelations


                                SEPNet
St. Andrews, 9 September 2010            blogs.kent.ac.uk/strongcorrelations


                                SEPNet
St. Andrews, 9 September 2010            blogs.kent.ac.uk/strongcorrelations


                                SEPNet
St. Andrews, 9 September 2010            blogs.kent.ac.uk/strongcorrelations


                                SEPNet
St. Andrews, 9 September 2010          blogs.kent.ac.uk/strongcorrelations


                                ISIS
St. Andrews, 9 September 2010       blogs.kent.ac.uk/strongcorrelations




                    STRONG CORRELATIONS
St. Andrews, 9 September 2010                   blogs.kent.ac.uk/strongcorrelations




                                Hubbard Model
St. Andrews, 9 September 2010                   blogs.kent.ac.uk/strongcorrelations




                                Hubbard Model
St. Andrews, 9 September 2010                                                 blogs.kent.ac.uk/strongcorrelations




                                Hubbard Model
                 Proceedings of the Royal Society of London. Series A, Mathematical and
                    Physical Sciences, Vol. 276, No. 1365 (Nov. 26, 1963), pp. 238-257
St. Andrews, 9 September 2010                                                 blogs.kent.ac.uk/strongcorrelations




                                Hubbard Model
                 Proceedings of the Royal Society of London. Series A, Mathematical and
                    Physical Sciences, Vol. 276, No. 1365 (Nov. 26, 1963), pp. 238-257
              “A theory of correlations [...] will
                  be mainly concerned with
                understanding [...] the balance
              between band-like and atomic-like
                         behaviour.”
St. Andrews, 9 September 2010                                    blogs.kent.ac.uk/strongcorrelations




         Strongly correlated quantum
                    matter
                                            2
                    p
                                     V r  r'
                   2
          p
        2m        2m  V r  r'
    many                        many            pairs of          pairs of
    particles                   particles       particles         particles

             kinetic energy                                      interaction energy




                                                          
St. Andrews, 9 September 2010                                          blogs.kent.ac.uk/strongcorrelations




         Strongly correlated quantum
                    matter
                                                  2
                    p
                                     V r  r'
                   2
          p
        2m        2m  V r  r'
    many                              many            pairs of          pairs of
    particles                         particles       particles         particles

              kinetic energy                                           interaction energy

               λ ~ rs ~ Å
                 >
                       pz                                       
    Fermi
    surface


         py                      px
St. Andrews, 9 September 2010                                                blogs.kent.ac.uk/strongcorrelations




         Strongly correlated quantum
                    matter
                                                  2
                    p
                                     V r  r'
                   2
          p
        2m        2m  V r  r'
    many                              many            pairs of                pairs of
    particles                         particles       particles               particles

              kinetic energy                                                interaction energy

               λ ~ rs ~ Å
                 >
                       pz                                                                Wigner
    Fermi                                                                                    crystal
    surface


                                                                         Mott
         py                      px
                                                                       insulator
St. Andrews, 9 September 2010                                                     blogs.kent.ac.uk/strongcorrelations




         Strongly correlated quantum
                    matter
                                                     2
                    p
                                     V r  r'
                   2
          p
        2m        2m  V r  r'
    many                                 many              pairs of                pairs of
    particles                            particles         particles               particles

              kinetic energy                                                     interaction energy

               λ ~ rs ~ Å
                 >
                                    Fermi liquid theory:
                       pz                                                                     Wigner
    Fermi                                                                                         crystal
    surface
                                    •Effective mass m*
                                    •Fermi momentum pF
                                                                              Mott
         py                      px •Landau parameters
                                                                            insulator
                                     F0, F1, F2, …
St. Andrews, 9 September 2010                                                 blogs.kent.ac.uk/strongcorrelations




         Strongly correlated quantum
                    matter
                                                   2
                    p
                                     V r  r'
                   2
          p
        2m        2m  V r  r'
    many                              many             pairs of                pairs of
    particles                         particles        particles               particles

              kinetic energy                                                 interaction energy

               λ ~ rs ~ Å
                 >
                       pz                        STRONGLY                                 Wigner
    Fermi                                                                                     crystal
    surface                                       CORRELATED
                                                   ELECTRON
                                                    SYSTEMS               Mott
         py                      px
                                                                        insulator
St. Andrews, 9 September 2010                                                       blogs.kent.ac.uk/strongcorrelations




                                      Cuprates
                 La2CuO4
                                                                  Parameter:
                                         Cu O Cu
                                       O     O   1 x                         Number of
                                                                               electrons per
                                     Cu O Cu                                   CuO2 plaquette
                                                                                     ( E.g. La2-xSrxCuO4 )


         25-30% holes / CuO2                                                     1 electron / CuO2




                       pz                 •High-temperature                        Antiferromagnetic
    Fermi                                 superconductivity,                        Mott insulator
    liquid
                                                 •stripes,
                                      [Tranquada et al., Nature (1995)]

         py                     px        •Non-Fermi liquid,

              [Hussey et al.]
                                            •pseudo-gap,…
St. Andrews, 9 September 2010                                                              blogs.kent.ac.uk/strongcorrelations




       Two-dimensional quantum wells
                                                                   Parameter:


                        B                                                       n electrons / n magnetic field
                                                                                                         lines

                                                                                  = hcn el /eB
    ν >> 1                                                                                                       ν << 1


    Two-dimensional
    Fermi liquid                                    
                                           •quantum Hall effect,                                           Wigner
                                          • fractional quantum Hall                                        crystal
                                                    effect,
         py                     px           •anisotropic state.
                                                                                         [ M.B. Santos et al.,
                                          [ M.P. Lilly et al., PRL (1999) ]             Phys.Rev.Lett. 68, 1188
      [ V. Senz et al., PRL (2000);                                                            (1992) ]
Y. Y. Proskuryakov et al., PRL (2001) ]
St. Andrews, 9 September 2010                                                   blogs.kent.ac.uk/strongcorrelations


                                Exact solution of the
                                  Hubbard model
         Consider the Hubbard model in D = 1:




         Phase diagram known exactly...                       U/t

                                                                        Mott insulator
                          Elliott H. Lieb and F. Y. Wu,
                           Phys. Rev. Lett. 20, 1445                         Luttinger liquid
                            (1968); 21, 192 (1968).
                                                                            f
                                                          0    1    2
         But an exact solution is not available for 1<D<∞.
St. Andrews, 9 September 2010     blogs.kent.ac.uk/strongcorrelations




                  SOFT QUANTUM MATTER
                  AND THE POMERANCHUK
                       INSTABILITY
St. Andrews, 9 September 2010                                                           blogs.kent.ac.uk/strongcorrelations




                                        Soft quantum matter
                            [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ]
                            classical
              temperature



                                          ideal     normal          liquid         solid
                                           gas       liquid        crystals        state
                            quantum




                                                                 STRONGLY
                                         Fermi      Fermi       CORRELATED
                                                                                  Wigner
                                          gas       liquid       ELECTRON       crystal/Mott
                                                                  SYSTEMS        insulator



                                                       correlations
St. Andrews, 9 September 2010                                                                                       blogs.kent.ac.uk/strongcorrelations




                                                                Soft quantum matter
                                                        [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ]
    /sci/physics/theory/research/simulation/ ]
    [http://www2.warwick.ac.uk/fac
    Pictures: Mike Allen




                                                 Fermi liquid                                                                  Wigner
                                                                                                                               crystal
St. Andrews, 9 September 2010                                                                                       blogs.kent.ac.uk/strongcorrelations




                                                                Soft quantum matter
                                                        [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ]
    /sci/physics/theory/research/simulation/ ]
    [http://www2.warwick.ac.uk/fac
    Pictures: Mike Allen




                                                 Fermi liquid                                                                  Wigner
                                                                                                                               crystal
St. Andrews, 9 September 2010                                                                                       blogs.kent.ac.uk/strongcorrelations




                                                                Soft quantum matter
                                                        [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ]
    /sci/physics/theory/research/simulation/ ]
    [http://www2.warwick.ac.uk/fac
    Pictures: Mike Allen




                                                 Fermi liquid                                                                  Wigner
                                                                                                                               crystal
St. Andrews, 9 September 2010                                                                                       blogs.kent.ac.uk/strongcorrelations




                                                                Soft quantum matter
                                                        [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ]
    /sci/physics/theory/research/simulation/ ]
    [http://www2.warwick.ac.uk/fac
    Pictures: Mike Allen




                                                 Fermi liquid                                                                  Wigner
                                                                                                  “stripes”
                                                                                                                               crystal
St. Andrews, 9 September 2010                                                                                       blogs.kent.ac.uk/strongcorrelations




                                                                Soft quantum matter
                                                        [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ]
    /sci/physics/theory/research/simulation/ ]
    [http://www2.warwick.ac.uk/fac
    Pictures: Mike Allen




                                                 Fermi liquid         nematic Fermi                                            Wigner
                                                                                                  “stripes”
                                                                         liquid                                                crystal
St. Andrews, 9 September 2010                                                                                       blogs.kent.ac.uk/strongcorrelations




                                                                Soft quantum matter
                                                        [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ]
    /sci/physics/theory/research/simulation/ ]
    [http://www2.warwick.ac.uk/fac
    Pictures: Mike Allen




                                                 Fermi liquid         nematic Fermi                                            Wigner
                                                                                                  “stripes”
                                                                         liquid                                                crystal
St. Andrews, 9 September 2010                                                                                       blogs.kent.ac.uk/strongcorrelations




                                                                Soft quantum matter
                                                        [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ]
    /sci/physics/theory/research/simulation/ ]
    [http://www2.warwick.ac.uk/fac
    Pictures: Mike Allen




                                                 Fermi liquid         nematic Fermi                                            Wigner
                                                                                                  “stripes”
                                                                         liquid                                                crystal
St. Andrews, 9 September 2010                                        blogs.kent.ac.uk/strongcorrelations


               The Pomeranchuk instability
                                    [ Pomeranchuk (1958) ]

                                                             l0   (s-wave)
                                                              Stoner Magnetism


                                                                     l 1         (p-wave)
                                                                   standing current
                                …

                                                       l  2        (d-wave)
                           l3                                  nematic
                       (f-wave)

                                               
St. Andrews, 9 September 2010                                            blogs.kent.ac.uk/strongcorrelations


                                Instability condition
                                     [ Pomeranchuk (1958) ]                        n(k)  0
          Arbitrary Fermi surface deformation:
                                                                                   n(k)  0
          Quasiparticle energy:
                                                                  

                                                                  
                                                        
          Landau parameters:          f k,k'  hv F  Fl cosl k   k '  (2D)
                                                       l 0
          Pomeranchuk Instability condition:

                                      E  0                 Fl   2
                                
St. Andrews, 9 September 2010      blogs.kent.ac.uk/strongcorrelations




                 MEAN FIELD THEORIES OF
                   THE POMERANCHUK
                      INSTABILITY
St. Andrews, 9 September 2010                          blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
         Many ordered states of electrons can be
                                                   l              q
         described in terms of pair formation...


         ... and condensation.
St. Andrews, 9 September 2010                                            blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
               l                 q
                                         particle-particle        particle-hole


                   q=0          l=0          s-wave            Stoner ferromagnet,
                                         superconductor        gas-liquid transition

                   q≠0          l=0           FFLO              spin- and charge-
                                              state               density waves

                   q=0          l≠0   unconventional pairing      Pomeranchuk
                                         superconductor             instability

                   q≠0          l≠0          FFLO +             “d”-density waves
                                      unconventional pairing
St. Andrews, 9 September 2010                                            blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
               l                 q
                                         particle-particle        particle-hole


                   q=0          l=0          s-wave            Stoner ferromagnet,
                                         superconductor        gas-liquid transition

                   q≠0          l=0           FFLO              spin- and charge-
                                              state               density waves

                   q=0          l≠0   unconventional pairing      Pomeranchuk
                                         superconductor             instability

                   q≠0          l≠0          FFLO +             “d”-density waves
                                      unconventional pairing
St. Andrews, 9 September 2010                                            blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
               l                 q
                                         particle-particle        particle-hole


                   q=0          l=0          s-wave            Stoner ferromagnet,
                                         superconductor        gas-liquid transition

                   q≠0          l=0           FFLO              spin- and charge-
                                              state               density waves

                   q=0          l≠0   unconventional pairing      Pomeranchuk
                                         superconductor             instability

                   q≠0          l≠0          FFLO +             “d”-density waves
                                      unconventional pairing
St. Andrews, 9 September 2010                                            blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
               l                 q
                                         particle-particle        particle-hole


                   q=0          l=0          s-wave            Stoner ferromagnet,
                                         superconductor        gas-liquid transition

                   q≠0          l=0           FFLO              spin- and charge-
                                              state               density waves

                   q=0          l≠0   unconventional pairing      Pomeranchuk
                                         superconductor             instability

                   q≠0          l≠0          FFLO +             “d”-density waves
                                      unconventional pairing
St. Andrews, 9 September 2010                                            blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
               l                 q
                                         particle-particle        particle-hole


                   q=0          l=0          s-wave            Stoner ferromagnet,
                                         superconductor        gas-liquid transition

                   q≠0          l=0           FFLO              spin- and charge-
                                              state               density waves

                   q=0          l≠0   unconventional pairing      Pomeranchuk
                                         superconductor             instability

                   q≠0          l≠0          FFLO +             “d”-density waves
                                      unconventional pairing
St. Andrews, 9 September 2010                                            blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
               l                 q
                                         particle-particle        particle-hole


                   q=0          l=0          s-wave            Stoner ferromagnet,
                                         superconductor        gas-liquid transition

                   q≠0          l=0           FFLO              spin- and charge-
                                              state               density waves

                   q=0          l≠0   unconventional pairing      Pomeranchuk
                                         superconductor             instability

                   q≠0          l≠0          FFLO +             “d”-density waves
                                      unconventional pairing
St. Andrews, 9 September 2010                                            blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
               l                 q
                                         particle-particle        particle-hole


                   q=0          l=0          s-wave            Stoner ferromagnet,
                                         superconductor        gas-liquid transition

                   q≠0          l=0           FFLO              spin- and charge-
                                              state               density waves

                   q=0          l≠0   unconventional pairing      Pomeranchuk
                                         superconductor             instability

                   q≠0          l≠0          FFLO +             “d”-density waves
                                      unconventional pairing
St. Andrews, 9 September 2010                                            blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
               l                 q
                                         particle-particle        particle-hole


                   q=0          l=0          s-wave            Stoner ferromagnet,
                                         superconductor        gas-liquid transition

                   q≠0          l=0           FFLO              spin- and charge-
                                              state               density waves

                   q=0          l≠0   unconventional pairing      Pomeranchuk
                                         superconductor             instability

                   q≠0          l≠0          FFLO +             “d”-density waves
                                      unconventional pairing
St. Andrews, 9 September 2010                                            blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
               l                 q
                                         particle-particle        particle-hole


                   q=0          l=0          s-wave            Stoner ferromagnet,
                                         superconductor        gas-liquid transition

                   q≠0          l=0           FFLO              spin- and charge-
                                              state               density waves

                   q=0          l≠0   unconventional pairing      Pomeranchuk
                                         superconductor             instability

                   q≠0          l≠0          FFLO +             “d”-density waves
                                      unconventional pairing
St. Andrews, 9 September 2010                                                         blogs.kent.ac.uk/strongcorrelations


             What is the order parameter?
               l                 q
                                          particle-particle                     particle-hole


                   q=0          l=0           s-wave                      Stoner ferromagnet,
                                          superconductor                  gas-liquid transition
                                                         The order parameter is *
                   q≠0          l=0              FFLO                       spin- and charge-
                                                             ∫dθp cos(lθp) n(p)
                                                 state                        density waves
                                                                l = 1,2,3,...
                   q=0          l≠0   unconventional pairing                    Pomeranchuk
                                                * Expression for the case of a 2D continuum
                                         superconductor                            instability

                   q≠0          l≠0          FFLO +                         “d”-density waves
                                      unconventional pairing
St. Andrews, 9 September 2010                                                    blogs.kent.ac.uk/strongcorrelations


                         Microscopic description
                   [ J. Quintanilla & A. J. Schofield, Physical Review B 74, 115126 (2006) ]
           [ J. Quintanilla, M. Haque & A. J. Schofield, Physical Review B 78, 035131 (2008) ]
       1) Microscopic model: free fermions + isotropic interaction

                                              p 2 
                        H                     V r  r'
                                             2m    all pairs of
                                 many
                                 particles               particles


       2) Trial ground state:                          c
                                                          ˆ        
                                                                   k,   0
                                                        k 0
                   variationally:
       3) Determine (k)                                     H   minimum
                     
St. Andrews, 9 September 2010                                                    blogs.kent.ac.uk/strongcorrelations


                                Instability condition
                  [ J. Quintanilla & A. J. Schofield, Physical Review B 74, 115126 (2006) ]
          [ J. Quintanilla, M. Haque & A. J. Schofield, Physical Review B 78, 035131 (2008) ]

                                                          4 v F
                     E  0               Vl kF ,kF                     (2D)
                                                           kF


                     
                                 
St. Andrews, 9 September 2010                                                  blogs.kent.ac.uk/strongcorrelations




                     Topological Fermi surface
                           transitions
              [ J. Quintanilla y A. J. Schofield, Physical Review B 74, 115126 (2006) ]
           Same recipe: interactions with sharp length scale r0 > rs :          ~
                                V(r)                                    V(r)


                                                  r                                                        r
                                       r0                                                r0
  g/r0ε0




                                kFr0                                       kFr0
St. Andrews, 9 September 2010   blogs.kent.ac.uk/strongcorrelations




           POMERANCHUK INSTABILITY
             AND DECONFINEMENT
St. Andrews, 9 September 2010                                             blogs.kent.ac.uk/strongcorrelations




                     Pomeranchuk on a lattice
  [ JQ, C. Hooley, B.J. Powell, A.J. Schofield & M. Haque, Physica B, 403, 1279-1281 (2008). ]

       Theory can be generalised to crystal lattices:
                                     t2
                                                                    u0       u2
                           t1             t3 …     +
                                                               u1          u2 …

       Interactions beyond on-site ⇒ band-structure renormalisation:

                                t1 , t2 , t3 ,… → t1* , t2* , t3* ,…
St. Andrews, 9 September 2010                                                blogs.kent.ac.uk/strongcorrelations




                     Pomeranchuk on a lattice
  [ JQ, C. Hooley, B.J. Powell, A.J. Schofield & M. Haque, Physica B, 403, 1279-1281 (2008). ]
       Example: square lattice with t1 ≠0 , u1 ≠0           (u0 won’t do!)

                              Empty               Half-filled
                               band                 band                          Band
                         V1                                                     filling
              large
                V1




                                                                   Order parameter:
                         t * /V1
                                                                               c 1c j
                                                                                 j
              small
               V1




      
                                                                
St. Andrews, 9 September 2010                                                    blogs.kent.ac.uk/strongcorrelations




                                Confinement
         C.f. the “confinement hypothesis”

                                             1D                       2D
                                                                                     t’ / t
                                   0                 ( t’ / t )crit

                                  [ David G. Clarke, S. P. Strong, and P. W. Anderson, Phys.
             t’                                   Rev. Lett. 72, 3218 (1994) ]

                   t
St. Andrews, 9 September 2010                                                                   blogs.kent.ac.uk/strongcorrelations




                                        Confinement
         C.f. the “confinement hypothesis”

                                                            1D                       2D
                                                                                                    t’ / t
                                                   0                ( t’ / t )crit

                                                 [ David G. Clarke, S. P. Strong, and P. W. Anderson, Phys.
             t’                                                  Rev. Lett. 72, 3218 (1994) ]

                   t

         Latest evidence:
         functional RG ( t → 0 limit )
              [Sascha Ledowski and Peter Kopietz (2007) ]
St. Andrews, 9 September 2010                                                                   blogs.kent.ac.uk/strongcorrelations




                                        Confinement
         C.f. the “confinement hypothesis”

                                                            1D                       2D
                                                                                                    t’ / t
                                                   0                ( t’ / t )crit

                                                 [ David G. Clarke, S. P. Strong, and P. W. Anderson, Phys.
             t’                                                  Rev. Lett. 72, 3218 (1994) ]

                   t

         Latest evidence:
         functional RG ( t → 0 limit )
              [Sascha Ledowski and Peter Kopietz (2007) ]
St. Andrews, 9 September 2010                                                                 blogs.kent.ac.uk/strongcorrelations




                                                 1D → 2D
                            [ J. Quintanilla, S.T. Carr, J.J. Betouras, PRA 79, 031601(R) (2009) ]

         What about the opposite: can interactions restore 2D behaviour?



                                                                    1D               2D
                                                                                                            V
                                                           0                 Vcrit
                  V
                        t
         Model:
St. Andrews, 9 September 2010      blogs.kent.ac.uk/strongcorrelations




                   MAKING SOFT QUANTUM
                         MATTER
St. Andrews, 9 September 2010                                                              blogs.kent.ac.uk/strongcorrelations


                                Soft quantum matter
                                with dipolar fermions
                   Use dipolar fermions (e.g. 40K87Rb molecules* or 161/163Dy**).
                                                                         * K.-K. Ni et al., Science 322, 231 (2008).
                                                       ** M. Lu, S. H. Youn, & B. L. Lev, PRL 104, 063001 (2010).




                                                 Applied field polarises the fermions.


                                                    Load onto quasi-1D optical lattice.


                                                                  Align chains at the “magic
                                                                  angle” to the applied field.

J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
St. Andrews, 9 September 2010                                        blogs.kent.ac.uk/strongcorrelations


                                Soft quantum matter
                                with dipolar fermions

             By tuning the ratio of the lattice constants, a/b, can
               make in-plane interaction strongly anisotropic:




J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
St. Andrews, 9 September 2010                                        blogs.kent.ac.uk/strongcorrelations


                                Soft quantum matter
                                with dipolar fermions

             By tuning the ratio of the lattice constants, a/b, can
               make in-plane interaction strongly anisotropic:



                                              V(k) 2Vcos(ky)




J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
St. Andrews, 9 September 2010                                        blogs.kent.ac.uk/strongcorrelations




               Phase diagram, large a >> b




J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
St. Andrews, 9 September 2010                                              blogs.kent.ac.uk/strongcorrelations




               Phase diagram, large a >> b




                                                           meta-nematic transition


J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
St. Andrews, 9 September 2010                                        blogs.kent.ac.uk/strongcorrelations




               Phase diagram, large a >> b




J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
St. Andrews, 9 September 2010                                                   blogs.kent.ac.uk/strongcorrelations




               Phase diagram, large a >> b




                                                                     crystallisation




J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
St. Andrews, 9 September 2010                                             blogs.kent.ac.uk/strongcorrelations




                                 Phase diagram, a ~ b
              crystallisation
                  ,   






                                                                                stripes
                                                                            0,   



 J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
                                                                      
St. Andrews, 9 September 2010                                        blogs.kent.ac.uk/strongcorrelations


            A controlled realisation of the
            soft quantum matter scenario




J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
St. Andrews, 9 September 2010                                        blogs.kent.ac.uk/strongcorrelations


            A controlled realisation of the
            soft quantum matter scenario




       Weak-
      coupling

J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
St. Andrews, 9 September 2010                                      blogs.kent.ac.uk/strongcorrelations


                 Nature of the meta-nematic
                         transition




S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
St. Andrews, 9 September 2010                                      blogs.kent.ac.uk/strongcorrelations


                 Nature of the meta-nematic
                         transition




S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
St. Andrews, 9 September 2010                                                        blogs.kent.ac.uk/strongcorrelations


                 Nature of the meta-nematic
                         transition


                                                     Vol. 11, pp. 1130-1135 (1960)




S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
St. Andrews, 9 September 2010                                      blogs.kent.ac.uk/strongcorrelations


                 Nature of the meta-nematic
                         transition




S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
St. Andrews, 9 September 2010                                                blogs.kent.ac.uk/strongcorrelations


                 Nature of the meta-nematic
                         transition
                                                                   The “2+½-order” Lifshitz
                                                                   transition is the quantum
                                                                   critical endpoint of the
                                                                   1st-order meta-nematic
                                                                   transition.




S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
St. Andrews, 9 September 2010                                                  blogs.kent.ac.uk/strongcorrelations


                 Nature of the meta-nematic
                         transition
                                                                   The “2+½-order” Lifshitz
                                                                   transition is the quantum
                                                                   critical endpoint of the
                                                                   1st-order meta-nematic
                                                                   transition.

                                                                   It is a non-analytic
                                                                   transition (in the sense
                                                                   of BCS theory):




                                                                        C.f. Y. Yamaji, T. Misawa & M.
                                                                              Imada, JPSJ 75, 094719
                                                                          (2006) (t-t’ Hubbard model).



S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
St. Andrews, 9 September 2010                                      blogs.kent.ac.uk/strongcorrelations



                                Finite temperature




S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
St. Andrews, 9 September 2010                                      blogs.kent.ac.uk/strongcorrelations



          Effect of the trapping potential




S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
St. Andrews, 9 September 2010                                      blogs.kent.ac.uk/strongcorrelations



          Effect of the trapping potential




S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
St. Andrews, 9 September 2010                                      blogs.kent.ac.uk/strongcorrelations



          Effect of the trapping potential




S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
St. Andrews, 9 September 2010                                       blogs.kent.ac.uk/strongcorrelations




                                CONCLUSIONS
                •Soft quantum matter can be realised, in a controlled
                way (both theoretically and experimentally), using
                ultra-cold dipolar fermions in a suitable optical lattice.

                •This should enable us to establish the extent to
                which soft quantum matter can be a useful framework
                for understanding strongly-correlated materials.

                •As always, we learn more than we expected as we
                go along.
St. Andrews, 9 September 2010             blogs.kent.ac.uk/strongcorrelations




                                THANKS!

Weitere ähnliche Inhalte

Andere mochten auch (9)

IntelliJ IDEA: architecture, performance, development process
IntelliJ IDEA: architecture, performance, development processIntelliJ IDEA: architecture, performance, development process
IntelliJ IDEA: architecture, performance, development process
 
LAC 2010 - Keynote Presentation: Innovation in Gaming
LAC 2010 - Keynote Presentation: Innovation in GamingLAC 2010 - Keynote Presentation: Innovation in Gaming
LAC 2010 - Keynote Presentation: Innovation in Gaming
 
Foc2012
Foc2012 Foc2012
Foc2012
 
Problems & Solutions
Problems & SolutionsProblems & Solutions
Problems & Solutions
 
The Ad Project
The Ad ProjectThe Ad Project
The Ad Project
 
Internet rules 2.1 new version
Internet rules 2.1   new versionInternet rules 2.1   new version
Internet rules 2.1 new version
 
Evelyn taylor
Evelyn taylorEvelyn taylor
Evelyn taylor
 
Howtofillinitiativestemplates-14june10-100730044021-phpapp01
 Howtofillinitiativestemplates-14june10-100730044021-phpapp01 Howtofillinitiativestemplates-14june10-100730044021-phpapp01
Howtofillinitiativestemplates-14june10-100730044021-phpapp01
 
For the love of god 2
For the love of god 2For the love of god 2
For the love of god 2
 

Ähnlich wie New Vistas on Quantum Matter Opened by Dipolar Fermions

Lattice Energy LLC Changes in Solar Neutrino Fluxes Alter Nuclear Beta-decay ...
Lattice Energy LLC Changes in Solar Neutrino Fluxes Alter Nuclear Beta-decay ...Lattice Energy LLC Changes in Solar Neutrino Fluxes Alter Nuclear Beta-decay ...
Lattice Energy LLC Changes in Solar Neutrino Fluxes Alter Nuclear Beta-decay ...
Lewis Larsen
 
Antimatter
AntimatterAntimatter
Antimatter
shivaram
 
Lattice Energy LLC - Two Facets of W-L Theorys LENR-active Sites Supported b...
Lattice Energy LLC -  Two Facets of W-L Theorys LENR-active Sites Supported b...Lattice Energy LLC -  Two Facets of W-L Theorys LENR-active Sites Supported b...
Lattice Energy LLC - Two Facets of W-L Theorys LENR-active Sites Supported b...
Lewis Larsen
 
Cern brochure-2009-001-eng
Cern brochure-2009-001-engCern brochure-2009-001-eng
Cern brochure-2009-001-eng
guest0b81f9
 

Ähnlich wie New Vistas on Quantum Matter Opened by Dipolar Fermions (10)

Lattice Energy LLC Changes in Solar Neutrino Fluxes Alter Nuclear Beta-decay ...
Lattice Energy LLC Changes in Solar Neutrino Fluxes Alter Nuclear Beta-decay ...Lattice Energy LLC Changes in Solar Neutrino Fluxes Alter Nuclear Beta-decay ...
Lattice Energy LLC Changes in Solar Neutrino Fluxes Alter Nuclear Beta-decay ...
 
Lattice Energy LLC-Nickel-seed LENR Networks-April 20 2011
Lattice Energy LLC-Nickel-seed LENR Networks-April 20 2011Lattice Energy LLC-Nickel-seed LENR Networks-April 20 2011
Lattice Energy LLC-Nickel-seed LENR Networks-April 20 2011
 
Kemar James
Kemar JamesKemar James
Kemar James
 
5m electromagnetic waves
5m electromagnetic waves5m electromagnetic waves
5m electromagnetic waves
 
Antimatter
AntimatterAntimatter
Antimatter
 
432036a
432036a432036a
432036a
 
Lattice Energy LLC - Two Facets of W-L Theorys LENR-active Sites Supported b...
Lattice Energy LLC -  Two Facets of W-L Theorys LENR-active Sites Supported b...Lattice Energy LLC -  Two Facets of W-L Theorys LENR-active Sites Supported b...
Lattice Energy LLC - Two Facets of W-L Theorys LENR-active Sites Supported b...
 
Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012
Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012
Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012
 
Cern brochure-2009-001-eng
Cern brochure-2009-001-engCern brochure-2009-001-eng
Cern brochure-2009-001-eng
 
LHC – the greatest experiment
LHC – the greatest experimentLHC – the greatest experiment
LHC – the greatest experiment
 

Mehr von Jorge Quintanilla

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Jorge Quintanilla
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 

Mehr von Jorge Quintanilla (19)

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...
 
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
 
Thermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsThermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductors
 
Talk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webTalk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla Loughborough
 

Kürzlich hochgeladen

Kürzlich hochgeladen (20)

How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 

New Vistas on Quantum Matter Opened by Dipolar Fermions

  • 1. ISIS Facility, STFC School of Rutherford Appleton Laboratory Physical Sciences New Vistas on Quantum Matter Opened by Dipolar Fermions Jorge Quintanilla University of Kent & Rutherford Appleton Laboratory Collaborators: Sam T. Carr (Karlsruhe) Joseph J. Betouras (Loughborough) Andy J. Schofield (Birmingham) Masud Haque (MPI Dresden) Chris Hooley (St. Andrews) Ben J. Powell (Queensland) Funding: STFC, SEPNet 2010 Annual Meeting of the UK Cold-atom/Condensed Matter Physics Network, St. Andrews, 9th-10th Sept. 2010
  • 2. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations SEPNet
  • 3. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations SEPNet
  • 4. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations SEPNet
  • 5. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations SEPNet
  • 6. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations ISIS
  • 7. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations STRONG CORRELATIONS
  • 8. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Hubbard Model
  • 9. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Hubbard Model
  • 10. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Hubbard Model Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 276, No. 1365 (Nov. 26, 1963), pp. 238-257
  • 11. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Hubbard Model Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 276, No. 1365 (Nov. 26, 1963), pp. 238-257 “A theory of correlations [...] will be mainly concerned with understanding [...] the balance between band-like and atomic-like behaviour.”
  • 12. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Strongly correlated quantum matter 2 p V r  r' 2 p  2m  2m  V r  r' many many pairs of pairs of particles particles particles particles kinetic energy interaction energy  
  • 13. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Strongly correlated quantum matter 2 p V r  r' 2 p  2m  2m  V r  r' many many pairs of pairs of particles particles particles particles kinetic energy interaction energy λ ~ rs ~ Å > pz   Fermi surface py px
  • 14. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Strongly correlated quantum matter 2 p V r  r' 2 p  2m  2m  V r  r' many many pairs of pairs of particles particles particles particles kinetic energy interaction energy λ ~ rs ~ Å > pz   Wigner Fermi crystal surface Mott py px insulator
  • 15. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Strongly correlated quantum matter 2 p V r  r' 2 p  2m  2m  V r  r' many many pairs of pairs of particles particles particles particles kinetic energy interaction energy λ ~ rs ~ Å > Fermi liquid theory: pz   Wigner Fermi crystal surface •Effective mass m* •Fermi momentum pF Mott py px •Landau parameters insulator F0, F1, F2, …
  • 16. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Strongly correlated quantum matter 2 p V r  r' 2 p  2m  2m  V r  r' many many pairs of pairs of particles particles particles particles kinetic energy interaction energy λ ~ rs ~ Å > pz  STRONGLY  Wigner Fermi crystal surface CORRELATED ELECTRON SYSTEMS Mott py px insulator
  • 17. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Cuprates La2CuO4 Parameter: Cu O Cu O O 1 x  Number of electrons per Cu O Cu CuO2 plaquette ( E.g. La2-xSrxCuO4 ) 25-30% holes / CuO2  1 electron / CuO2 pz •High-temperature Antiferromagnetic Fermi superconductivity, Mott insulator liquid •stripes, [Tranquada et al., Nature (1995)] py px •Non-Fermi liquid, [Hussey et al.] •pseudo-gap,…
  • 18. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Two-dimensional quantum wells Parameter: B   n electrons / n magnetic field lines = hcn el /eB ν >> 1 ν << 1 Two-dimensional Fermi liquid  •quantum Hall effect, Wigner • fractional quantum Hall crystal effect, py px •anisotropic state. [ M.B. Santos et al., [ M.P. Lilly et al., PRL (1999) ] Phys.Rev.Lett. 68, 1188 [ V. Senz et al., PRL (2000); (1992) ] Y. Y. Proskuryakov et al., PRL (2001) ]
  • 19. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Exact solution of the Hubbard model Consider the Hubbard model in D = 1: Phase diagram known exactly... U/t Mott insulator Elliott H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 Luttinger liquid (1968); 21, 192 (1968). f 0 1 2 But an exact solution is not available for 1<D<∞.
  • 20. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations SOFT QUANTUM MATTER AND THE POMERANCHUK INSTABILITY
  • 21. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ] classical temperature ideal normal liquid solid gas liquid crystals state quantum STRONGLY Fermi Fermi CORRELATED Wigner gas liquid ELECTRON crystal/Mott SYSTEMS insulator correlations
  • 22. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ] /sci/physics/theory/research/simulation/ ] [http://www2.warwick.ac.uk/fac Pictures: Mike Allen Fermi liquid Wigner crystal
  • 23. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ] /sci/physics/theory/research/simulation/ ] [http://www2.warwick.ac.uk/fac Pictures: Mike Allen Fermi liquid Wigner crystal
  • 24. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ] /sci/physics/theory/research/simulation/ ] [http://www2.warwick.ac.uk/fac Pictures: Mike Allen Fermi liquid Wigner crystal
  • 25. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ] /sci/physics/theory/research/simulation/ ] [http://www2.warwick.ac.uk/fac Pictures: Mike Allen Fermi liquid Wigner “stripes” crystal
  • 26. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ] /sci/physics/theory/research/simulation/ ] [http://www2.warwick.ac.uk/fac Pictures: Mike Allen Fermi liquid nematic Fermi Wigner “stripes” liquid crystal
  • 27. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ] /sci/physics/theory/research/simulation/ ] [http://www2.warwick.ac.uk/fac Pictures: Mike Allen Fermi liquid nematic Fermi Wigner “stripes” liquid crystal
  • 28. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter [ S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998) ] /sci/physics/theory/research/simulation/ ] [http://www2.warwick.ac.uk/fac Pictures: Mike Allen Fermi liquid nematic Fermi Wigner “stripes” liquid crystal
  • 29. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations The Pomeranchuk instability [ Pomeranchuk (1958) ] l0 (s-wave) Stoner Magnetism l 1 (p-wave)  standing current …  l  2 (d-wave) l3 nematic (f-wave) 
  • 30. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Instability condition [ Pomeranchuk (1958) ] n(k)  0 Arbitrary Fermi surface deformation: n(k)  0 Quasiparticle energy:    Landau parameters: f k,k'  hv F  Fl cosl k   k '  (2D) l 0 Pomeranchuk Instability condition: E  0  Fl   2 
  • 31. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations MEAN FIELD THEORIES OF THE POMERANCHUK INSTABILITY
  • 32. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? Many ordered states of electrons can be l q described in terms of pair formation... ... and condensation.
  • 33. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? l q particle-particle particle-hole q=0 l=0 s-wave Stoner ferromagnet, superconductor gas-liquid transition q≠0 l=0 FFLO spin- and charge- state density waves q=0 l≠0 unconventional pairing Pomeranchuk superconductor instability q≠0 l≠0 FFLO + “d”-density waves unconventional pairing
  • 34. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? l q particle-particle particle-hole q=0 l=0 s-wave Stoner ferromagnet, superconductor gas-liquid transition q≠0 l=0 FFLO spin- and charge- state density waves q=0 l≠0 unconventional pairing Pomeranchuk superconductor instability q≠0 l≠0 FFLO + “d”-density waves unconventional pairing
  • 35. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? l q particle-particle particle-hole q=0 l=0 s-wave Stoner ferromagnet, superconductor gas-liquid transition q≠0 l=0 FFLO spin- and charge- state density waves q=0 l≠0 unconventional pairing Pomeranchuk superconductor instability q≠0 l≠0 FFLO + “d”-density waves unconventional pairing
  • 36. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? l q particle-particle particle-hole q=0 l=0 s-wave Stoner ferromagnet, superconductor gas-liquid transition q≠0 l=0 FFLO spin- and charge- state density waves q=0 l≠0 unconventional pairing Pomeranchuk superconductor instability q≠0 l≠0 FFLO + “d”-density waves unconventional pairing
  • 37. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? l q particle-particle particle-hole q=0 l=0 s-wave Stoner ferromagnet, superconductor gas-liquid transition q≠0 l=0 FFLO spin- and charge- state density waves q=0 l≠0 unconventional pairing Pomeranchuk superconductor instability q≠0 l≠0 FFLO + “d”-density waves unconventional pairing
  • 38. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? l q particle-particle particle-hole q=0 l=0 s-wave Stoner ferromagnet, superconductor gas-liquid transition q≠0 l=0 FFLO spin- and charge- state density waves q=0 l≠0 unconventional pairing Pomeranchuk superconductor instability q≠0 l≠0 FFLO + “d”-density waves unconventional pairing
  • 39. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? l q particle-particle particle-hole q=0 l=0 s-wave Stoner ferromagnet, superconductor gas-liquid transition q≠0 l=0 FFLO spin- and charge- state density waves q=0 l≠0 unconventional pairing Pomeranchuk superconductor instability q≠0 l≠0 FFLO + “d”-density waves unconventional pairing
  • 40. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? l q particle-particle particle-hole q=0 l=0 s-wave Stoner ferromagnet, superconductor gas-liquid transition q≠0 l=0 FFLO spin- and charge- state density waves q=0 l≠0 unconventional pairing Pomeranchuk superconductor instability q≠0 l≠0 FFLO + “d”-density waves unconventional pairing
  • 41. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? l q particle-particle particle-hole q=0 l=0 s-wave Stoner ferromagnet, superconductor gas-liquid transition q≠0 l=0 FFLO spin- and charge- state density waves q=0 l≠0 unconventional pairing Pomeranchuk superconductor instability q≠0 l≠0 FFLO + “d”-density waves unconventional pairing
  • 42. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations What is the order parameter? l q particle-particle particle-hole q=0 l=0 s-wave Stoner ferromagnet, superconductor gas-liquid transition The order parameter is * q≠0 l=0 FFLO spin- and charge- ∫dθp cos(lθp) n(p) state density waves l = 1,2,3,... q=0 l≠0 unconventional pairing Pomeranchuk * Expression for the case of a 2D continuum superconductor instability q≠0 l≠0 FFLO + “d”-density waves unconventional pairing
  • 43. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Microscopic description [ J. Quintanilla & A. J. Schofield, Physical Review B 74, 115126 (2006) ] [ J. Quintanilla, M. Haque & A. J. Schofield, Physical Review B 78, 035131 (2008) ] 1) Microscopic model: free fermions + isotropic interaction  p 2  H     V r  r' 2m  all pairs of many particles particles 2) Trial ground state:   c ˆ  k, 0  k 0   variationally: 3) Determine (k)  H   minimum 
  • 44. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Instability condition [ J. Quintanilla & A. J. Schofield, Physical Review B 74, 115126 (2006) ] [ J. Quintanilla, M. Haque & A. J. Schofield, Physical Review B 78, 035131 (2008) ] 4 v F E  0  Vl kF ,kF   (2D) kF   
  • 45. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Topological Fermi surface transitions [ J. Quintanilla y A. J. Schofield, Physical Review B 74, 115126 (2006) ] Same recipe: interactions with sharp length scale r0 > rs : ~ V(r) V(r) r r r0 r0 g/r0ε0 kFr0 kFr0
  • 46. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations POMERANCHUK INSTABILITY AND DECONFINEMENT
  • 47. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Pomeranchuk on a lattice [ JQ, C. Hooley, B.J. Powell, A.J. Schofield & M. Haque, Physica B, 403, 1279-1281 (2008). ] Theory can be generalised to crystal lattices: t2 u0 u2 t1 t3 … + u1 u2 … Interactions beyond on-site ⇒ band-structure renormalisation: t1 , t2 , t3 ,… → t1* , t2* , t3* ,…
  • 48. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Pomeranchuk on a lattice [ JQ, C. Hooley, B.J. Powell, A.J. Schofield & M. Haque, Physica B, 403, 1279-1281 (2008). ] Example: square lattice with t1 ≠0 , u1 ≠0 (u0 won’t do!) Empty Half-filled band band Band V1   filling large V1  Order parameter: t * /V1 c 1c j j small V1  
  • 49. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Confinement C.f. the “confinement hypothesis” 1D 2D t’ / t 0 ( t’ / t )crit [ David G. Clarke, S. P. Strong, and P. W. Anderson, Phys. t’ Rev. Lett. 72, 3218 (1994) ] t
  • 50. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Confinement C.f. the “confinement hypothesis” 1D 2D t’ / t 0 ( t’ / t )crit [ David G. Clarke, S. P. Strong, and P. W. Anderson, Phys. t’ Rev. Lett. 72, 3218 (1994) ] t Latest evidence: functional RG ( t → 0 limit ) [Sascha Ledowski and Peter Kopietz (2007) ]
  • 51. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Confinement C.f. the “confinement hypothesis” 1D 2D t’ / t 0 ( t’ / t )crit [ David G. Clarke, S. P. Strong, and P. W. Anderson, Phys. t’ Rev. Lett. 72, 3218 (1994) ] t Latest evidence: functional RG ( t → 0 limit ) [Sascha Ledowski and Peter Kopietz (2007) ]
  • 52. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations 1D → 2D [ J. Quintanilla, S.T. Carr, J.J. Betouras, PRA 79, 031601(R) (2009) ] What about the opposite: can interactions restore 2D behaviour? 1D 2D V 0 Vcrit V t Model:
  • 53. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations MAKING SOFT QUANTUM MATTER
  • 54. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter with dipolar fermions Use dipolar fermions (e.g. 40K87Rb molecules* or 161/163Dy**). * K.-K. Ni et al., Science 322, 231 (2008). ** M. Lu, S. H. Youn, & B. L. Lev, PRL 104, 063001 (2010). Applied field polarises the fermions. Load onto quasi-1D optical lattice. Align chains at the “magic angle” to the applied field. J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
  • 55. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter with dipolar fermions By tuning the ratio of the lattice constants, a/b, can make in-plane interaction strongly anisotropic: J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
  • 56. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Soft quantum matter with dipolar fermions By tuning the ratio of the lattice constants, a/b, can make in-plane interaction strongly anisotropic: V(k) 2Vcos(ky) J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
  • 57. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Phase diagram, large a >> b J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
  • 58. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Phase diagram, large a >> b meta-nematic transition J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
  • 59. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Phase diagram, large a >> b J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
  • 60. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Phase diagram, large a >> b crystallisation J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
  • 61. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Phase diagram, a ~ b crystallisation   ,     stripes  0,    J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009) 
  • 62. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations A controlled realisation of the soft quantum matter scenario J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
  • 63. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations A controlled realisation of the soft quantum matter scenario Weak- coupling J. Quintanilla, S.T. Carr, J.J. Betouras, PRA(R) 79, 031601 (2009)
  • 64. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Nature of the meta-nematic transition S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
  • 65. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Nature of the meta-nematic transition S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
  • 66. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Nature of the meta-nematic transition Vol. 11, pp. 1130-1135 (1960) S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
  • 67. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Nature of the meta-nematic transition S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
  • 68. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Nature of the meta-nematic transition The “2+½-order” Lifshitz transition is the quantum critical endpoint of the 1st-order meta-nematic transition. S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
  • 69. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Nature of the meta-nematic transition The “2+½-order” Lifshitz transition is the quantum critical endpoint of the 1st-order meta-nematic transition. It is a non-analytic transition (in the sense of BCS theory): C.f. Y. Yamaji, T. Misawa & M. Imada, JPSJ 75, 094719 (2006) (t-t’ Hubbard model). S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
  • 70. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Finite temperature S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
  • 71. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Effect of the trapping potential S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
  • 72. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Effect of the trapping potential S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
  • 73. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations Effect of the trapping potential S.T. Carr, J. Quintanilla & J.J. Betouras, PRB 82, 045110 (2010)
  • 74. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations CONCLUSIONS •Soft quantum matter can be realised, in a controlled way (both theoretically and experimentally), using ultra-cold dipolar fermions in a suitable optical lattice. •This should enable us to establish the extent to which soft quantum matter can be a useful framework for understanding strongly-correlated materials. •As always, we learn more than we expected as we go along.
  • 75. St. Andrews, 9 September 2010 blogs.kent.ac.uk/strongcorrelations THANKS!

Hinweis der Redaktion

  1. Fermi gas: Particles with well-defined momentum Indistinguishable particles (quantum) Homogeneous and isotropic fluid Mott/Wigner: Localised particles Distinguishable particles (classical) Crystal with broken translational and rotational symmetries
  2. Very subtle form of symmetry breaking. SHOW CATO SANDFORD’S SIMULATION HERE!
  3. mu* = -1.9 t and mu* = -1.5 t
  4. Type notes here
  5. Draw “bare” dispersion relation.
  6. 2+1/2 order??
  7. Indeed the OKF hamiltonian leads to 1st-order (you need to include cubic terms in the dispersion relation to make it 2nd-order).