SlideShare ist ein Scribd-Unternehmen logo
1 von 18
Downloaden Sie, um offline zu lesen
รากที่สอง
บทนิยาม ให้ n เป็นจานวนจริงบวกใดๆ หรือ ศูนย์ รากที่สองของ n คือจานวนจริง
ที่ยกกาลังสองแล้วได้ n




ตัวอย่าง




หมายเหตุ

1.รากที่สองของ 0 คือ 0

2.รากที่สองของจานวนจริงบวกจะเป็นจานวนตรรกยะหรือจานวนอตรรกยะอย่าง
ใดอย่างหนึ่งเท่านั้น

3.รากที่สองของจานวนจริงลบจะไม่เป็นจานวนจริง
4.ถ้า n เป็นจานวนจริงใดๆ จะได้ l n l เมื่อ l n l แทน ค่าสัมบูรณ์ของ n
การหารากที่สอง

       1. การหารากที่สองโดยแยกตัวประกอบ
ตัวอย่างที่ 1 จงหารากที่สองของ 64
วิธีทา 64 = 2 x2x2x2x2x2 = 8 x 8 = 82
       หรือ 64 = (-8) x (-8) = (-8) 2
       ดังนั้น รากที่สองของ 64 คือ 8 และ -8
       2. การหารากที่สองของเลขจานวนเต็มบวกโดยการตั้งหาร

1. แบ่งตัวเลขจากหลังมาเป็นคู่ๆ ถ้าเป็นเลขทศนิยมก็แบ่งจากจุดทศนิยมไปทางขวา
มือ ถ้าไม่ครบคู่ให้เติมศูนย์ให้ครบคู่

2.หาเลขจานวนหนึ่ง ซึ่งคูณตัวมันเองได้ค่าใกล้เคียงกับตัวเลขหน้าหรือคู่หน้ามาก
ที่สุด ( แต่ต้องไม่มากกว่า ) ให้ตั้งตัวเลขที่ได้ลงในช่องผลลัพธ์ตัวหนึ่ง และช่อง
ตัวหารตัวหนึ่ง

3.ยกกาลังสองของผลลัพธ์ ได้เท่าไรเอาไปตั้งเป็นตัวลบเลขตัวแรกหรือคู่แรกเศษ
เท่าไรชักลงมาแล้วชักเลขคู่ต่อไปลงมาคู่หนึ่ง

4.เอา 2 คูณผลลัพธ์ ได้เท่าไรเอาไปหารตัวเลขที่ชักลงมาให้ถึงจานวนที่ชักลงมา
เพียงจานวนเดียว ได้ผลลัพธ์เท่าไรเอาตั้งที่ผลลัพธ์ตัวหนึ่ง และตั้งที่ช่องหารตัว
หนึ่ง

5.เอาเลขลัพธ์ตัวใหม่คูณตัวหารทั้งหมด ตั้งเป็นตัวลบเหลือเศษเท่าไรชักลงมา
พร้อมกับชักเลขตัวตั้งลงมา 2 จานวนด้วย
6.ในกรณีที่ผลคูณในข้อ 5. ได้ผลลัพธ์ของตัวลบเกินตัวตั้งให้ลดค่าของผลลัพธ์ที่
ได้จากข้อ 4. ลงมาอันดับหนึ่ง ต่อจากนั้นทาเวียนจากข้อ 4. ลงมาจนหมดก็จะได้ค่า
รากที่สอง

      1. การหารรากที่สองของทศนิยม โดยการตั้งหาร
      มีหลักเหมือนการหารากที่สองของเลขจานวนเต็มทุกประการ จะแตกต่าง
กันก็แต่เพียงการแบ่งเลขเป็นชุด ๆ หลังจุดทศนิยมจะแบ่งจากซ้ายไปขวา (โดยเริ่ม
จากจุดทศนิยม) ครั้งละ 2 หลัก โดยมีเครื่องหมาย , คั่นเช่นกัน ลองทาดูนะคะ
เช่น จงหาราที่สองของ 10.58 = 3.2527

  รากที่สองของสอง

      รากที่สองของสอง หรือที่รู้จักในชื่อ ค่าคงตัวของพีทาโกรัส เขียนแทนด้วย
√2 เป็นจานวนจริงบวกที่เมื่อคูณกับตัวเองแล้วจะมีค่าเท่ากับ 2 มีค่าประมาณ
1.414213562373095

ในทางเรขาคณิต รากที่สองของสองคือความยาวของเส้นทแยงมุมของรูปสี่เหลี่ยม
จัตุรัสที่มีความยาวด้าน 1 หน่วย ความยาวนี้เป็นไปตามทฤษฎีบทพีทาโกรัส ซึ่งราก
ที่สองของสองนี้ถือเป็นจานวนอตรรกยะจานวนแรกที่เป็นที่รู้จัก
ประวัติ

      จากหลักฐานบันทึกบนก้อนโคลนของชาวบาบิโลเนียเผยให้เห็น
ค่าประมาณของ ในรูปผลบวกของเลขพหุคูณของ จานวน 4 พจน์ ซึ่งมีค่าใกล้เคียง
ถึงทศนิยมตาแหน่งที่หก



บันทึกในหนังสือ Sulbasutras ของชาวอินเดียโบราณ (800-200 ปีก่อนคริสตกาล)
ได้กล่าวถึงค่าประมาณของรากที่สองไว้คือ เป็นการเพิ่มความยาว (ของด้าน) ด้วย
หนึ่งในสามเท่าของค่านั้น แล้วเพิ่มด้วยหนึ่งในสี่เท่าของหนึ่งในสามเท่าค่านั้น
แล้วเพิ่มด้วยหนึ่งในสามสิบสี่เท่าของค่าหนึ่งในสี่เท่าค่านั้น



การค้นพบจานวนอตรรกยะนี้ ถือเป็นผลงานที่สาคัญของฮิปปาซุส (ศิษย์ในสานัก
ของปีทากอรัส) ซึ่งเป็นผู้ที่พิสูจน์ความเป็นอตรรกยะของรากที่สองของสอง เป็นที่
เชื่อกันตามคากล่าวว่าปีทากอรัสเชื่อในความสมบูรณ์แบบของจานวนและทาให้ไม่
ยอมรับในการค้นพบจานวนอตรรกยะ ถึงแม้ว่าปีทากอรัสจะไม่สามารถพิสูจน์
ความไม่มีอยู่ของจานวนอตรรกยะได้ แต่เขาก็ได้สั่งลงโทษประหารฮิปปาซุสโดย
การกดน้า ตานานอื่นเล่าว่าเขาถูกฆ่ากดน้าโดยศิษย์คนอื่นของปีทากอรัสหรืออาจ
ถูกขับออกจากสานัก
วิธีการคานวณ

นักคณิตศาสตร์ได้ค้นหาวิธีการคานวณรากที่สองของสองในรูปแบบต่างๆ กันเพื่อ
เขียนค่าประมาณใกล้เคียงของรากที่สองของสองออกมาในรูปของอัตราส่วนของ
จานวนเต็มหรือเลขทศนิยม หนึ่งในวิธีการที่ถือว่าเป็นเบื้องต้นที่สุดคืออัลกอริธึม
ของบาบิโลเนียนเพื่อคานวณรากที่สองของสอง ซึ่งถือเป็นพื้นฐานการคานวณของ
คอมพิวเตอร์และเครื่องคิดเลข อัลกอริธึมเพื่อหารากที่สอง (อาจใช้เพื่อหารากที่
สองของจานวนใดๆ ไม่เฉพาะของสอง) ดังกล่าวสามารถทาได้ดังนี้

1.เลือก a0 >0 ค่า a0 ที่เลือกนี้จะมีผลกระทบต่อความเร็วในการลู่เข้าสู่ค่าของ √2
ในระดับความแม่นยาหนึ่งเท่านั้น

2.ใช้ฟังก์ชันเรียกตัวเองเพื่อคานวณ a1, a2, a3, ..., an




ตัวอย่างการคานวณโดยเลือก a0=1 ได้ผลดังนี้

a0 = 1

a1 = 3/2 = 1.5

a2 = 17/12 = 1.416...
a3 = 577/408 = 1.414215...

a4 = 665857/470832 = 1.4142135623746...

ในปี ค.ศ.1997 ทีมของยาซูมาสะ คานาดะได้คานวณค่าของ √2 แม่นยาถึงทศนิยม
ตาแหน่งที่ 137,438,953,444

      เดือนกุมภาพันธ์ปี ค.ศ.2006 ความท้าทายในการคานวณค่าของ √2 ได้ถูกทา
ให้หมดไปด้วยการใช้คอมพิวเตอร์บ้าน ชิเกรุ คอนโดได้คานวณค่าประมาณ
ใกล้เคียงของ √2 ถึงทศนิยมตาแหน่งที่ 200,000,000,000 ในเวลา 13 วัน 14 ชั่วโมง
โดยใช้เครื่องคอมพิวเตอร์ส่วนบุคคลขนาด 3.6 GHz และหน่วยความจา 16 Gb

      อย่างไรก็ดี เป็นที่ยอมรับกันทั่วไปว่าในจานวนค่าคงตัวอตรรกยะทาง
คณิตศาสตร์ต่างๆ ที่ถือเป็นความท้าทายต่อนักคณิตศาสตร์ที่จะเขียนในรูปของ
ทศนิยมไม่รู้จบ ค่า π ดูจะเป็นจานวนที่ถูกประมาณได้แม่นยาละเอียดสูงสุด
แบบฝึกหัดเรื่องรากที่สอง

1.ข้อใดต่อไปนี้ไม่ถูกต้อง

1. รากที่สองของ 484 คือ 22 และ -22

2. -21 เป็นรากที่สองของ 441

3. รากที่สามของ 1,331 คือ 11 และ -11

4. 9 เป็นรากที่สามของ 729

2.ใดต่อไปนี้ไม่ถูกต้อง

1.

2.

3.

4.

3.จงหาผลลัพธ์ของ



4.จงหารากที่สองของ 2,601

5.จงหารากที่สองของ 3,025
6.จงหารากที่สองของ 4,225

7.จงหารากที่สองของ 4,900

8.จงหารากที่สองของ 6,084

9.

             เป็นสี่เหลี่ยมด้านขนาน มีฐานยาว 15 ซม.พื้นที่ 150 ตาราง

เซนติเมตร




และ     เป็นส่วนสูง จงหาว่า       ยาวประมาณกี่เซนติเมตร(ตอบเป็นจานวน

เต็มหน่วย)
10.จากรูปกาหนดให้




มี AB = 24 หน่วย BC = 7 หน่วย และ AC = CD จงหาความยาว         (ตอบเป็น

ทศนิยมสองตาแหน่ง)

11.จงหารากที่สองของ 2,601

12.จงหารากที่สองของ 3025

13.รูปสี่เหลี่ยมผืนผ้ารูปหนึ่งยาว 8 ซม. มีเส้นทแยงมุม 9 ซม.




จงหาว่ารูปนี้กว้างกี่เซนติเมตร (ตอบทศนิยม 2 ตาแหน่ง)
14.กาหนดให้ทรงสี่เหลี่ยมมุมฉาก ABCDEFGH มี AB = 5 หน่วย

BC = 3 หน่วย และ CD = 4 หน่วย จงหาความยาว     (ตอบเป็นทศนิยมสอง

ตาแหน่ง)




15.




16.

17.
18.




19.

20.รากที่สองของ 4,096




เฉลยแบบฝึกหัด

1.ตอบ 3. รากที่สามของ 1,331 คือ 11 และ -11

2.ตอบ 4.

3.ตอบ
4.ตอบ




5.ตอบ




6.ตอบ




7.ตอบ




8.ตอบ




9.วิธีทา พื้นที่สี่เหลี่ยมด้านขนาน = ความยาวฐาน x สูง

พื้นที่
เมื่อเรารู้ความสูงของรูปสี่เหลี่ยมแล้ว ต่อไปเรา จะหา AE

พิจารณา Δ ABE อยู่ในเส้นขนาน AB // DC และมี BE เป็นเส้นตั้งฉาก กับ DC

เกิดมุมแย้งกัน ดังนั้น จะได้

มุม

ที่ Δ ABE จาก ทฤษฎีบทพีทาโกลัส
10.วิธีทา พิจารณา Δ ABC เป็นสามเหลี่ยมมุมฉาก จาก ทฤษฎีบทพีทาโกลัส




11. วิธีทา การหารากที่อง ใช้การแยกตัวประกอบ จะได้




12.การหารากที่สอง ใช้การแยกตัวประกอบ จะได้
13.วิธีทา จากรูปด้านบน เราดูที่ Δ ABC จาก ทฤษฎีบทพีทาโกลัส




14.วิธีทา จากรูปด้านบนเรากาลัง จะหา BH จะได้ดังรูปที่ 2




จากรูป หา BH จากสามเลี่ยม ABH มุม A เป็นมุมฉาก

จาก ทฤษฎีบทพีทาโกลัส เราจะหา BH ได้ดังนี้
ต่อไปเราจะหา GB พิจารณาสามเหลี่ยม GBH




15.



16.




17.
18.




19.




20.

Weitere ähnliche Inhalte

Was ist angesagt?

เฉลยการวัดตำแหน่งและกระจาย
เฉลยการวัดตำแหน่งและกระจายเฉลยการวัดตำแหน่งและกระจาย
เฉลยการวัดตำแหน่งและกระจายkrurutsamee
 
การประยุกต์2
การประยุกต์2การประยุกต์2
การประยุกต์2พัน พัน
 
เฉลยค่ากลางของข้อมูล
เฉลยค่ากลางของข้อมูลเฉลยค่ากลางของข้อมูล
เฉลยค่ากลางของข้อมูลkrurutsamee
 
เส้นขนาน ม.2
เส้นขนาน ม.2เส้นขนาน ม.2
เส้นขนาน ม.2KruGift Girlz
 
เอกสารประกอบการเรียน พหุนาม ม.2
เอกสารประกอบการเรียน พหุนาม ม.2เอกสารประกอบการเรียน พหุนาม ม.2
เอกสารประกอบการเรียน พหุนาม ม.2นายเค ครูกาย
 
โครงสร้างคณิตศาสตร์ พื้นฐาน ม.ต้น
โครงสร้างคณิตศาสตร์ พื้นฐาน ม.ต้นโครงสร้างคณิตศาสตร์ พื้นฐาน ม.ต้น
โครงสร้างคณิตศาสตร์ พื้นฐาน ม.ต้นInmylove Nupad
 
โจทย์ปัญหาร้อยละเกี่ยวกับกำไร ขาดทุน
โจทย์ปัญหาร้อยละเกี่ยวกับกำไร ขาดทุนโจทย์ปัญหาร้อยละเกี่ยวกับกำไร ขาดทุน
โจทย์ปัญหาร้อยละเกี่ยวกับกำไร ขาดทุนNok Yupa
 
ชุดที่ 5 อัตราส่วนของจำนวนหลาย ๆ จำนวน
ชุดที่ 5 อัตราส่วนของจำนวนหลาย ๆ จำนวนชุดที่ 5 อัตราส่วนของจำนวนหลาย ๆ จำนวน
ชุดที่ 5 อัตราส่วนของจำนวนหลาย ๆ จำนวนพิทักษ์ ทวี
 
แบบทดสอบวัดผลสัมฤทธ์อัตราส่วนและร้อยละ
แบบทดสอบวัดผลสัมฤทธ์อัตราส่วนและร้อยละแบบทดสอบวัดผลสัมฤทธ์อัตราส่วนและร้อยละ
แบบทดสอบวัดผลสัมฤทธ์อัตราส่วนและร้อยละkroojaja
 
เพาเวอร์เซต
เพาเวอร์เซตเพาเวอร์เซต
เพาเวอร์เซตAon Narinchoti
 
มัธยฐาน F
มัธยฐาน  Fมัธยฐาน  F
มัธยฐาน FBangon Suyana
 
ข้อสอบคณิตศาสตร์เรื่อง การบวก การลบ การคูณ การหารเศษส่วน
ข้อสอบคณิตศาสตร์เรื่อง การบวก การลบ การคูณ การหารเศษส่วนข้อสอบคณิตศาสตร์เรื่อง การบวก การลบ การคูณ การหารเศษส่วน
ข้อสอบคณิตศาสตร์เรื่อง การบวก การลบ การคูณ การหารเศษส่วนatunya2530
 
การแก้อสมการ
การแก้อสมการการแก้อสมการ
การแก้อสมการAon Narinchoti
 
การหารพหุนาม
การหารพหุนามการหารพหุนาม
การหารพหุนามkroojaja
 
เฉลย การแปลงคำอุปสรรค ม.3 , ม.4
เฉลย การแปลงคำอุปสรรค ม.3 , ม.4เฉลย การแปลงคำอุปสรรค ม.3 , ม.4
เฉลย การแปลงคำอุปสรรค ม.3 , ม.4krusarawut
 
อสมการ ม3
อสมการ ม3 อสมการ ม3
อสมการ ม3 Prang Donal
 

Was ist angesagt? (20)

เฉลยการวัดตำแหน่งและกระจาย
เฉลยการวัดตำแหน่งและกระจายเฉลยการวัดตำแหน่งและกระจาย
เฉลยการวัดตำแหน่งและกระจาย
 
แบบทดสอบ เรื่องพหุนาม
แบบทดสอบ เรื่องพหุนามแบบทดสอบ เรื่องพหุนาม
แบบทดสอบ เรื่องพหุนาม
 
การประยุกต์2
การประยุกต์2การประยุกต์2
การประยุกต์2
 
เฉลยค่ากลางของข้อมูล
เฉลยค่ากลางของข้อมูลเฉลยค่ากลางของข้อมูล
เฉลยค่ากลางของข้อมูล
 
สูตรพื้นที่ผิวปริซึม
สูตรพื้นที่ผิวปริซึมสูตรพื้นที่ผิวปริซึม
สูตรพื้นที่ผิวปริซึม
 
เส้นขนาน ม.2
เส้นขนาน ม.2เส้นขนาน ม.2
เส้นขนาน ม.2
 
เอกสารประกอบการเรียน พหุนาม ม.2
เอกสารประกอบการเรียน พหุนาม ม.2เอกสารประกอบการเรียน พหุนาม ม.2
เอกสารประกอบการเรียน พหุนาม ม.2
 
โครงสร้างคณิตศาสตร์ พื้นฐาน ม.ต้น
โครงสร้างคณิตศาสตร์ พื้นฐาน ม.ต้นโครงสร้างคณิตศาสตร์ พื้นฐาน ม.ต้น
โครงสร้างคณิตศาสตร์ พื้นฐาน ม.ต้น
 
แบบฝึกการคูณและหารพหุนาม
แบบฝึกการคูณและหารพหุนามแบบฝึกการคูณและหารพหุนาม
แบบฝึกการคูณและหารพหุนาม
 
โจทย์ปัญหาร้อยละเกี่ยวกับกำไร ขาดทุน
โจทย์ปัญหาร้อยละเกี่ยวกับกำไร ขาดทุนโจทย์ปัญหาร้อยละเกี่ยวกับกำไร ขาดทุน
โจทย์ปัญหาร้อยละเกี่ยวกับกำไร ขาดทุน
 
แผนKpa ส่งจริง (ซ่อมแซม)
แผนKpa ส่งจริง (ซ่อมแซม)แผนKpa ส่งจริง (ซ่อมแซม)
แผนKpa ส่งจริง (ซ่อมแซม)
 
ชุดที่ 5 อัตราส่วนของจำนวนหลาย ๆ จำนวน
ชุดที่ 5 อัตราส่วนของจำนวนหลาย ๆ จำนวนชุดที่ 5 อัตราส่วนของจำนวนหลาย ๆ จำนวน
ชุดที่ 5 อัตราส่วนของจำนวนหลาย ๆ จำนวน
 
แบบทดสอบวัดผลสัมฤทธ์อัตราส่วนและร้อยละ
แบบทดสอบวัดผลสัมฤทธ์อัตราส่วนและร้อยละแบบทดสอบวัดผลสัมฤทธ์อัตราส่วนและร้อยละ
แบบทดสอบวัดผลสัมฤทธ์อัตราส่วนและร้อยละ
 
เพาเวอร์เซต
เพาเวอร์เซตเพาเวอร์เซต
เพาเวอร์เซต
 
มัธยฐาน F
มัธยฐาน  Fมัธยฐาน  F
มัธยฐาน F
 
ข้อสอบคณิตศาสตร์เรื่อง การบวก การลบ การคูณ การหารเศษส่วน
ข้อสอบคณิตศาสตร์เรื่อง การบวก การลบ การคูณ การหารเศษส่วนข้อสอบคณิตศาสตร์เรื่อง การบวก การลบ การคูณ การหารเศษส่วน
ข้อสอบคณิตศาสตร์เรื่อง การบวก การลบ การคูณ การหารเศษส่วน
 
การแก้อสมการ
การแก้อสมการการแก้อสมการ
การแก้อสมการ
 
การหารพหุนาม
การหารพหุนามการหารพหุนาม
การหารพหุนาม
 
เฉลย การแปลงคำอุปสรรค ม.3 , ม.4
เฉลย การแปลงคำอุปสรรค ม.3 , ม.4เฉลย การแปลงคำอุปสรรค ม.3 , ม.4
เฉลย การแปลงคำอุปสรรค ม.3 , ม.4
 
อสมการ ม3
อสมการ ม3 อสมการ ม3
อสมการ ม3
 

Mehr von Jiraprapa Suwannajak

พื้นที่ผิวและปริมาตร
พื้นที่ผิวและปริมาตรพื้นที่ผิวและปริมาตร
พื้นที่ผิวและปริมาตรJiraprapa Suwannajak
 
เลขยกกำลังและลอการิทึม
เลขยกกำลังและลอการิทึมเลขยกกำลังและลอการิทึม
เลขยกกำลังและลอการิทึมJiraprapa Suwannajak
 
ความสัมพันธ์และฟังก์ชัน
ความสัมพันธ์และฟังก์ชันความสัมพันธ์และฟังก์ชัน
ความสัมพันธ์และฟังก์ชันJiraprapa Suwannajak
 
งาน เศรษฐกิจพอเพียง
งาน เศรษฐกิจพอเพียงงาน เศรษฐกิจพอเพียง
งาน เศรษฐกิจพอเพียงJiraprapa Suwannajak
 
วงกลมหนึ่งหน่วย
วงกลมหนึ่งหน่วยวงกลมหนึ่งหน่วย
วงกลมหนึ่งหน่วยJiraprapa Suwannajak
 
เศรษฐกิจพอเพียง
เศรษฐกิจพอเพียงเศรษฐกิจพอเพียง
เศรษฐกิจพอเพียงJiraprapa Suwannajak
 
แบบทดสอบเรื่องฟังก์ชัน
แบบทดสอบเรื่องฟังก์ชันแบบทดสอบเรื่องฟังก์ชัน
แบบทดสอบเรื่องฟังก์ชันJiraprapa Suwannajak
 

Mehr von Jiraprapa Suwannajak (20)

พื้นที่ผิวและปริมาตร
พื้นที่ผิวและปริมาตรพื้นที่ผิวและปริมาตร
พื้นที่ผิวและปริมาตร
 
ภาคตัดกรวย
ภาคตัดกรวยภาคตัดกรวย
ภาคตัดกรวย
 
เมทริกซ์...
เมทริกซ์...เมทริกซ์...
เมทริกซ์...
 
อสมการ
อสมการอสมการ
อสมการ
 
เศษส่วน
เศษส่วนเศษส่วน
เศษส่วน
 
เลขยกกำลังและลอการิทึม
เลขยกกำลังและลอการิทึมเลขยกกำลังและลอการิทึม
เลขยกกำลังและลอการิทึม
 
ลอการิทึม
ลอการิทึมลอการิทึม
ลอการิทึม
 
ลอการิทึม..[1]
ลอการิทึม..[1]ลอการิทึม..[1]
ลอการิทึม..[1]
 
ตรีโกณมิต..[1]
ตรีโกณมิต..[1]ตรีโกณมิต..[1]
ตรีโกณมิต..[1]
 
ความสัมพันธ์และฟังก์ชัน
ความสัมพันธ์และฟังก์ชันความสัมพันธ์และฟังก์ชัน
ความสัมพันธ์และฟังก์ชัน
 
ตรรกศาสตร์
ตรรกศาสตร์ตรรกศาสตร์
ตรรกศาสตร์
 
งาน เศรษฐกิจพอเพียง
งาน เศรษฐกิจพอเพียงงาน เศรษฐกิจพอเพียง
งาน เศรษฐกิจพอเพียง
 
วงกลมวงรี
วงกลมวงรีวงกลมวงรี
วงกลมวงรี
 
กลุ่ม4
กลุ่ม4กลุ่ม4
กลุ่ม4
 
วงกลมหนึ่งหน่วย
วงกลมหนึ่งหน่วยวงกลมหนึ่งหน่วย
วงกลมหนึ่งหน่วย
 
ปรัชญาเศร..
ปรัชญาเศร..ปรัชญาเศร..
ปรัชญาเศร..
 
เศรษฐกิจพอเพียง
เศรษฐกิจพอเพียงเศรษฐกิจพอเพียง
เศรษฐกิจพอเพียง
 
เศรษฐกิจ..[1]
 เศรษฐกิจ..[1] เศรษฐกิจ..[1]
เศรษฐกิจ..[1]
 
สมการตรีโกณ
สมการตรีโกณสมการตรีโกณ
สมการตรีโกณ
 
แบบทดสอบเรื่องฟังก์ชัน
แบบทดสอบเรื่องฟังก์ชันแบบทดสอบเรื่องฟังก์ชัน
แบบทดสอบเรื่องฟังก์ชัน
 

รากที่สอง..

  • 1. รากที่สอง บทนิยาม ให้ n เป็นจานวนจริงบวกใดๆ หรือ ศูนย์ รากที่สองของ n คือจานวนจริง ที่ยกกาลังสองแล้วได้ n ตัวอย่าง หมายเหตุ 1.รากที่สองของ 0 คือ 0 2.รากที่สองของจานวนจริงบวกจะเป็นจานวนตรรกยะหรือจานวนอตรรกยะอย่าง ใดอย่างหนึ่งเท่านั้น 3.รากที่สองของจานวนจริงลบจะไม่เป็นจานวนจริง
  • 2. 4.ถ้า n เป็นจานวนจริงใดๆ จะได้ l n l เมื่อ l n l แทน ค่าสัมบูรณ์ของ n
  • 3. การหารากที่สอง 1. การหารากที่สองโดยแยกตัวประกอบ ตัวอย่างที่ 1 จงหารากที่สองของ 64 วิธีทา 64 = 2 x2x2x2x2x2 = 8 x 8 = 82 หรือ 64 = (-8) x (-8) = (-8) 2 ดังนั้น รากที่สองของ 64 คือ 8 และ -8 2. การหารากที่สองของเลขจานวนเต็มบวกโดยการตั้งหาร 1. แบ่งตัวเลขจากหลังมาเป็นคู่ๆ ถ้าเป็นเลขทศนิยมก็แบ่งจากจุดทศนิยมไปทางขวา มือ ถ้าไม่ครบคู่ให้เติมศูนย์ให้ครบคู่ 2.หาเลขจานวนหนึ่ง ซึ่งคูณตัวมันเองได้ค่าใกล้เคียงกับตัวเลขหน้าหรือคู่หน้ามาก ที่สุด ( แต่ต้องไม่มากกว่า ) ให้ตั้งตัวเลขที่ได้ลงในช่องผลลัพธ์ตัวหนึ่ง และช่อง ตัวหารตัวหนึ่ง 3.ยกกาลังสองของผลลัพธ์ ได้เท่าไรเอาไปตั้งเป็นตัวลบเลขตัวแรกหรือคู่แรกเศษ เท่าไรชักลงมาแล้วชักเลขคู่ต่อไปลงมาคู่หนึ่ง 4.เอา 2 คูณผลลัพธ์ ได้เท่าไรเอาไปหารตัวเลขที่ชักลงมาให้ถึงจานวนที่ชักลงมา เพียงจานวนเดียว ได้ผลลัพธ์เท่าไรเอาตั้งที่ผลลัพธ์ตัวหนึ่ง และตั้งที่ช่องหารตัว หนึ่ง 5.เอาเลขลัพธ์ตัวใหม่คูณตัวหารทั้งหมด ตั้งเป็นตัวลบเหลือเศษเท่าไรชักลงมา พร้อมกับชักเลขตัวตั้งลงมา 2 จานวนด้วย
  • 4. 6.ในกรณีที่ผลคูณในข้อ 5. ได้ผลลัพธ์ของตัวลบเกินตัวตั้งให้ลดค่าของผลลัพธ์ที่ ได้จากข้อ 4. ลงมาอันดับหนึ่ง ต่อจากนั้นทาเวียนจากข้อ 4. ลงมาจนหมดก็จะได้ค่า รากที่สอง 1. การหารรากที่สองของทศนิยม โดยการตั้งหาร มีหลักเหมือนการหารากที่สองของเลขจานวนเต็มทุกประการ จะแตกต่าง กันก็แต่เพียงการแบ่งเลขเป็นชุด ๆ หลังจุดทศนิยมจะแบ่งจากซ้ายไปขวา (โดยเริ่ม จากจุดทศนิยม) ครั้งละ 2 หลัก โดยมีเครื่องหมาย , คั่นเช่นกัน ลองทาดูนะคะ เช่น จงหาราที่สองของ 10.58 = 3.2527 รากที่สองของสอง รากที่สองของสอง หรือที่รู้จักในชื่อ ค่าคงตัวของพีทาโกรัส เขียนแทนด้วย √2 เป็นจานวนจริงบวกที่เมื่อคูณกับตัวเองแล้วจะมีค่าเท่ากับ 2 มีค่าประมาณ 1.414213562373095 ในทางเรขาคณิต รากที่สองของสองคือความยาวของเส้นทแยงมุมของรูปสี่เหลี่ยม จัตุรัสที่มีความยาวด้าน 1 หน่วย ความยาวนี้เป็นไปตามทฤษฎีบทพีทาโกรัส ซึ่งราก ที่สองของสองนี้ถือเป็นจานวนอตรรกยะจานวนแรกที่เป็นที่รู้จัก
  • 5. ประวัติ จากหลักฐานบันทึกบนก้อนโคลนของชาวบาบิโลเนียเผยให้เห็น ค่าประมาณของ ในรูปผลบวกของเลขพหุคูณของ จานวน 4 พจน์ ซึ่งมีค่าใกล้เคียง ถึงทศนิยมตาแหน่งที่หก บันทึกในหนังสือ Sulbasutras ของชาวอินเดียโบราณ (800-200 ปีก่อนคริสตกาล) ได้กล่าวถึงค่าประมาณของรากที่สองไว้คือ เป็นการเพิ่มความยาว (ของด้าน) ด้วย หนึ่งในสามเท่าของค่านั้น แล้วเพิ่มด้วยหนึ่งในสี่เท่าของหนึ่งในสามเท่าค่านั้น แล้วเพิ่มด้วยหนึ่งในสามสิบสี่เท่าของค่าหนึ่งในสี่เท่าค่านั้น การค้นพบจานวนอตรรกยะนี้ ถือเป็นผลงานที่สาคัญของฮิปปาซุส (ศิษย์ในสานัก ของปีทากอรัส) ซึ่งเป็นผู้ที่พิสูจน์ความเป็นอตรรกยะของรากที่สองของสอง เป็นที่ เชื่อกันตามคากล่าวว่าปีทากอรัสเชื่อในความสมบูรณ์แบบของจานวนและทาให้ไม่ ยอมรับในการค้นพบจานวนอตรรกยะ ถึงแม้ว่าปีทากอรัสจะไม่สามารถพิสูจน์ ความไม่มีอยู่ของจานวนอตรรกยะได้ แต่เขาก็ได้สั่งลงโทษประหารฮิปปาซุสโดย การกดน้า ตานานอื่นเล่าว่าเขาถูกฆ่ากดน้าโดยศิษย์คนอื่นของปีทากอรัสหรืออาจ ถูกขับออกจากสานัก
  • 6. วิธีการคานวณ นักคณิตศาสตร์ได้ค้นหาวิธีการคานวณรากที่สองของสองในรูปแบบต่างๆ กันเพื่อ เขียนค่าประมาณใกล้เคียงของรากที่สองของสองออกมาในรูปของอัตราส่วนของ จานวนเต็มหรือเลขทศนิยม หนึ่งในวิธีการที่ถือว่าเป็นเบื้องต้นที่สุดคืออัลกอริธึม ของบาบิโลเนียนเพื่อคานวณรากที่สองของสอง ซึ่งถือเป็นพื้นฐานการคานวณของ คอมพิวเตอร์และเครื่องคิดเลข อัลกอริธึมเพื่อหารากที่สอง (อาจใช้เพื่อหารากที่ สองของจานวนใดๆ ไม่เฉพาะของสอง) ดังกล่าวสามารถทาได้ดังนี้ 1.เลือก a0 >0 ค่า a0 ที่เลือกนี้จะมีผลกระทบต่อความเร็วในการลู่เข้าสู่ค่าของ √2 ในระดับความแม่นยาหนึ่งเท่านั้น 2.ใช้ฟังก์ชันเรียกตัวเองเพื่อคานวณ a1, a2, a3, ..., an ตัวอย่างการคานวณโดยเลือก a0=1 ได้ผลดังนี้ a0 = 1 a1 = 3/2 = 1.5 a2 = 17/12 = 1.416...
  • 7. a3 = 577/408 = 1.414215... a4 = 665857/470832 = 1.4142135623746... ในปี ค.ศ.1997 ทีมของยาซูมาสะ คานาดะได้คานวณค่าของ √2 แม่นยาถึงทศนิยม ตาแหน่งที่ 137,438,953,444 เดือนกุมภาพันธ์ปี ค.ศ.2006 ความท้าทายในการคานวณค่าของ √2 ได้ถูกทา ให้หมดไปด้วยการใช้คอมพิวเตอร์บ้าน ชิเกรุ คอนโดได้คานวณค่าประมาณ ใกล้เคียงของ √2 ถึงทศนิยมตาแหน่งที่ 200,000,000,000 ในเวลา 13 วัน 14 ชั่วโมง โดยใช้เครื่องคอมพิวเตอร์ส่วนบุคคลขนาด 3.6 GHz และหน่วยความจา 16 Gb อย่างไรก็ดี เป็นที่ยอมรับกันทั่วไปว่าในจานวนค่าคงตัวอตรรกยะทาง คณิตศาสตร์ต่างๆ ที่ถือเป็นความท้าทายต่อนักคณิตศาสตร์ที่จะเขียนในรูปของ ทศนิยมไม่รู้จบ ค่า π ดูจะเป็นจานวนที่ถูกประมาณได้แม่นยาละเอียดสูงสุด
  • 8. แบบฝึกหัดเรื่องรากที่สอง 1.ข้อใดต่อไปนี้ไม่ถูกต้อง 1. รากที่สองของ 484 คือ 22 และ -22 2. -21 เป็นรากที่สองของ 441 3. รากที่สามของ 1,331 คือ 11 และ -11 4. 9 เป็นรากที่สามของ 729 2.ใดต่อไปนี้ไม่ถูกต้อง 1. 2. 3. 4. 3.จงหาผลลัพธ์ของ 4.จงหารากที่สองของ 2,601 5.จงหารากที่สองของ 3,025
  • 9. 6.จงหารากที่สองของ 4,225 7.จงหารากที่สองของ 4,900 8.จงหารากที่สองของ 6,084 9. เป็นสี่เหลี่ยมด้านขนาน มีฐานยาว 15 ซม.พื้นที่ 150 ตาราง เซนติเมตร และ เป็นส่วนสูง จงหาว่า ยาวประมาณกี่เซนติเมตร(ตอบเป็นจานวน เต็มหน่วย)
  • 10. 10.จากรูปกาหนดให้ มี AB = 24 หน่วย BC = 7 หน่วย และ AC = CD จงหาความยาว (ตอบเป็น ทศนิยมสองตาแหน่ง) 11.จงหารากที่สองของ 2,601 12.จงหารากที่สองของ 3025 13.รูปสี่เหลี่ยมผืนผ้ารูปหนึ่งยาว 8 ซม. มีเส้นทแยงมุม 9 ซม. จงหาว่ารูปนี้กว้างกี่เซนติเมตร (ตอบทศนิยม 2 ตาแหน่ง)
  • 11. 14.กาหนดให้ทรงสี่เหลี่ยมมุมฉาก ABCDEFGH มี AB = 5 หน่วย BC = 3 หน่วย และ CD = 4 หน่วย จงหาความยาว (ตอบเป็นทศนิยมสอง ตาแหน่ง) 15. 16. 17.
  • 12. 18. 19. 20.รากที่สองของ 4,096 เฉลยแบบฝึกหัด 1.ตอบ 3. รากที่สามของ 1,331 คือ 11 และ -11 2.ตอบ 4. 3.ตอบ
  • 14. เมื่อเรารู้ความสูงของรูปสี่เหลี่ยมแล้ว ต่อไปเรา จะหา AE พิจารณา Δ ABE อยู่ในเส้นขนาน AB // DC และมี BE เป็นเส้นตั้งฉาก กับ DC เกิดมุมแย้งกัน ดังนั้น จะได้ มุม ที่ Δ ABE จาก ทฤษฎีบทพีทาโกลัส
  • 15. 10.วิธีทา พิจารณา Δ ABC เป็นสามเหลี่ยมมุมฉาก จาก ทฤษฎีบทพีทาโกลัส 11. วิธีทา การหารากที่อง ใช้การแยกตัวประกอบ จะได้ 12.การหารากที่สอง ใช้การแยกตัวประกอบ จะได้
  • 16. 13.วิธีทา จากรูปด้านบน เราดูที่ Δ ABC จาก ทฤษฎีบทพีทาโกลัส 14.วิธีทา จากรูปด้านบนเรากาลัง จะหา BH จะได้ดังรูปที่ 2 จากรูป หา BH จากสามเลี่ยม ABH มุม A เป็นมุมฉาก จาก ทฤษฎีบทพีทาโกลัส เราจะหา BH ได้ดังนี้