SlideShare ist ein Scribd-Unternehmen logo
1 von 47
PTE 508 Project Two Report
Je↵rey Daniels
May 8, 2015
1 Reservoir Description
1.1 Reservoir Properties
The oil reservoir under study is approximated by a rectangular prism. The geometry
of this prism is length Lx = 1500 ft, width Ly = 1100 ft and height Z = 50 ft. The
reservoir has a reference pressure-dependent porosity of = 0.22 measured at 1000
psia, an isotropic permeability of k = 11 mD, and a formation compressibility factor of
ct = 2x10 6
psi 1
which is assumed to be constant.
1.2 Injection and Production Wells
Five wells, Well-A and Well-B, Well-C, Well-D and Well-E are drilled in the reservoir
first. Well-C serves as a producer and later as an injector in this reservoir simulation.
All wells have the same wellbore radius rw = 0.25 ft and the same skin factor of S = 0.
1.3 Reservoir Fluid Properties
The fluid flow is two-phase characterized by an initial oil saturation of Soi = 0.75 and
initial water saturation of Swi = 0.25. The fluid properties of oil are viscosity µo =
5 cp, oil compressibility co = 10 5
psi 1
and a reference formation volume factor Bo =
1.25 RB/STB measured at 1000 psia. The oil bubble point pressure is 1000 psia. The
fluid properties of water are viscosity µw = 1 cp, water compressibility cw = 10 6
psi 1
and a reference formation volume factor Bw = 1.02 RB/STB measured at 1000 psia.
2 Creation of Simulation cells
In this study, the reservoir is assumed to be two dimensional and was discretized into
165 simulation cells (i.e characterized by 11x15 grid blocks). Each cell with a well present
had a length of X = 100 ft, a width of Y = 100 ft and a height of Z = 50 ft.
1
3 Partial Di↵erential Equations (PDEs) With Initial and Bound-
ary Conditions
The PDEs to be discretized are as follows:
@
@x
( ox
@p
@x
) +
@
@y
( oy
@p
@y
) 887.53 (x xw) (y yw)
qo,wµB
z
= 158
@
@t
(
So
Bo
)
@
@x
( wx
@p
@x
) +
@
@y
( wy
@p
@y
) 887.53 (x xw) (y yw)
qw,wµB
z
= 158
@
@t
(
Sw
Bw
)
ox =
kxKro(So, Sw)
µoBo
, oy =
kyKro(So, Sw)
µoBo
wx =
kxKrw(So, Sw)
µwBw
, wy =
kyKrw(So, Sw)
µwBw
So + Sw = 1
Boundary conditions: @P
@x
|x=0= 0, @P
@x
|x=1500= 0 @P
@y
|y=0= 0, @P
@y
|y=1100= 0
Initial condition: P(x)|t0= 3000 psia
The PVT relations for formation volume factors Bo, Bw and are defined by the fol-
lowing:
Bo(p) = 1.25 exp( Co(p 1000))
Bw(p) = 1.02 exp( Cw(p 1000))
(p) = 0.22 exp(C (p 1000))
The following plot shows the PVT relations graphically as the reservoir pressure de-
creases from 3000 psia to 1000 psia
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
1
1.05
1.1
1.15
1.2
1.25
FormationVolumeFactor,RB/STB
Plot of Bo
, Bw
and φ vs P
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0.22
0.2202
0.2204
0.2206
0.2208
0.221
Porosity,v/v
Bw
Bo φ
2
Relative permeability curves, Kro and Krw are defined by two-phase Corey’s model.
Swc = 0.2 and Sor = 0.
Sn =
Sw Swc
1 Sw
=
1 So Swc
1 Swc
Krw(Sw) =
(
S4
n , Sw > Swc
0 , Sw  Swc
Kro(Sw) =
(
(1 Sn)2
(1 S2
n) , So > SororSw < 1 Sor
0 , So  SororSw 1 Sor
The following plot shows the graphical relation between the relative perameabilities
and water saturation
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Water Saturation
RelativePermeability
Plot of Relative Permeability Curves
krw
kro
4 Implicit Block-Centered Grid System Discretization
4.1 General Discretized Equation
The following equation is used to solve for the grid cell pressures of the discretized
reservoir. It contains the PVT parameters for both water and oil.
SmPn+1
m Nx + WmPn+1
m 1 + CmPn+1
m + EmPn+1
m+1 + NmPn+1
m+Nx = Rm
where m = 1, 2, 3, ..., 165
Sm = ¯OS(
x
y
)2
Bo + ¯WS(
x
y
)2
Bw
Wm = ¯OW Bo + ¯WW Bw
3
Cm = Bo(¯OW +¯OE) (
x
y
)2
Bo(¯OS+¯ON ) Bw(¯WW +¯WE) (
x
y
)2
Bw(¯WS+¯WN )
158
x
t
Ct
Em = ¯OEBo + ¯WEBw
Nm = ¯ON (
x
y
)2
Bo + ¯WN (
x
y
)2
Bw
Rm = 158
x
t
CtPn
m + 887.53
qo,STBBo
x y
|ifwellincellm+887.53
qw,STBBw
x y
|ifwellincellm
To calculate the average mobility ratios
¯o,S =
kKro(So,up)
µoBo(Pm Nx+Pm
2
)
So,up =
(
So,m , Pm Pm Nx
So,m Nx , Pm < Pm Nx
¯o,N =
kKro(So,up)
µoBo(
Pm+Nx +Pm
2
)
So,up =
(
So,m , Pm Pm+Nx
So,m+Nx , Pm < Pm+Nx
¯o,W =
kKro(So,up)
µoBo(Pm 1+Pm
2
)
So,up =
(
So,m , Pm Pm 1
So,m 1 , Pm < Pm 1
¯o,E =
kKro(So,up)
µoBo(Pm+1+Pm
2
)
So,up =
(
So,m , Pm Pm+1
So,m+1 , Pm < Pm+1
Sw = 1 So
¯w,S =
kKrw(Sw,up)
µwBw(
Pm Nx +Pm
2
)
4
¯w,N =
kKrw(Sw,up)
µwBw(
Pm+Nx +Pm
2
)
¯w,W =
kKrw(Sw,up)
µwBw(Pm 1+Pm
2
)
¯w,E =
kKrw(Sw,up)
µwBw(Pm+1+Pm
2
)
4.2 Incorporating no flow boundary conditions
For no flow boundary conditions, the mobility ratios of water and oil are set to 0. At
the Southern Boundary:
¯os = ¯ws = 0
At the Western Boundary:
¯ow = ¯ww = 0
At the Eastern Boundary:
¯oe = ¯we = 0
At the Northern Boundary:
¯on = ¯wn = 0
4.3 Production term discretization
The production rate if a well exists in the grid cell is treated implicitly therefore
qSTB w = Jww(Pn+1
m Pn
m)
qo = Jwo(Pn+1
m Pn
m)
4.4 Finite-Di↵erence Equation for grid cells containing wells
The finite di↵erence equation for the grid cells with wells are as follows:
Well-A at m=34
S34Pn+1
19 + W34Pn+1
18 + C34Pn+1
34 + E34Pn+1
35 + N34Pn+1
49 = R34
S34 = ¯OS(
x
y
)2
Bo + ¯WS(
x
y
)2
Bw
W34 = ¯OW Bo + ¯WSBw
E34 = ¯OEBo + ¯WEBw
5
N34 = ¯ON (
x
y
)2
Bo + ¯WN (
x
y
)2
Bw
C34 = Bo(¯OW +¯OE) (
x
y
)2
Bo(¯OS+¯ON ) Bw(¯WW +¯WE) (
x
y
)2
Bw(¯WS+¯WN )
158
x
t
Ct 887.53
Jwo well ABo
x y
887.53
Jww well ABw
x y
R34 = 158
x
t
CtPn
34 887.53
Jwo well APwf well ABo
x y
887.53
Jww well APwf well ABw
x y
Well-B at m=42
S42Pn+1
27 + W42Pn+1
41 + C42Pn+1
42 + E42Pn+1
43 + N42Pn+1
57 = R42
S42 = ¯OS(
x
y
)2
Bo + ¯WS(
x
y
)2
Bw
W42 = ¯OW Bo + ¯WW Bw
E42 = ¯OEBo + ¯WEBw
N42 = ¯ON (
x
y
)2
Bo + ¯WN (
x
y
)2
Bw
C42 = Bo(¯OW +¯OE) ( x
y
)2
Bo(¯OS +¯ON ) Bw(¯WW +¯WE) ( x
y
)2
Bw(¯WS +¯WN )
158
x
t
Ct 887.53
Jwo well BBo
x y
887.53
Jww well BBw
x y
R42 = 158
x
t
CtPn
42 887.53
JwoPwf well BBo
x y
887.53
Jww well BPwfABw
x y
Well-C at m=83
S83Pn+1
68 + W83Pn+1
82 + C83Pn+1
83 + E83Pn+1
84 + N83Pn+1
98 = R83
S83 = ¯OS(
x
y
)2
Bo + ¯WS(
x
y
)2
Bw
W83 = ¯OW Bo + ¯WW Bw
E83 = ¯OEBo + ¯WEBw
N83 = ¯ON (
x
y
)2
Bo + ¯WN (
x
y
)2
Bw
6
C83 = Bo(¯OW +¯OE) (
x
y
)2
Bo(¯OS+¯ON ) Bw(¯WW +¯WE) (
x
y
)2
Bw(¯WS+¯WN )
158
x
t
Ct 887.53
Jwo well CBo
x y
887.53
Jww well CBw
x y
R83 = 158
x
t
CtPn
83 887.53
Jwo well CPwf well CBo
x y
887.53
Jww well CPwf well CBw
x y
Well-D at m=124
S124Pn+1
109 + W124Pn+1
123 + C124Pn+1
124 + E124Pn+1
125 + N124Pn+1
139 = R124
S124 = ¯OS(
x
y
)2
Bo + ¯WS(
x
y
)2
Bw
W124 = ¯OW Bo + ¯WW Bw
E124 = ¯OEBo + ¯WEBw
N124 = ¯ON (
x
y
)2
Bo + ¯WN (
x
y
)2
Bw
C124 = Bo(¯OW +¯OE) (
x
y
)2
Bo(¯OS+¯ON ) Bw(¯WW +¯WE) (
x
y
)2
Bw(¯WS+¯WN )
158
x
t
Ct 887.53
Jwo well DBo
x y
887.53
Jww well DBw
x y
R124 = 158
x
t
CtPn
124 887.53
JwoPwf well DBo
x y
887.53
Jww well DPwf well DBw
x y
Well-E at m=132
S132Pn+1
117 + W132Pn+1
131 + C132Pn+1
132 + E132Pn+1
133 + N132Pn+1
147 = R132
S132 = ¯OS(
x
y
)2
Bo + ¯WS(
x
y
)2
Bw
W132 = ¯OW Bo + ¯WW Bw
E132 = ¯OEBo + ¯WEBw
N132 = ¯ON (
x
y
)2
Bo + ¯WN (
x
y
)2
Bw
7
C132 = Bo(¯OW +¯OE) (
x
y
)2
Bo(¯OS+¯ON ) Bw(¯WW
¯WE) (
x
y
)2
Bw(¯WS+¯WN )
158
x
t
Ct 887.53
Jwo well EBo
x y
887.53
Jww well EBw
x y
R132 = 158
x
t
CtPn
132 887.53
Jwo well EPwf well EBo
x y
887.53
Jww well EPwf well EBw
x y
4.5 Well Productivity Index Calculation using Peaceman’s method
Radial reservoir
re = 0.14 ⇤
p
X2 + Y 2
re = 0.14 ⇤
p
1002 + 1002 = 19.799ft
Well productivity index
Jwo = 7.08 ⇤ 10 3 kkroh
µoBo
⇤
1
ln re
rw
+ S
Jww = 7.08 ⇤ 10 3 kkrwh
µwBw
⇤
1
ln re
rw
+ S
For all wells
S = 0
5 Leakproof Test
In this test performed, the well flow rates are specified to be zero for all the wells and
a simulation is run for 100 days. This is done by setting both Jwoil
and Jwwater to zero.
The time step used in this simulation is 10 days. The objective of this test is to ascer-
tain that the PDEs for the simulation cells have been discretized correctly. The pres-
sure, oil saturation and water saturation distributions are to remain at initial reser-
voir values of 3000 psia, 0.75 and 0.25 everywhere in the reservoir at all the simulation
times as shown in the plots below.
8
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Reservoir Length,ft
ReservoirWidth,ft
Pressure distribution at t=0 days
Pressure,psia
2990
2992
2994
2996
2998
3000
3002
3004
3006
3008
3010
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure distribution at t=50 days
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
2990
2992
2994
2996
2998
3000
3002
3004
3006
3008
3010
9
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure distribution at t=100 days
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
2990
2992
2994
2996
2998
3000
3002
3004
3006
3008
3010
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Reservoir Length,ft
ReservoirWidth,ft
Oil saturation distribution at t=0 days
OilSaturation,v/v
0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.8
10
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Oil saturation distribution at t=50 days
Reservoir Length,ft
ReservoirWidth,ft
OilSaturation,v/v
0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.8
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Oil saturation distribution at t=100 days
Reservoir Length,ft
ReservoirWidth,ft
OilSaturation,v/v
0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.8
11
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Reservoir Length,ft
ReservoirWidth,ft
Water saturation distribution at t=0 days
WaterSaturation,v/v
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Water saturation distribution at t=50 days
Reservoir Length,ft
ReservoirWidth,ft
WaterSaturation,v/v
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
12
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Water saturation distribution at t=100 days
Reservoir Length,ft
ReservoirWidth,ft
WaterSaturation,v/v
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
6 Symmetry Test
In this test performed, the bottomhole flowing pressure for the wells are set to 1000
psia thereby configuring all the wells to be producers. A simulation is then run for 100
days. The time step used in this simulation is 10 days. The reservoir pressure distribu-
tion for this test is expected to be symmetric about the center (x = 750ft, y = 550ft)
of the reservoir as shown in the plots below. The pressure results are also published in
the tables in the additional results section.
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Reservoir Length,ft
ReservoirWidth,ft
Pressure distribution at t=0 days
Pressure,psia
2999
2999.2
2999.4
2999.6
2999.8
3000
3000.2
3000.4
3000.6
3000.8
3001
13
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure distribution at t=50 days
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
1650
1700
1750
1800
1850
1900
1950
2000
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure distribution at t=100 days
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
1300
1320
1340
1360
1380
1400
1420
1440
1460
7 Oil Initially In Place Determination and Material Balance
Check
The wells are configured to be producers by setting their bottomhole flowing pressures
Pwf = 1000psia. A simulation is then run for 100 days. The time step used in this
simulation is 10 days. The Oil-Initially-In-Place (OIIP) was calculated to be approx-
imately 1986558 STB. The cumulative production of the reservoir along with the oil
in place is calculated for each time step as well as the error between Oil-Initially-In-
Place and the sum of cumulative oil production and Oil-In-Place at the end of each
14
time step. It is expected that there should be oil mass conservation hence the error is
expected to be within 0.1%.
The oil initially in place was determined by the following equation with initial reservoir
and PVT parameters at Pi = 3000psia:
OIIP =
1
5.615
⌃
NxNy
m=1 [
x y z (Pi)So,i
Bo(Pi)
]m
Nx = 15
Ny = 11
The Oil In Place at the end of each time step was calculated using the following equa-
tion:
OIPn+1
=
1
5.615
⌃
NxNy
m=1 [
x y z n+1
Sn+1
o
Bn+1
o
]m
The cumulative oil production is calculated as follows
V n+1
o,prod = V n
o,prod + qn+1
o t = ⌃T
n=1qn+1
o t
The error from oil mass conservation is determined by the following equation:
Error =
|OIIP (V n+1
o,prod + OIPn+1
)|
OIIP
⇤ 100
Material Balance Check
Time (Days) Cumulative Pro-
duction (STB)
Oil In Place
(STB)
Error (%)
10 7557 1978998 0.000154
20 13785 1972767 0.000282
30 19097 1967453 0.000390
40 23644 1962904 0.000483
50 27541 1959005 0.000563
60 30886 1955664 0.000631
70 33746 1952798 0.000689
80 36202 1950341 0.000739
90 38308 1948234 0.000783
100 40115 1946426 0.000819
15
8 Primary Recovery Study
In this study recovery of hydrocarbons from the reservoir is simulated without water
injection. The wells are configured to be producers with their flowing pressures set to
1000 psia. The simulation is run until the oil production rate from Well-A falls below 1
STB/D. This occurs after 313 days of producing the reservoir. A time step of 1 day is
used in the simulation.
From the simulation results obtained, all the wells have an initial oil production rate of
197 STB/D and an initial water production rate of 0.021 STB/D however, after about
11 days the the oil and water production rate of all the well C slightly decreases while
the other wells continue to have equivalent oil and water production rates. This trend
continues until t = 171days, after which all the wells have equivalent oil and water
production rates again.
0 50 100 150 200 250 300 350
0
20
40
60
80
100
120
140
160
180
200
Time, days
Oilproductionrate,STB/D
Oil production rate vs time
Oil producion rate for Well A
Oil producion rate for Well B
Oil producion rate for Well C
Oil producion rate for Well D
Oil producion rate for Well E
16
0 50 100 150 200 250 300 350
0
0.005
0.01
0.015
0.02
0.025
Time, days
Waterproductionrate,STB/D
Water production rate vs time
Water producion rate for Well A
Water producion rate for Well B
Water producion rate for Well C
Water producion rate for Well D
Water producion rate for Well E
The cumulative oil production rate of the reservoir after 313 days of production is 50684
STB as show in the plot below. The recovery factor is 2.5% which is significantly low.
Such a scenario recommends the need for pressure maintenance.
0 50 100 150 200 250 300 350
0
1
2
3
4
5
6
x 10
4
Cumulativeproduction,STB/D
Time, days
Cumulative Production vs time
The reservoir pressure at the wells decreases from 3000 psia to 1260 psia while the pres-
sure at the boundaries drops to 1420 psia after 100 days of production. At the end of
production, the pressure drops to 1008 psia at the wells while it drops to 1013 psia at
the boundaries at the end of production. The pressure decline in the first t=100 days
is the fastest decline as compared to other 100 day intervals. However, the decreasing
pressure drop in the reservoir as time progresses is expected and explains the decreas-
ing oil and water production rates as time progresses.
17
0 50 100 150 200 250 300 350
0
0.5
1
1.5
2
2.5
3
Recoveryfactor,%
Time, days
Recovery factor vs time
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Reservoir Length,ft
ReservoirWidth,ft
Pressure distribution at t=0 days
Pressure,psia
2999
2999.2
2999.4
2999.6
2999.8
3000
3000.2
3000.4
3000.6
3000.8
3001
18
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure distribution at t=100 days
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
1260
1280
1300
1320
1340
1360
1380
1400
1420
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure distribution at t=200 days
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
1050
1055
1060
1065
1070
1075
1080
19
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure distribution at t=300 days
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
1010
1011
1012
1013
1014
1015
1016
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure distribution at end of production
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
1008
1008.5
1009
1009.5
1010
1010.5
1011
1011.5
1012
1012.5
1013
The simulation results suggest that the reservoir cannot produce for long under its pri-
mary recovery mechanism alone.
20
9 Secondary Recovery Study
In this study recovery of hydrocarbons from the reservoir is simulated with water injec-
tion for pressure maintenance. Initially, the wells are configured to be producers with
their flowing pressures set to 1000 psia. However after the oil production rate from
Well-A falls below 1 STB/D, Well-C is converted to an injector with a flowing pres-
sure of 2950 psia. The simulation is run until 10000 days. A time step of 1 day is used
in the simulation.
Water injection is started at t = 313days. It is observed from the oil saturation distri-
bution below that there is still a significant amount of hydrocarbons in the reservoir.
However, the due to a low pressure drop as shown in the pressure distribution plot, the
reservoir cannot produce at a prolific rate.
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Oil saturation distribution at start of injection
Reservoir Length,ft
ReservoirWidth,ft
OilSaturation,v/v
0.7485
0.7485
0.7485
0.7485
21
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure distribution at start of injection
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
1008
1008.5
1009
1009.5
1010
1010.5
1011
1011.5
1012
1012.5
1013
At the end of the simulation (t = 10000days), the oil saturation distribution plot shows
that a significant amount of the reservoir oil has been produced with most of the re-
maining oil in place located at the corners or the reservoir. The pressure distribution
shows a large pressure drop which is able to support the reservoir to produce at a pro-
lific rate. The average pressures at the producing well locations are 1700 psia while the
average pressure at the injection well location is 2400 psia.
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Oil saturation distribution at t=10000 days
Reservoir Length,ft
ReservoirWidth,ft
OilSaturation,v/v
0.1
0.2
0.3
0.4
0.5
0.6
0.7
22
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure distribution at t=10000 days
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
1700
1800
1900
2000
2100
2200
2300
2400
The cumulative oil production at the end of 10000days is 969687 STB. The recovery
factor is 48.81% which is significantly higher compared to when the reservoir was only
under primary recovery.
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0
1
2
3
4
5
6
7
8
9
10
x 10
5
Cumulativeproduction,STB/D
Time, days
Cumulative Production vs time
23
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0
5
10
15
20
25
30
35
40
45
50
Recoveryfactor,%
Time, days
Recovery factor vs time
Also the time for which watercut increased above 20% at Well-A was determined to
be at t=3094 days.The oil saturation distribution shows that a significant amount of
oil remained in the reservoir so continued production with an increasing water cut is
justified. At the end of the simulation the water cut was approximately 90%.
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Oil saturation distribution at Water Breakthrough Time
Reservoir Length,ft
ReservoirWidth,ft
OilSaturation,v/v
0.1
0.2
0.3
0.4
0.5
0.6
0.7
24
200 400 600 800 1000 1200 1400
100
200
300
400
500
600
700
800
900
1000
Pressure Distribution at Water Breakthrough Time
Reservoir Length,ft
ReservoirWidth,ft
Pressure,psia
1800
1900
2000
2100
2200
2300
2400
2500
The simulation results suggest that the reservoir produces for much longer when there
is pressure maintenance to support production.
10 Conclusion
Water Injection aids in realizing signifcantly higher recovery factors and slower oil pro-
duction rates as time progresses. The simulation studies show that under primary re-
covery alone, the recovery factor was 2.5% as compared to the 60% when there was wa-
ter injection
However, with water injection as serving as pressure maintenance, there is a risk of
higher water cut as time progresses. In the primary recovery study, the water cut was
almost negligible while during the secondary recovery study, the water cut kept increas-
ing after water injection was initiated.
25
11 Additional Results
Pressure distribution at t = 0days
x(ft) y(ft) P(x,y,t)
50 50 3000
150 50 3000
250 50 3000
350 50 3000
450 50 3000
550 50 3000
650 50 3000
750 50 3000
850 50 3000
950 50 3000
1050 50 3000
1150 50 3000
1250 50 3000
1350 50 3000
1450 50 3000
50 150 3000
150 150 3000
250 150 3000
350 150 3000
450 150 3000
550 150 3000
650 150 3000
750 150 3000
850 150 3000
950 150 3000
1050 150 3000
1150 150 3000
26
1250 150 3000
1350 150 3000
1450 150 3000
50 250 3000
150 250 3000
250 250 3000
350 250 3000
450 250 3000
550 250 3000
650 250 3000
750 250 3000
850 250 3000
950 250 3000
1050 250 3000
1150 250 3000
1250 250 3000
1350 250 3000
1450 250 3000
50 350 3000
150 350 3000
250 350 3000
350 350 3000
450 350 3000
550 350 3000
650 350 3000
750 350 3000
850 350 3000
950 350 3000
1050 350 3000
1150 350 3000
1250 350 3000
27
1350 350 3000
1450 350 3000
50 450 3000
150 450 3000
250 450 3000
350 450 3000
450 450 3000
550 450 3000
650 450 3000
750 450 3000
850 450 3000
950 450 3000
1050 450 3000
1150 450 3000
1250 450 3000
1350 450 3000
1450 450 3000
50 550 3000
150 550 3000
250 550 3000
350 550 3000
450 550 3000
550 550 3000
650 550 3000
750 550 3000
850 550 3000
950 550 3000
1050 550 3000
1150 550 3000
1250 550 3000
1350 550 3000
28
1450 550 3000
50 650 3000
150 650 3000
250 650 3000
350 650 3000
450 650 3000
550 650 3000
650 650 3000
750 650 3000
850 650 3000
950 650 3000
1050 650 3000
1150 650 3000
1250 650 3000
1350 650 3000
1450 650 3000
50 750 3000
150 750 3000
250 750 3000
350 750 3000
450 750 3000
550 750 3000
650 750 3000
750 750 3000
850 750 3000
950 750 3000
1050 750 3000
1150 750 3000
1250 750 3000
1350 750 3000
1450 750 3000
29
50 850 3000
150 850 3000
250 850 3000
350 850 3000
450 850 3000
550 850 3000
650 850 3000
750 850 3000
850 850 3000
950 850 3000
1050 850 3000
1150 850 3000
1250 850 3000
1350 850 3000
1450 850 3000
50 950 3000
150 950 3000
250 950 3000
350 950 3000
450 950 3000
550 950 3000
650 950 3000
750 950 3000
850 950 3000
950 950 3000
1050 950 3000
1150 950 3000
1250 950 3000
1350 950 3000
1450 950 3000
50 1050 3000
30
150 1050 3000
250 1050 3000
350 1050 3000
450 1050 3000
550 1050 3000
650 1050 3000
750 1050 3000
850 1050 3000
950 1050 3000
1050 1050 3000
1150 1050 3000
1250 1050 3000
1350 1050 3000
1450 1050 3000
Pressure distribution at t = 50days
x(ft) y(ft) P(x,y,t)
50 50 2011
150 50 1987
250 50 1949
350 50 1919
450 50 1936
550 50 1964
650 50 1985
750 50 1992
850 50 1985
950 50 1964
1050 50 1936
1150 50 1919
1250 50 1949
31
1350 50 1987
1450 50 2011
50 150 2005
150 150 1974
250 150 1914
350 150 1845
450 150 1897
550 150 1943
650 150 1969
750 150 1977
850 150 1969
950 150 1943
1050 150 1897
1150 150 1845
1250 150 1914
1350 150 1974
1450 150 2005
50 250 2002
150 250 1961
250 250 1861
350 250 1626
450 250 1836
550 250 1915
650 250 1944
750 250 1950
850 250 1944
950 250 1915
1050 250 1836
1150 250 1626
1250 250 1861
1350 250 1961
32
1450 250 2002
50 350 2011
150 350 1979
250 350 1918
350 350 1843
450 350 1882
550 350 1910
650 350 1914
750 350 1906
850 350 1914
950 350 1910
1050 350 1882
1150 350 1843
1250 350 1918
1350 350 1979
1450 350 2011
50 450 2022
150 450 1999
250 450 1960
350 450 1921
450 450 1914
550 450 1903
650 450 1869
750 450 1818
850 450 1869
950 450 1903
1050 450 1914
1150 450 1921
1250 450 1960
1350 450 1999
1450 450 2022
33
50 550 2027
150 550 2007
250 550 1974
350 550 1942
450 550 1922
550 550 1892
650 550 1815
750 550 1604
850 550 1815
950 550 1892
1050 550 1922
1150 550 1942
1250 550 1974
1350 550 2007
1450 550 2027
50 650 2022
150 650 1999
250 650 1960
350 650 1921
450 650 1914
550 650 1903
650 650 1869
750 650 1818
850 650 1869
950 650 1903
1050 650 1914
1150 650 1921
1250 650 1960
1350 650 1999
1450 650 2022
50 750 2011
34
150 750 1979
250 750 1918
350 750 1843
450 750 1882
550 750 1910
650 750 1914
750 750 1906
850 750 1914
950 750 1910
1050 750 1882
1150 750 1843
1250 750 1918
1350 750 1979
1450 750 2011
50 850 2002
150 850 1961
250 850 1861
350 850 1626
450 850 1836
550 850 1915
650 850 1944
750 850 1950
850 850 1944
950 850 1915
1050 850 1836
1150 850 1626
1250 850 1861
1350 850 1961
1450 850 2002
50 950 2005
150 950 1974
35
250 950 1914
350 950 1845
450 950 1897
550 950 1943
650 950 1969
750 950 1977
850 950 1969
950 950 1943
1050 950 1897
1150 950 1845
1250 950 1914
1350 950 1974
1450 950 2005
50 1050 2011
150 1050 1987
250 1050 1949
350 1050 1919
450 1050 1936
550 1050 1964
650 1050 1985
750 1050 1992
850 1050 1985
950 1050 1964
1050 1050 1936
1150 1050 1919
1250 1050 1949
1350 1050 1987
1450 1050 2011
Pressure distribution at t = 100days
36
x(ft) y(ft) P(x,y,t)
50 50 1472
150 50 1461
250 50 1443
350 50 1429
450 50 1436
550 50 1449
650 50 1458
750 50 1462
850 50 1458
950 50 1449
1050 50 1436
1150 50 1429
1250 50 1443
1350 50 1461
1450 50 1472
50 150 1470
150 150 1455
250 150 1427
350 150 1394
450 150 1418
550 150 1439
650 150 1451
750 150 1455
850 150 1451
950 150 1439
1050 150 1418
1150 150 1394
1250 150 1427
1350 150 1455
37
1450 150 1470
50 250 1468
150 250 1449
250 250 1402
350 250 1292
450 250 1389
550 250 1426
650 250 1439
750 250 1442
850 250 1439
950 250 1426
1050 250 1389
1150 250 1292
1250 250 1402
1350 250 1449
1450 250 1468
50 350 1472
150 350 1457
250 350 1428
350 350 1393
450 350 1411
550 350 1424
650 350 1425
750 350 1421
850 350 1425
950 350 1424
1050 350 1411
1150 350 1393
1250 350 1428
1350 350 1457
1450 350 1472
38
50 450 1478
150 450 1467
250 450 1448
350 450 1430
450 450 1426
550 450 1420
650 450 1404
750 450 1380
850 450 1404
950 450 1420
1050 450 1426
1150 450 1430
1250 450 1448
1350 450 1467
1450 450 1478
50 550 1480
150 550 1471
250 550 1455
350 550 1439
450 550 1430
550 550 1415
650 550 1379
750 550 1281
850 550 1379
950 550 1415
1050 550 1430
1150 550 1439
1250 550 1455
1350 550 1471
1450 550 1480
50 650 1478
39
150 650 1467
250 650 1448
350 650 1430
450 650 1426
550 650 1420
650 650 1404
750 650 1380
850 650 1404
950 650 1420
1050 650 1426
1150 650 1430
1250 650 1448
1350 650 1467
1450 650 1478
50 750 1472
150 750 1457
250 750 1428
350 750 1393
450 750 1411
550 750 1424
650 750 1425
750 750 1421
850 750 1425
950 750 1424
1050 750 1411
1150 750 1393
1250 750 1428
1350 750 1457
1450 750 1472
50 850 1468
150 850 1449
40
250 850 1402
350 850 1292
450 850 1389
550 850 1426
650 850 1439
750 850 1442
850 850 1439
950 850 1426
1050 850 1389
1150 850 1292
1250 850 1402
1350 850 1449
1450 850 1468
50 950 1470
150 950 1455
250 950 1427
350 950 1394
450 950 1418
550 950 1439
650 950 1451
750 950 1455
850 950 1451
950 950 1439
1050 950 1418
1150 950 1394
1250 950 1427
1350 950 1455
1450 950 1470
50 1050 1472
150 1050 1461
250 1050 1443
41
350 1050 1429
450 1050 1436
550 1050 1449
650 1050 1458
750 1050 1462
850 1050 1458
950 1050 1449
1050 1050 1436
1150 1050 1429
1250 1050 1443
1350 1050 1461
1450 1050 1472
Pressure and Saturation distribution at start of injection
x(ft) y(ft) P(x,y,t) So(x,y,t)
50 50 1013 0.74851
150 50 1013 0.74851
250 50 1012 0.74850
350 50 1012 0.74850
450 50 1012 0.74850
550 50 1012 0.74850
650 50 1013 0.74850
750 50 1013 0.74851
850 50 1013 0.74850
950 50 1012 0.74850
1050 50 1012 0.74850
1150 50 1012 0.74850
1250 50 1012 0.74850
1350 50 1013 0.74851
1450 50 1013 0.74851
42
50 150 1013 0.74851
150 150 1013 0.74850
250 150 1012 0.74850
350 150 1011 0.74850
450 150 1012 0.74850
550 150 1012 0.74850
650 150 1013 0.74850
750 150 1013 0.74850
850 150 1013 0.74850
950 150 1012 0.74850
1050 150 1012 0.74850
1150 150 1011 0.74850
1250 150 1012 0.74850
1350 150 1013 0.74850
1450 150 1013 0.74851
50 250 1013 0.74851
150 250 1012 0.74850
250 250 1011 0.74850
350 250 1008 0.74849
450 250 1011 0.74850
550 250 1012 0.74850
650 250 1012 0.74850
750 250 1012 0.74850
850 250 1012 0.74850
950 250 1012 0.74850
1050 250 1011 0.74850
1150 250 1008 0.74849
1250 250 1011 0.74850
1350 250 1012 0.74850
1450 250 1013 0.74851
50 350 1013 0.74851
43
150 350 1013 0.74850
250 350 1012 0.74850
350 350 1011 0.74850
450 350 1011 0.74850
550 350 1012 0.74850
650 350 1012 0.74850
750 350 1012 0.74850
850 350 1012 0.74850
950 350 1012 0.74850
1050 350 1011 0.74850
1150 350 1011 0.74850
1250 350 1012 0.74850
1350 350 1013 0.74850
1450 350 1013 0.74851
50 450 1013 0.74851
150 450 1013 0.74851
250 450 1012 0.74850
350 450 1012 0.74850
450 450 1012 0.74850
550 450 1012 0.74850
650 450 1011 0.74850
750 450 1011 0.74850
850 450 1011 0.74850
950 450 1012 0.74850
1050 450 1012 0.74850
1150 450 1012 0.74850
1250 450 1012 0.74850
1350 450 1013 0.74851
1450 450 1013 0.74851
50 550 1013 0.74851
150 550 1013 0.74851
44
250 550 1013 0.74850
350 550 1012 0.74850
450 550 1012 0.74850
550 550 1012 0.74850
650 550 1011 0.74850
750 550 1008 0.74849
850 550 1011 0.74850
950 550 1012 0.74850
1050 550 1012 0.74850
1150 550 1012 0.74850
1250 550 1013 0.74850
1350 550 1013 0.74851
1450 550 1013 0.74851
50 650 1013 0.74851
150 650 1013 0.74851
250 650 1012 0.74850
350 650 1012 0.74850
450 650 1012 0.74850
550 650 1012 0.74850
650 650 1011 0.74850
750 650 1011 0.74850
850 650 1011 0.74850
950 650 1012 0.74850
1050 650 1012 0.74850
1150 650 1012 0.74850
1250 650 1012 0.74850
1350 650 1013 0.74851
1450 650 1013 0.74851
50 750 1013 0.74851
150 750 1013 0.74850
250 750 1012 0.74850
45
350 750 1011 0.74850
450 750 1011 0.74850
550 750 1012 0.74850
650 750 1012 0.74850
750 750 1012 0.74850
850 750 1012 0.74850
950 750 1012 0.74850
1050 750 1011 0.74850
1150 750 1011 0.74850
1250 750 1012 0.74850
1350 750 1013 0.74850
1450 750 1013 0.74851
50 850 1013 0.74851
150 850 1012 0.74850
250 850 1011 0.74850
350 850 1008 0.74849
450 850 1011 0.74850
550 850 1012 0.74850
650 850 1012 0.74850
750 850 1012 0.74850
850 850 1012 0.74850
950 850 1012 0.74850
1050 850 1011 0.74850
1150 850 1008 0.74849
1250 850 1011 0.74850
1350 850 1012 0.74850
1450 850 1013 0.74851
50 950 1013 0.74851
150 950 1013 0.74850
250 950 1012 0.74850
350 950 1011 0.74850
46
450 950 1012 0.74850
550 950 1012 0.74850
650 950 1013 0.74850
750 950 1013 0.74850
850 950 1013 0.74850
950 950 1012 0.74850
1050 950 1012 0.74850
1150 950 1011 0.74850
1250 950 1012 0.74850
1350 950 1013 0.74850
1450 950 1013 0.74851
50 1050 1013 0.74851
150 1050 1013 0.74851
250 1050 1012 0.74850
350 1050 1012 0.74850
450 1050 1012 0.74850
550 1050 1012 0.74850
650 1050 1013 0.74850
750 1050 1013 0.74851
850 1050 1013 0.74850
950 1050 1012 0.74850
1050 1050 1012 0.74850
1150 1050 1012 0.74850
1250 1050 1012 0.74850
1350 1050 1013 0.74851
1450 1050 1013 0.74851
47

Weitere ähnliche Inhalte

Was ist angesagt?

solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
dean129
 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th edition
fercrotti
 
Quantum mass calculation
Quantum mass calculationQuantum mass calculation
Quantum mass calculation
Doug Frome
 

Was ist angesagt? (19)

Capitulo 3, 7ma edición
Capitulo 3, 7ma ediciónCapitulo 3, 7ma edición
Capitulo 3, 7ma edición
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
Capitulo 13, 7ma edición
Capitulo 13, 7ma ediciónCapitulo 13, 7ma edición
Capitulo 13, 7ma edición
 
Design of machine elements - Helical gears
Design of machine elements - Helical gearsDesign of machine elements - Helical gears
Design of machine elements - Helical gears
 
Design of machine elements - Spur gears
Design of machine elements - Spur gearsDesign of machine elements - Spur gears
Design of machine elements - Spur gears
 
Solution manual 4 6
Solution manual 4 6Solution manual 4 6
Solution manual 4 6
 
clock_theorems
clock_theoremsclock_theorems
clock_theorems
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma edición
 
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th edition
 
Ch08 10 combined loads &amp; transformations
Ch08 10 combined loads &amp; transformationsCh08 10 combined loads &amp; transformations
Ch08 10 combined loads &amp; transformations
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by Wajahat
 
Design of machine elements - DESIGN FOR SIMPLE STRESSES
Design of machine elements - DESIGN FOR SIMPLE STRESSESDesign of machine elements - DESIGN FOR SIMPLE STRESSES
Design of machine elements - DESIGN FOR SIMPLE STRESSES
 
6th Semester Mechanical Engineering (Dec-2015; Jan-2016) Question Papers
6th Semester Mechanical Engineering (Dec-2015; Jan-2016) Question Papers6th Semester Mechanical Engineering (Dec-2015; Jan-2016) Question Papers
6th Semester Mechanical Engineering (Dec-2015; Jan-2016) Question Papers
 
Capítulo 17 elementos mecânicos flexíveis
Capítulo 17   elementos mecânicos flexíveisCapítulo 17   elementos mecânicos flexíveis
Capítulo 17 elementos mecânicos flexíveis
 
Math cad prime ncees excercise 444 solution
Math cad prime   ncees excercise 444 solutionMath cad prime   ncees excercise 444 solution
Math cad prime ncees excercise 444 solution
 
Quantum mass calculation
Quantum mass calculationQuantum mass calculation
Quantum mass calculation
 
Solution manual 1 3
Solution manual 1 3Solution manual 1 3
Solution manual 1 3
 

Andere mochten auch

Complete Draft 1_24BC_2_13
Complete Draft 1_24BC_2_13Complete Draft 1_24BC_2_13
Complete Draft 1_24BC_2_13
Andrew Cleary
 
Ghayas Final project Report
Ghayas Final project ReportGhayas Final project Report
Ghayas Final project Report
Ghayas Qamar
 
Reservoir Geophysics
Reservoir GeophysicsReservoir Geophysics
Reservoir Geophysics
Jacob13012
 
Seismology (Subsurface structure and seismic process) petroleum engineering
Seismology (Subsurface structure and seismic process) petroleum engineeringSeismology (Subsurface structure and seismic process) petroleum engineering
Seismology (Subsurface structure and seismic process) petroleum engineering
Rebaz Hamad
 
Seminar on water influx and well testing
Seminar on water influx and well testingSeminar on water influx and well testing
Seminar on water influx and well testing
Rupam_Sarmah
 

Andere mochten auch (20)

NExT Schlumberger Drilling Engineer Program Course Outline
NExT Schlumberger Drilling Engineer Program Course OutlineNExT Schlumberger Drilling Engineer Program Course Outline
NExT Schlumberger Drilling Engineer Program Course Outline
 
Complete Draft 1_24BC_2_13
Complete Draft 1_24BC_2_13Complete Draft 1_24BC_2_13
Complete Draft 1_24BC_2_13
 
Ghayas Final project Report
Ghayas Final project ReportGhayas Final project Report
Ghayas Final project Report
 
Cyber Security for Financial Institutions
Cyber Security for Financial InstitutionsCyber Security for Financial Institutions
Cyber Security for Financial Institutions
 
ADVANCED PRODUCTION LOGGING, CASED HOLE & PRODUCTION LOG EVALUATION
ADVANCED  PRODUCTION LOGGING, CASED HOLE & PRODUCTION LOG EVALUATIONADVANCED  PRODUCTION LOGGING, CASED HOLE & PRODUCTION LOG EVALUATION
ADVANCED PRODUCTION LOGGING, CASED HOLE & PRODUCTION LOG EVALUATION
 
Secondary cementing
Secondary cementingSecondary cementing
Secondary cementing
 
Nodal analysis summary
Nodal analysis summaryNodal analysis summary
Nodal analysis summary
 
Core drilling method
Core drilling methodCore drilling method
Core drilling method
 
What are my 3P Reserves? Haas Petroleum Engineering Services
What are my 3P Reserves? Haas Petroleum Engineering ServicesWhat are my 3P Reserves? Haas Petroleum Engineering Services
What are my 3P Reserves? Haas Petroleum Engineering Services
 
Petroleum and natural gas 11
Petroleum and natural gas 11Petroleum and natural gas 11
Petroleum and natural gas 11
 
Reservoir evaluation method 101
Reservoir evaluation method 101Reservoir evaluation method 101
Reservoir evaluation method 101
 
Manuel Logiciel Techlog 2012
Manuel Logiciel Techlog 2012Manuel Logiciel Techlog 2012
Manuel Logiciel Techlog 2012
 
Weighting of precipitation recharge
Weighting of precipitation rechargeWeighting of precipitation recharge
Weighting of precipitation recharge
 
User guide of reservoir geological modeling v2.2.0
User guide of reservoir geological modeling v2.2.0User guide of reservoir geological modeling v2.2.0
User guide of reservoir geological modeling v2.2.0
 
Reservoir Geophysics
Reservoir GeophysicsReservoir Geophysics
Reservoir Geophysics
 
Drilling methods
Drilling methodsDrilling methods
Drilling methods
 
Seismology (Subsurface structure and seismic process) petroleum engineering
Seismology (Subsurface structure and seismic process) petroleum engineeringSeismology (Subsurface structure and seismic process) petroleum engineering
Seismology (Subsurface structure and seismic process) petroleum engineering
 
Principles of petroleum geology m.m.badawy
Principles of petroleum geology m.m.badawyPrinciples of petroleum geology m.m.badawy
Principles of petroleum geology m.m.badawy
 
Acidizing
AcidizingAcidizing
Acidizing
 
Seminar on water influx and well testing
Seminar on water influx and well testingSeminar on water influx and well testing
Seminar on water influx and well testing
 

Ähnlich wie Numerical Simulation of 2-D Subsurface Reservoir

Dev1insulating solid liquid 2
Dev1insulating solid liquid 2Dev1insulating solid liquid 2
Dev1insulating solid liquid 2
Simon Koutoua
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
amnahnura
 
EELE 334 ELECTROMAGNETIC THEORY I Fall 2017—Practice Final E.docx
EELE 334 ELECTROMAGNETIC THEORY I Fall 2017—Practice Final E.docxEELE 334 ELECTROMAGNETIC THEORY I Fall 2017—Practice Final E.docx
EELE 334 ELECTROMAGNETIC THEORY I Fall 2017—Practice Final E.docx
SALU18
 

Ähnlich wie Numerical Simulation of 2-D Subsurface Reservoir (20)

Numerical Simulation of a 3-D Reservoir
Numerical Simulation of a 3-D ReservoirNumerical Simulation of a 3-D Reservoir
Numerical Simulation of a 3-D Reservoir
 
Numerical Simulation of a 3-D Subsurface Reservoir
Numerical Simulation of a 3-D Subsurface ReservoirNumerical Simulation of a 3-D Subsurface Reservoir
Numerical Simulation of a 3-D Subsurface Reservoir
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
smLecture7 Calculation of Settlement.pptx
smLecture7 Calculation of Settlement.pptxsmLecture7 Calculation of Settlement.pptx
smLecture7 Calculation of Settlement.pptx
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
 
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
 
Dev1insulating solid liquid 2
Dev1insulating solid liquid 2Dev1insulating solid liquid 2
Dev1insulating solid liquid 2
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematics
 
Examen termo final
Examen termo finalExamen termo final
Examen termo final
 
Lateral Earth pressure
Lateral Earth pressureLateral Earth pressure
Lateral Earth pressure
 
Oscillatorsppt
OscillatorspptOscillatorsppt
Oscillatorsppt
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
3rd Semester Mechanical Engineering (June/July-2015) Question Papers
3rd Semester Mechanical Engineering  (June/July-2015) Question Papers3rd Semester Mechanical Engineering  (June/July-2015) Question Papers
3rd Semester Mechanical Engineering (June/July-2015) Question Papers
 
Escola naval 2015
Escola naval 2015Escola naval 2015
Escola naval 2015
 
G03201034038
G03201034038G03201034038
G03201034038
 
EELE 334 ELECTROMAGNETIC THEORY I Fall 2017—Practice Final E.docx
EELE 334 ELECTROMAGNETIC THEORY I Fall 2017—Practice Final E.docxEELE 334 ELECTROMAGNETIC THEORY I Fall 2017—Practice Final E.docx
EELE 334 ELECTROMAGNETIC THEORY I Fall 2017—Practice Final E.docx
 
Solution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert AlbertySolution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert Alberty
 
Examination in open channel flow
Examination in open channel flowExamination in open channel flow
Examination in open channel flow
 
Ch18
Ch18Ch18
Ch18
 

Kürzlich hochgeladen

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 

Kürzlich hochgeladen (20)

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 

Numerical Simulation of 2-D Subsurface Reservoir

  • 1. PTE 508 Project Two Report Je↵rey Daniels May 8, 2015 1 Reservoir Description 1.1 Reservoir Properties The oil reservoir under study is approximated by a rectangular prism. The geometry of this prism is length Lx = 1500 ft, width Ly = 1100 ft and height Z = 50 ft. The reservoir has a reference pressure-dependent porosity of = 0.22 measured at 1000 psia, an isotropic permeability of k = 11 mD, and a formation compressibility factor of ct = 2x10 6 psi 1 which is assumed to be constant. 1.2 Injection and Production Wells Five wells, Well-A and Well-B, Well-C, Well-D and Well-E are drilled in the reservoir first. Well-C serves as a producer and later as an injector in this reservoir simulation. All wells have the same wellbore radius rw = 0.25 ft and the same skin factor of S = 0. 1.3 Reservoir Fluid Properties The fluid flow is two-phase characterized by an initial oil saturation of Soi = 0.75 and initial water saturation of Swi = 0.25. The fluid properties of oil are viscosity µo = 5 cp, oil compressibility co = 10 5 psi 1 and a reference formation volume factor Bo = 1.25 RB/STB measured at 1000 psia. The oil bubble point pressure is 1000 psia. The fluid properties of water are viscosity µw = 1 cp, water compressibility cw = 10 6 psi 1 and a reference formation volume factor Bw = 1.02 RB/STB measured at 1000 psia. 2 Creation of Simulation cells In this study, the reservoir is assumed to be two dimensional and was discretized into 165 simulation cells (i.e characterized by 11x15 grid blocks). Each cell with a well present had a length of X = 100 ft, a width of Y = 100 ft and a height of Z = 50 ft. 1
  • 2. 3 Partial Di↵erential Equations (PDEs) With Initial and Bound- ary Conditions The PDEs to be discretized are as follows: @ @x ( ox @p @x ) + @ @y ( oy @p @y ) 887.53 (x xw) (y yw) qo,wµB z = 158 @ @t ( So Bo ) @ @x ( wx @p @x ) + @ @y ( wy @p @y ) 887.53 (x xw) (y yw) qw,wµB z = 158 @ @t ( Sw Bw ) ox = kxKro(So, Sw) µoBo , oy = kyKro(So, Sw) µoBo wx = kxKrw(So, Sw) µwBw , wy = kyKrw(So, Sw) µwBw So + Sw = 1 Boundary conditions: @P @x |x=0= 0, @P @x |x=1500= 0 @P @y |y=0= 0, @P @y |y=1100= 0 Initial condition: P(x)|t0= 3000 psia The PVT relations for formation volume factors Bo, Bw and are defined by the fol- lowing: Bo(p) = 1.25 exp( Co(p 1000)) Bw(p) = 1.02 exp( Cw(p 1000)) (p) = 0.22 exp(C (p 1000)) The following plot shows the PVT relations graphically as the reservoir pressure de- creases from 3000 psia to 1000 psia 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 1 1.05 1.1 1.15 1.2 1.25 FormationVolumeFactor,RB/STB Plot of Bo , Bw and φ vs P 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 0.22 0.2202 0.2204 0.2206 0.2208 0.221 Porosity,v/v Bw Bo φ 2
  • 3. Relative permeability curves, Kro and Krw are defined by two-phase Corey’s model. Swc = 0.2 and Sor = 0. Sn = Sw Swc 1 Sw = 1 So Swc 1 Swc Krw(Sw) = ( S4 n , Sw > Swc 0 , Sw  Swc Kro(Sw) = ( (1 Sn)2 (1 S2 n) , So > SororSw < 1 Sor 0 , So  SororSw 1 Sor The following plot shows the graphical relation between the relative perameabilities and water saturation 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Water Saturation RelativePermeability Plot of Relative Permeability Curves krw kro 4 Implicit Block-Centered Grid System Discretization 4.1 General Discretized Equation The following equation is used to solve for the grid cell pressures of the discretized reservoir. It contains the PVT parameters for both water and oil. SmPn+1 m Nx + WmPn+1 m 1 + CmPn+1 m + EmPn+1 m+1 + NmPn+1 m+Nx = Rm where m = 1, 2, 3, ..., 165 Sm = ¯OS( x y )2 Bo + ¯WS( x y )2 Bw Wm = ¯OW Bo + ¯WW Bw 3
  • 4. Cm = Bo(¯OW +¯OE) ( x y )2 Bo(¯OS+¯ON ) Bw(¯WW +¯WE) ( x y )2 Bw(¯WS+¯WN ) 158 x t Ct Em = ¯OEBo + ¯WEBw Nm = ¯ON ( x y )2 Bo + ¯WN ( x y )2 Bw Rm = 158 x t CtPn m + 887.53 qo,STBBo x y |ifwellincellm+887.53 qw,STBBw x y |ifwellincellm To calculate the average mobility ratios ¯o,S = kKro(So,up) µoBo(Pm Nx+Pm 2 ) So,up = ( So,m , Pm Pm Nx So,m Nx , Pm < Pm Nx ¯o,N = kKro(So,up) µoBo( Pm+Nx +Pm 2 ) So,up = ( So,m , Pm Pm+Nx So,m+Nx , Pm < Pm+Nx ¯o,W = kKro(So,up) µoBo(Pm 1+Pm 2 ) So,up = ( So,m , Pm Pm 1 So,m 1 , Pm < Pm 1 ¯o,E = kKro(So,up) µoBo(Pm+1+Pm 2 ) So,up = ( So,m , Pm Pm+1 So,m+1 , Pm < Pm+1 Sw = 1 So ¯w,S = kKrw(Sw,up) µwBw( Pm Nx +Pm 2 ) 4
  • 5. ¯w,N = kKrw(Sw,up) µwBw( Pm+Nx +Pm 2 ) ¯w,W = kKrw(Sw,up) µwBw(Pm 1+Pm 2 ) ¯w,E = kKrw(Sw,up) µwBw(Pm+1+Pm 2 ) 4.2 Incorporating no flow boundary conditions For no flow boundary conditions, the mobility ratios of water and oil are set to 0. At the Southern Boundary: ¯os = ¯ws = 0 At the Western Boundary: ¯ow = ¯ww = 0 At the Eastern Boundary: ¯oe = ¯we = 0 At the Northern Boundary: ¯on = ¯wn = 0 4.3 Production term discretization The production rate if a well exists in the grid cell is treated implicitly therefore qSTB w = Jww(Pn+1 m Pn m) qo = Jwo(Pn+1 m Pn m) 4.4 Finite-Di↵erence Equation for grid cells containing wells The finite di↵erence equation for the grid cells with wells are as follows: Well-A at m=34 S34Pn+1 19 + W34Pn+1 18 + C34Pn+1 34 + E34Pn+1 35 + N34Pn+1 49 = R34 S34 = ¯OS( x y )2 Bo + ¯WS( x y )2 Bw W34 = ¯OW Bo + ¯WSBw E34 = ¯OEBo + ¯WEBw 5
  • 6. N34 = ¯ON ( x y )2 Bo + ¯WN ( x y )2 Bw C34 = Bo(¯OW +¯OE) ( x y )2 Bo(¯OS+¯ON ) Bw(¯WW +¯WE) ( x y )2 Bw(¯WS+¯WN ) 158 x t Ct 887.53 Jwo well ABo x y 887.53 Jww well ABw x y R34 = 158 x t CtPn 34 887.53 Jwo well APwf well ABo x y 887.53 Jww well APwf well ABw x y Well-B at m=42 S42Pn+1 27 + W42Pn+1 41 + C42Pn+1 42 + E42Pn+1 43 + N42Pn+1 57 = R42 S42 = ¯OS( x y )2 Bo + ¯WS( x y )2 Bw W42 = ¯OW Bo + ¯WW Bw E42 = ¯OEBo + ¯WEBw N42 = ¯ON ( x y )2 Bo + ¯WN ( x y )2 Bw C42 = Bo(¯OW +¯OE) ( x y )2 Bo(¯OS +¯ON ) Bw(¯WW +¯WE) ( x y )2 Bw(¯WS +¯WN ) 158 x t Ct 887.53 Jwo well BBo x y 887.53 Jww well BBw x y R42 = 158 x t CtPn 42 887.53 JwoPwf well BBo x y 887.53 Jww well BPwfABw x y Well-C at m=83 S83Pn+1 68 + W83Pn+1 82 + C83Pn+1 83 + E83Pn+1 84 + N83Pn+1 98 = R83 S83 = ¯OS( x y )2 Bo + ¯WS( x y )2 Bw W83 = ¯OW Bo + ¯WW Bw E83 = ¯OEBo + ¯WEBw N83 = ¯ON ( x y )2 Bo + ¯WN ( x y )2 Bw 6
  • 7. C83 = Bo(¯OW +¯OE) ( x y )2 Bo(¯OS+¯ON ) Bw(¯WW +¯WE) ( x y )2 Bw(¯WS+¯WN ) 158 x t Ct 887.53 Jwo well CBo x y 887.53 Jww well CBw x y R83 = 158 x t CtPn 83 887.53 Jwo well CPwf well CBo x y 887.53 Jww well CPwf well CBw x y Well-D at m=124 S124Pn+1 109 + W124Pn+1 123 + C124Pn+1 124 + E124Pn+1 125 + N124Pn+1 139 = R124 S124 = ¯OS( x y )2 Bo + ¯WS( x y )2 Bw W124 = ¯OW Bo + ¯WW Bw E124 = ¯OEBo + ¯WEBw N124 = ¯ON ( x y )2 Bo + ¯WN ( x y )2 Bw C124 = Bo(¯OW +¯OE) ( x y )2 Bo(¯OS+¯ON ) Bw(¯WW +¯WE) ( x y )2 Bw(¯WS+¯WN ) 158 x t Ct 887.53 Jwo well DBo x y 887.53 Jww well DBw x y R124 = 158 x t CtPn 124 887.53 JwoPwf well DBo x y 887.53 Jww well DPwf well DBw x y Well-E at m=132 S132Pn+1 117 + W132Pn+1 131 + C132Pn+1 132 + E132Pn+1 133 + N132Pn+1 147 = R132 S132 = ¯OS( x y )2 Bo + ¯WS( x y )2 Bw W132 = ¯OW Bo + ¯WW Bw E132 = ¯OEBo + ¯WEBw N132 = ¯ON ( x y )2 Bo + ¯WN ( x y )2 Bw 7
  • 8. C132 = Bo(¯OW +¯OE) ( x y )2 Bo(¯OS+¯ON ) Bw(¯WW ¯WE) ( x y )2 Bw(¯WS+¯WN ) 158 x t Ct 887.53 Jwo well EBo x y 887.53 Jww well EBw x y R132 = 158 x t CtPn 132 887.53 Jwo well EPwf well EBo x y 887.53 Jww well EPwf well EBw x y 4.5 Well Productivity Index Calculation using Peaceman’s method Radial reservoir re = 0.14 ⇤ p X2 + Y 2 re = 0.14 ⇤ p 1002 + 1002 = 19.799ft Well productivity index Jwo = 7.08 ⇤ 10 3 kkroh µoBo ⇤ 1 ln re rw + S Jww = 7.08 ⇤ 10 3 kkrwh µwBw ⇤ 1 ln re rw + S For all wells S = 0 5 Leakproof Test In this test performed, the well flow rates are specified to be zero for all the wells and a simulation is run for 100 days. This is done by setting both Jwoil and Jwwater to zero. The time step used in this simulation is 10 days. The objective of this test is to ascer- tain that the PDEs for the simulation cells have been discretized correctly. The pres- sure, oil saturation and water saturation distributions are to remain at initial reser- voir values of 3000 psia, 0.75 and 0.25 everywhere in the reservoir at all the simulation times as shown in the plots below. 8
  • 9. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Reservoir Length,ft ReservoirWidth,ft Pressure distribution at t=0 days Pressure,psia 2990 2992 2994 2996 2998 3000 3002 3004 3006 3008 3010 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure distribution at t=50 days Reservoir Length,ft ReservoirWidth,ft Pressure,psia 2990 2992 2994 2996 2998 3000 3002 3004 3006 3008 3010 9
  • 10. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure distribution at t=100 days Reservoir Length,ft ReservoirWidth,ft Pressure,psia 2990 2992 2994 2996 2998 3000 3002 3004 3006 3008 3010 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Reservoir Length,ft ReservoirWidth,ft Oil saturation distribution at t=0 days OilSaturation,v/v 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 10
  • 11. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Oil saturation distribution at t=50 days Reservoir Length,ft ReservoirWidth,ft OilSaturation,v/v 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Oil saturation distribution at t=100 days Reservoir Length,ft ReservoirWidth,ft OilSaturation,v/v 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 11
  • 12. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Reservoir Length,ft ReservoirWidth,ft Water saturation distribution at t=0 days WaterSaturation,v/v 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Water saturation distribution at t=50 days Reservoir Length,ft ReservoirWidth,ft WaterSaturation,v/v 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 12
  • 13. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Water saturation distribution at t=100 days Reservoir Length,ft ReservoirWidth,ft WaterSaturation,v/v 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 6 Symmetry Test In this test performed, the bottomhole flowing pressure for the wells are set to 1000 psia thereby configuring all the wells to be producers. A simulation is then run for 100 days. The time step used in this simulation is 10 days. The reservoir pressure distribu- tion for this test is expected to be symmetric about the center (x = 750ft, y = 550ft) of the reservoir as shown in the plots below. The pressure results are also published in the tables in the additional results section. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Reservoir Length,ft ReservoirWidth,ft Pressure distribution at t=0 days Pressure,psia 2999 2999.2 2999.4 2999.6 2999.8 3000 3000.2 3000.4 3000.6 3000.8 3001 13
  • 14. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure distribution at t=50 days Reservoir Length,ft ReservoirWidth,ft Pressure,psia 1650 1700 1750 1800 1850 1900 1950 2000 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure distribution at t=100 days Reservoir Length,ft ReservoirWidth,ft Pressure,psia 1300 1320 1340 1360 1380 1400 1420 1440 1460 7 Oil Initially In Place Determination and Material Balance Check The wells are configured to be producers by setting their bottomhole flowing pressures Pwf = 1000psia. A simulation is then run for 100 days. The time step used in this simulation is 10 days. The Oil-Initially-In-Place (OIIP) was calculated to be approx- imately 1986558 STB. The cumulative production of the reservoir along with the oil in place is calculated for each time step as well as the error between Oil-Initially-In- Place and the sum of cumulative oil production and Oil-In-Place at the end of each 14
  • 15. time step. It is expected that there should be oil mass conservation hence the error is expected to be within 0.1%. The oil initially in place was determined by the following equation with initial reservoir and PVT parameters at Pi = 3000psia: OIIP = 1 5.615 ⌃ NxNy m=1 [ x y z (Pi)So,i Bo(Pi) ]m Nx = 15 Ny = 11 The Oil In Place at the end of each time step was calculated using the following equa- tion: OIPn+1 = 1 5.615 ⌃ NxNy m=1 [ x y z n+1 Sn+1 o Bn+1 o ]m The cumulative oil production is calculated as follows V n+1 o,prod = V n o,prod + qn+1 o t = ⌃T n=1qn+1 o t The error from oil mass conservation is determined by the following equation: Error = |OIIP (V n+1 o,prod + OIPn+1 )| OIIP ⇤ 100 Material Balance Check Time (Days) Cumulative Pro- duction (STB) Oil In Place (STB) Error (%) 10 7557 1978998 0.000154 20 13785 1972767 0.000282 30 19097 1967453 0.000390 40 23644 1962904 0.000483 50 27541 1959005 0.000563 60 30886 1955664 0.000631 70 33746 1952798 0.000689 80 36202 1950341 0.000739 90 38308 1948234 0.000783 100 40115 1946426 0.000819 15
  • 16. 8 Primary Recovery Study In this study recovery of hydrocarbons from the reservoir is simulated without water injection. The wells are configured to be producers with their flowing pressures set to 1000 psia. The simulation is run until the oil production rate from Well-A falls below 1 STB/D. This occurs after 313 days of producing the reservoir. A time step of 1 day is used in the simulation. From the simulation results obtained, all the wells have an initial oil production rate of 197 STB/D and an initial water production rate of 0.021 STB/D however, after about 11 days the the oil and water production rate of all the well C slightly decreases while the other wells continue to have equivalent oil and water production rates. This trend continues until t = 171days, after which all the wells have equivalent oil and water production rates again. 0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 160 180 200 Time, days Oilproductionrate,STB/D Oil production rate vs time Oil producion rate for Well A Oil producion rate for Well B Oil producion rate for Well C Oil producion rate for Well D Oil producion rate for Well E 16
  • 17. 0 50 100 150 200 250 300 350 0 0.005 0.01 0.015 0.02 0.025 Time, days Waterproductionrate,STB/D Water production rate vs time Water producion rate for Well A Water producion rate for Well B Water producion rate for Well C Water producion rate for Well D Water producion rate for Well E The cumulative oil production rate of the reservoir after 313 days of production is 50684 STB as show in the plot below. The recovery factor is 2.5% which is significantly low. Such a scenario recommends the need for pressure maintenance. 0 50 100 150 200 250 300 350 0 1 2 3 4 5 6 x 10 4 Cumulativeproduction,STB/D Time, days Cumulative Production vs time The reservoir pressure at the wells decreases from 3000 psia to 1260 psia while the pres- sure at the boundaries drops to 1420 psia after 100 days of production. At the end of production, the pressure drops to 1008 psia at the wells while it drops to 1013 psia at the boundaries at the end of production. The pressure decline in the first t=100 days is the fastest decline as compared to other 100 day intervals. However, the decreasing pressure drop in the reservoir as time progresses is expected and explains the decreas- ing oil and water production rates as time progresses. 17
  • 18. 0 50 100 150 200 250 300 350 0 0.5 1 1.5 2 2.5 3 Recoveryfactor,% Time, days Recovery factor vs time 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Reservoir Length,ft ReservoirWidth,ft Pressure distribution at t=0 days Pressure,psia 2999 2999.2 2999.4 2999.6 2999.8 3000 3000.2 3000.4 3000.6 3000.8 3001 18
  • 19. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure distribution at t=100 days Reservoir Length,ft ReservoirWidth,ft Pressure,psia 1260 1280 1300 1320 1340 1360 1380 1400 1420 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure distribution at t=200 days Reservoir Length,ft ReservoirWidth,ft Pressure,psia 1050 1055 1060 1065 1070 1075 1080 19
  • 20. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure distribution at t=300 days Reservoir Length,ft ReservoirWidth,ft Pressure,psia 1010 1011 1012 1013 1014 1015 1016 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure distribution at end of production Reservoir Length,ft ReservoirWidth,ft Pressure,psia 1008 1008.5 1009 1009.5 1010 1010.5 1011 1011.5 1012 1012.5 1013 The simulation results suggest that the reservoir cannot produce for long under its pri- mary recovery mechanism alone. 20
  • 21. 9 Secondary Recovery Study In this study recovery of hydrocarbons from the reservoir is simulated with water injec- tion for pressure maintenance. Initially, the wells are configured to be producers with their flowing pressures set to 1000 psia. However after the oil production rate from Well-A falls below 1 STB/D, Well-C is converted to an injector with a flowing pres- sure of 2950 psia. The simulation is run until 10000 days. A time step of 1 day is used in the simulation. Water injection is started at t = 313days. It is observed from the oil saturation distri- bution below that there is still a significant amount of hydrocarbons in the reservoir. However, the due to a low pressure drop as shown in the pressure distribution plot, the reservoir cannot produce at a prolific rate. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Oil saturation distribution at start of injection Reservoir Length,ft ReservoirWidth,ft OilSaturation,v/v 0.7485 0.7485 0.7485 0.7485 21
  • 22. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure distribution at start of injection Reservoir Length,ft ReservoirWidth,ft Pressure,psia 1008 1008.5 1009 1009.5 1010 1010.5 1011 1011.5 1012 1012.5 1013 At the end of the simulation (t = 10000days), the oil saturation distribution plot shows that a significant amount of the reservoir oil has been produced with most of the re- maining oil in place located at the corners or the reservoir. The pressure distribution shows a large pressure drop which is able to support the reservoir to produce at a pro- lific rate. The average pressures at the producing well locations are 1700 psia while the average pressure at the injection well location is 2400 psia. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Oil saturation distribution at t=10000 days Reservoir Length,ft ReservoirWidth,ft OilSaturation,v/v 0.1 0.2 0.3 0.4 0.5 0.6 0.7 22
  • 23. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure distribution at t=10000 days Reservoir Length,ft ReservoirWidth,ft Pressure,psia 1700 1800 1900 2000 2100 2200 2300 2400 The cumulative oil production at the end of 10000days is 969687 STB. The recovery factor is 48.81% which is significantly higher compared to when the reservoir was only under primary recovery. 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1 2 3 4 5 6 7 8 9 10 x 10 5 Cumulativeproduction,STB/D Time, days Cumulative Production vs time 23
  • 24. 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 5 10 15 20 25 30 35 40 45 50 Recoveryfactor,% Time, days Recovery factor vs time Also the time for which watercut increased above 20% at Well-A was determined to be at t=3094 days.The oil saturation distribution shows that a significant amount of oil remained in the reservoir so continued production with an increasing water cut is justified. At the end of the simulation the water cut was approximately 90%. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Oil saturation distribution at Water Breakthrough Time Reservoir Length,ft ReservoirWidth,ft OilSaturation,v/v 0.1 0.2 0.3 0.4 0.5 0.6 0.7 24
  • 25. 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 800 900 1000 Pressure Distribution at Water Breakthrough Time Reservoir Length,ft ReservoirWidth,ft Pressure,psia 1800 1900 2000 2100 2200 2300 2400 2500 The simulation results suggest that the reservoir produces for much longer when there is pressure maintenance to support production. 10 Conclusion Water Injection aids in realizing signifcantly higher recovery factors and slower oil pro- duction rates as time progresses. The simulation studies show that under primary re- covery alone, the recovery factor was 2.5% as compared to the 60% when there was wa- ter injection However, with water injection as serving as pressure maintenance, there is a risk of higher water cut as time progresses. In the primary recovery study, the water cut was almost negligible while during the secondary recovery study, the water cut kept increas- ing after water injection was initiated. 25
  • 26. 11 Additional Results Pressure distribution at t = 0days x(ft) y(ft) P(x,y,t) 50 50 3000 150 50 3000 250 50 3000 350 50 3000 450 50 3000 550 50 3000 650 50 3000 750 50 3000 850 50 3000 950 50 3000 1050 50 3000 1150 50 3000 1250 50 3000 1350 50 3000 1450 50 3000 50 150 3000 150 150 3000 250 150 3000 350 150 3000 450 150 3000 550 150 3000 650 150 3000 750 150 3000 850 150 3000 950 150 3000 1050 150 3000 1150 150 3000 26
  • 27. 1250 150 3000 1350 150 3000 1450 150 3000 50 250 3000 150 250 3000 250 250 3000 350 250 3000 450 250 3000 550 250 3000 650 250 3000 750 250 3000 850 250 3000 950 250 3000 1050 250 3000 1150 250 3000 1250 250 3000 1350 250 3000 1450 250 3000 50 350 3000 150 350 3000 250 350 3000 350 350 3000 450 350 3000 550 350 3000 650 350 3000 750 350 3000 850 350 3000 950 350 3000 1050 350 3000 1150 350 3000 1250 350 3000 27
  • 28. 1350 350 3000 1450 350 3000 50 450 3000 150 450 3000 250 450 3000 350 450 3000 450 450 3000 550 450 3000 650 450 3000 750 450 3000 850 450 3000 950 450 3000 1050 450 3000 1150 450 3000 1250 450 3000 1350 450 3000 1450 450 3000 50 550 3000 150 550 3000 250 550 3000 350 550 3000 450 550 3000 550 550 3000 650 550 3000 750 550 3000 850 550 3000 950 550 3000 1050 550 3000 1150 550 3000 1250 550 3000 1350 550 3000 28
  • 29. 1450 550 3000 50 650 3000 150 650 3000 250 650 3000 350 650 3000 450 650 3000 550 650 3000 650 650 3000 750 650 3000 850 650 3000 950 650 3000 1050 650 3000 1150 650 3000 1250 650 3000 1350 650 3000 1450 650 3000 50 750 3000 150 750 3000 250 750 3000 350 750 3000 450 750 3000 550 750 3000 650 750 3000 750 750 3000 850 750 3000 950 750 3000 1050 750 3000 1150 750 3000 1250 750 3000 1350 750 3000 1450 750 3000 29
  • 30. 50 850 3000 150 850 3000 250 850 3000 350 850 3000 450 850 3000 550 850 3000 650 850 3000 750 850 3000 850 850 3000 950 850 3000 1050 850 3000 1150 850 3000 1250 850 3000 1350 850 3000 1450 850 3000 50 950 3000 150 950 3000 250 950 3000 350 950 3000 450 950 3000 550 950 3000 650 950 3000 750 950 3000 850 950 3000 950 950 3000 1050 950 3000 1150 950 3000 1250 950 3000 1350 950 3000 1450 950 3000 50 1050 3000 30
  • 31. 150 1050 3000 250 1050 3000 350 1050 3000 450 1050 3000 550 1050 3000 650 1050 3000 750 1050 3000 850 1050 3000 950 1050 3000 1050 1050 3000 1150 1050 3000 1250 1050 3000 1350 1050 3000 1450 1050 3000 Pressure distribution at t = 50days x(ft) y(ft) P(x,y,t) 50 50 2011 150 50 1987 250 50 1949 350 50 1919 450 50 1936 550 50 1964 650 50 1985 750 50 1992 850 50 1985 950 50 1964 1050 50 1936 1150 50 1919 1250 50 1949 31
  • 32. 1350 50 1987 1450 50 2011 50 150 2005 150 150 1974 250 150 1914 350 150 1845 450 150 1897 550 150 1943 650 150 1969 750 150 1977 850 150 1969 950 150 1943 1050 150 1897 1150 150 1845 1250 150 1914 1350 150 1974 1450 150 2005 50 250 2002 150 250 1961 250 250 1861 350 250 1626 450 250 1836 550 250 1915 650 250 1944 750 250 1950 850 250 1944 950 250 1915 1050 250 1836 1150 250 1626 1250 250 1861 1350 250 1961 32
  • 33. 1450 250 2002 50 350 2011 150 350 1979 250 350 1918 350 350 1843 450 350 1882 550 350 1910 650 350 1914 750 350 1906 850 350 1914 950 350 1910 1050 350 1882 1150 350 1843 1250 350 1918 1350 350 1979 1450 350 2011 50 450 2022 150 450 1999 250 450 1960 350 450 1921 450 450 1914 550 450 1903 650 450 1869 750 450 1818 850 450 1869 950 450 1903 1050 450 1914 1150 450 1921 1250 450 1960 1350 450 1999 1450 450 2022 33
  • 34. 50 550 2027 150 550 2007 250 550 1974 350 550 1942 450 550 1922 550 550 1892 650 550 1815 750 550 1604 850 550 1815 950 550 1892 1050 550 1922 1150 550 1942 1250 550 1974 1350 550 2007 1450 550 2027 50 650 2022 150 650 1999 250 650 1960 350 650 1921 450 650 1914 550 650 1903 650 650 1869 750 650 1818 850 650 1869 950 650 1903 1050 650 1914 1150 650 1921 1250 650 1960 1350 650 1999 1450 650 2022 50 750 2011 34
  • 35. 150 750 1979 250 750 1918 350 750 1843 450 750 1882 550 750 1910 650 750 1914 750 750 1906 850 750 1914 950 750 1910 1050 750 1882 1150 750 1843 1250 750 1918 1350 750 1979 1450 750 2011 50 850 2002 150 850 1961 250 850 1861 350 850 1626 450 850 1836 550 850 1915 650 850 1944 750 850 1950 850 850 1944 950 850 1915 1050 850 1836 1150 850 1626 1250 850 1861 1350 850 1961 1450 850 2002 50 950 2005 150 950 1974 35
  • 36. 250 950 1914 350 950 1845 450 950 1897 550 950 1943 650 950 1969 750 950 1977 850 950 1969 950 950 1943 1050 950 1897 1150 950 1845 1250 950 1914 1350 950 1974 1450 950 2005 50 1050 2011 150 1050 1987 250 1050 1949 350 1050 1919 450 1050 1936 550 1050 1964 650 1050 1985 750 1050 1992 850 1050 1985 950 1050 1964 1050 1050 1936 1150 1050 1919 1250 1050 1949 1350 1050 1987 1450 1050 2011 Pressure distribution at t = 100days 36
  • 37. x(ft) y(ft) P(x,y,t) 50 50 1472 150 50 1461 250 50 1443 350 50 1429 450 50 1436 550 50 1449 650 50 1458 750 50 1462 850 50 1458 950 50 1449 1050 50 1436 1150 50 1429 1250 50 1443 1350 50 1461 1450 50 1472 50 150 1470 150 150 1455 250 150 1427 350 150 1394 450 150 1418 550 150 1439 650 150 1451 750 150 1455 850 150 1451 950 150 1439 1050 150 1418 1150 150 1394 1250 150 1427 1350 150 1455 37
  • 38. 1450 150 1470 50 250 1468 150 250 1449 250 250 1402 350 250 1292 450 250 1389 550 250 1426 650 250 1439 750 250 1442 850 250 1439 950 250 1426 1050 250 1389 1150 250 1292 1250 250 1402 1350 250 1449 1450 250 1468 50 350 1472 150 350 1457 250 350 1428 350 350 1393 450 350 1411 550 350 1424 650 350 1425 750 350 1421 850 350 1425 950 350 1424 1050 350 1411 1150 350 1393 1250 350 1428 1350 350 1457 1450 350 1472 38
  • 39. 50 450 1478 150 450 1467 250 450 1448 350 450 1430 450 450 1426 550 450 1420 650 450 1404 750 450 1380 850 450 1404 950 450 1420 1050 450 1426 1150 450 1430 1250 450 1448 1350 450 1467 1450 450 1478 50 550 1480 150 550 1471 250 550 1455 350 550 1439 450 550 1430 550 550 1415 650 550 1379 750 550 1281 850 550 1379 950 550 1415 1050 550 1430 1150 550 1439 1250 550 1455 1350 550 1471 1450 550 1480 50 650 1478 39
  • 40. 150 650 1467 250 650 1448 350 650 1430 450 650 1426 550 650 1420 650 650 1404 750 650 1380 850 650 1404 950 650 1420 1050 650 1426 1150 650 1430 1250 650 1448 1350 650 1467 1450 650 1478 50 750 1472 150 750 1457 250 750 1428 350 750 1393 450 750 1411 550 750 1424 650 750 1425 750 750 1421 850 750 1425 950 750 1424 1050 750 1411 1150 750 1393 1250 750 1428 1350 750 1457 1450 750 1472 50 850 1468 150 850 1449 40
  • 41. 250 850 1402 350 850 1292 450 850 1389 550 850 1426 650 850 1439 750 850 1442 850 850 1439 950 850 1426 1050 850 1389 1150 850 1292 1250 850 1402 1350 850 1449 1450 850 1468 50 950 1470 150 950 1455 250 950 1427 350 950 1394 450 950 1418 550 950 1439 650 950 1451 750 950 1455 850 950 1451 950 950 1439 1050 950 1418 1150 950 1394 1250 950 1427 1350 950 1455 1450 950 1470 50 1050 1472 150 1050 1461 250 1050 1443 41
  • 42. 350 1050 1429 450 1050 1436 550 1050 1449 650 1050 1458 750 1050 1462 850 1050 1458 950 1050 1449 1050 1050 1436 1150 1050 1429 1250 1050 1443 1350 1050 1461 1450 1050 1472 Pressure and Saturation distribution at start of injection x(ft) y(ft) P(x,y,t) So(x,y,t) 50 50 1013 0.74851 150 50 1013 0.74851 250 50 1012 0.74850 350 50 1012 0.74850 450 50 1012 0.74850 550 50 1012 0.74850 650 50 1013 0.74850 750 50 1013 0.74851 850 50 1013 0.74850 950 50 1012 0.74850 1050 50 1012 0.74850 1150 50 1012 0.74850 1250 50 1012 0.74850 1350 50 1013 0.74851 1450 50 1013 0.74851 42
  • 43. 50 150 1013 0.74851 150 150 1013 0.74850 250 150 1012 0.74850 350 150 1011 0.74850 450 150 1012 0.74850 550 150 1012 0.74850 650 150 1013 0.74850 750 150 1013 0.74850 850 150 1013 0.74850 950 150 1012 0.74850 1050 150 1012 0.74850 1150 150 1011 0.74850 1250 150 1012 0.74850 1350 150 1013 0.74850 1450 150 1013 0.74851 50 250 1013 0.74851 150 250 1012 0.74850 250 250 1011 0.74850 350 250 1008 0.74849 450 250 1011 0.74850 550 250 1012 0.74850 650 250 1012 0.74850 750 250 1012 0.74850 850 250 1012 0.74850 950 250 1012 0.74850 1050 250 1011 0.74850 1150 250 1008 0.74849 1250 250 1011 0.74850 1350 250 1012 0.74850 1450 250 1013 0.74851 50 350 1013 0.74851 43
  • 44. 150 350 1013 0.74850 250 350 1012 0.74850 350 350 1011 0.74850 450 350 1011 0.74850 550 350 1012 0.74850 650 350 1012 0.74850 750 350 1012 0.74850 850 350 1012 0.74850 950 350 1012 0.74850 1050 350 1011 0.74850 1150 350 1011 0.74850 1250 350 1012 0.74850 1350 350 1013 0.74850 1450 350 1013 0.74851 50 450 1013 0.74851 150 450 1013 0.74851 250 450 1012 0.74850 350 450 1012 0.74850 450 450 1012 0.74850 550 450 1012 0.74850 650 450 1011 0.74850 750 450 1011 0.74850 850 450 1011 0.74850 950 450 1012 0.74850 1050 450 1012 0.74850 1150 450 1012 0.74850 1250 450 1012 0.74850 1350 450 1013 0.74851 1450 450 1013 0.74851 50 550 1013 0.74851 150 550 1013 0.74851 44
  • 45. 250 550 1013 0.74850 350 550 1012 0.74850 450 550 1012 0.74850 550 550 1012 0.74850 650 550 1011 0.74850 750 550 1008 0.74849 850 550 1011 0.74850 950 550 1012 0.74850 1050 550 1012 0.74850 1150 550 1012 0.74850 1250 550 1013 0.74850 1350 550 1013 0.74851 1450 550 1013 0.74851 50 650 1013 0.74851 150 650 1013 0.74851 250 650 1012 0.74850 350 650 1012 0.74850 450 650 1012 0.74850 550 650 1012 0.74850 650 650 1011 0.74850 750 650 1011 0.74850 850 650 1011 0.74850 950 650 1012 0.74850 1050 650 1012 0.74850 1150 650 1012 0.74850 1250 650 1012 0.74850 1350 650 1013 0.74851 1450 650 1013 0.74851 50 750 1013 0.74851 150 750 1013 0.74850 250 750 1012 0.74850 45
  • 46. 350 750 1011 0.74850 450 750 1011 0.74850 550 750 1012 0.74850 650 750 1012 0.74850 750 750 1012 0.74850 850 750 1012 0.74850 950 750 1012 0.74850 1050 750 1011 0.74850 1150 750 1011 0.74850 1250 750 1012 0.74850 1350 750 1013 0.74850 1450 750 1013 0.74851 50 850 1013 0.74851 150 850 1012 0.74850 250 850 1011 0.74850 350 850 1008 0.74849 450 850 1011 0.74850 550 850 1012 0.74850 650 850 1012 0.74850 750 850 1012 0.74850 850 850 1012 0.74850 950 850 1012 0.74850 1050 850 1011 0.74850 1150 850 1008 0.74849 1250 850 1011 0.74850 1350 850 1012 0.74850 1450 850 1013 0.74851 50 950 1013 0.74851 150 950 1013 0.74850 250 950 1012 0.74850 350 950 1011 0.74850 46
  • 47. 450 950 1012 0.74850 550 950 1012 0.74850 650 950 1013 0.74850 750 950 1013 0.74850 850 950 1013 0.74850 950 950 1012 0.74850 1050 950 1012 0.74850 1150 950 1011 0.74850 1250 950 1012 0.74850 1350 950 1013 0.74850 1450 950 1013 0.74851 50 1050 1013 0.74851 150 1050 1013 0.74851 250 1050 1012 0.74850 350 1050 1012 0.74850 450 1050 1012 0.74850 550 1050 1012 0.74850 650 1050 1013 0.74850 750 1050 1013 0.74851 850 1050 1013 0.74850 950 1050 1012 0.74850 1050 1050 1012 0.74850 1150 1050 1012 0.74850 1250 1050 1012 0.74850 1350 1050 1013 0.74851 1450 1050 1013 0.74851 47