SlideShare ist ein Scribd-Unternehmen logo
1 von 14
Downloaden Sie, um offline zu lesen
Lesson 10
SUCCESSIVE DIFFERENTIATION:
LEIBNITZ'S THEOREM
OBJECTIVES
At the end of this session, you will be able to understand:
Definition
nth
Differential Coefficient of Standard Functions
Leibnitz’s Theorem
DIFFERENTIATION: If be a differentiable function of x, then)(xfy = )(' xf
dx
dy
= is called the first
differential coefficient of y w.r.t x.
Hence, differentiating both side w.r.t. x, we have
( ) ( )
( )
( )
2 2
2 2
2 3 3
2 3 3
' '' .
d dy d d
be represented by ;then ''
dx dx
d d
Similarly is represented by ; ie ''' and so on
dx dx
T
d dy d
f x f x
dx dx dx
y y
Let f x
dx dx
y d y d y
f x
dx dx
   
= =     
   
   
=   
   
  
=  
   
2 3
2 3
n
1 2 3
he expressions , , ,....... are called the first, second, third, .....nth differen-
tial coefficient of y.
These function are usually written as
y',y'',y''',......y or y ,y y ......
n
n
dy d y d y d y
dx dx d x dx
2 3
n..................y and also , , ,....... .n
Dy D y D y D y
nth
DIFFERENTIAL COEFFICIENT OF STANDARD FUNCTION:
(i) Differential Coefficient of :m
x
m 1
1
2 3
2 3
n
y = x , then y ;
y ( 1) ;y ( 1)( 2) and so on
In general, y ( 1)( 2)( 3).........................( 1) ;
m
m m
m n
If mx
m m x m m m x
m m m m m n x
−
− −
−
=
= − = − −
= − − − − +
1
Note: If m be a positive integer, we have
ny 1.2.3............ !;m m= =
Hence ( ) ( 1)( 2)( 3)............( 1)m m
nD x m m m m m n x n−
= − − − − +
(ii) Differential Coefficient of ( )m
ax b+ :
m 1
1
2 2 3 3
2 3
If y = (ax+b) , then ( ) ;
( 1)( ) ; ( 1)( 2)( ) and so on.
In general ( 1)( 2)( 3)............( 1)( )
m
m m
n m n
n
y am ax b
y a m m ax b x y a m m m ax b x
y a m m m m m n ax b x
−
− −
−
= +
= − + = − − +
= − − − − + +
[Note: In the first differentiation, the last term in it is ( )11+−m
)2
; in the second differentiation it is
i.e.( ;in the third differentiation it is ()1( −m )12 +−m −m i.e. )13( +−m .So the nth differentiation it
will be .])1+− n(m
Hence ( ) ( 1)( 2)( 3)............( 1)( )
!
or ( ) ( )
( )!
In case m is negative integer,let , where is positive integer, then
( ) ( )( 1)( 2)....
m n m n
m n m n
p n
D ax b a m m m m m n ax b
m
D ax b a ax b
m n
m p p
D ax b a p p p
−
−
−
+ = − − − − + +
+ = +
−
−
+ = − − − − −
1
................[ ( 1)]( )
( 1) ( 1)( 2)....................[( 1)]( )
( 1)!
( 1) ( )
( 1)!
Note1. If .then ( ) !
Note2. If 1, we have ( ) (
p n
n p nn
n n p n
n p n
n
p n ax b
p p p p n ax ba
p n
a ax b
p
m n D ax b a
m D ax b
− −
− −
− −
−
−
− − − +
= − + + − + +
− +
= − +
−
= + =
= − + = 1
1 1
1
1)( 1 1)................( 1 1) ( )
( 1) !
( 1) 1.2.3........... ( ) ! ( ) .( 1)
( )
n n
n n
n n n n nn
n
n a ax b
n a
na ax b n a ax b
ax b
− −
− − − −
+
− − − − − + +
−
− + = + =−
+
(iii) Differential Coefficient of ( )ax b+ :
1
1
2 2 3 3
2 32 2 3 3
4 4
3
4 4 4
(0!)
If log( ), ( )
( ) ( )
.1 .(1!) .2 .(2!)
. .
( ) ( ) ( ) ( )
2.3 .(3!)
and so on.( 1) .
( ) ( )
a a
y ax b then y a ax b
ax b ax b
a a a a
y y
ax b ax b ax b ax b
a a
y
ax b ax b
−
= + = = + =
+ +
= = − = = −
+ + + +
= = −
+ +
2
1
1
1
.( 1)!
In general, ( 1) .
( )
.( 1)!
Hence log( ) ( 1) . .
( )
( 1) ( 1)!
Note: log .
n
n
n n
n
n n
n
n
n
n
a n
y
ax b
a n
D ax b
ax b
n
D x
x
−
−
−
−
= −
+
−
+ = −
+
− −
=
(iv) Differential Coefficient of :bx
a
2 2
1 2
3 3
3
n
If , then log , (log ) .
, and so no.(log )
In general, ,(log )
Hence D . (log ) .
bx bx bx
bx
n nbx
n
bx n nbx
e
y a y ba a y b a a
y b a a
y b aa
a b aa
= = =
=
=
=
(v) Differential Coefficient of :ax
e
2 3 4
1 2 3 4
If , then
, , , and so on.
In general, , Hence .
ax
ax ax ax ax
n ax n ax n ax
n
y e
y ae y a e y a e y a e
y a e D e a e
=
= = = =
= =
(vi) Differential Coefficient of sin( ) :ax b+
1
2 2
2
1
If sin( ), then
cos( ) sin ( )
2
2
cos( ) sin ( ) ,and so on.
2
1
In General, .sin
2
1
Hence, ( ) sin
2
Note: sin
n
n n
n
y ax b
y a ax b a ax b
y a ax b ax ba
y ax b na
D ax b a ax b n
D x
π
π
π
π
= +
 
= + = + +  
 
= − + = + +  
 
= + + 
 
 
+ = + +  
sin
2
n
x
π  
= +   
  
3
(vii) Differential Coefficient of cos( ) :ax b+
1
2 2
2
If cos( ), then
sin( ) cos
2
2
sin cos ,and so on
2 2
1
In general, cos .
2
1
Hence, cos ( ) cos .
2
Note : cos co
n
n
n n
n
y ax b
y a ax b a ax b
y a ax b ax ba
y a ax b n
D x ax b a ax b n
D x
π
π π
π
π
= +
 
= − + = + + 
 
   
= − + + = + +   
   
 
= + + 
 
 
+ = + + 
 
=
1
s .
2
x nπ
 
+ 
 
(viii) Differential Coefficient of sin( ) and cos( ) :ax ax
e bx c e bx c+ +
1
2 2 2 1
1
If sin( ), then
sin( ) cos( ) [ sin( ) cos( )]
Putting cos and sin , we get
sin( ), where and tan ,
similary
ax
ax ax ax
ax
y e bx c
y e bx c be bx c e a bx c b bx c
a r b r
b
y re bx c r a b
a
φ φ
φ φ −
= +
= + + + = + +
= =
 
= + + = + =  
 
+
2
1
1
2 2 12
1
2 2 12
, ,and so on.sin( 2 )
Hence, sin( ) sin( )
where ( ) and tan .
Similarly, cos( ) cos( )
where ( ) and tan .
ax
n ax n ax
n ax n ax
y r bx ce
D e bx c r bx c ne
b
r a b
a
D e bx c r bx c ne
b
r a b
a
φ
φ
φ
φ
φ
−
−
= + +
+ = + +
 
= + =  
 
+ = + +
 
= + =  
 
Example. Find the derivative ofth
n .cossin cxbxeax
Solution.
4
{ }
2 2 / 2 1
/ 22 2
1
Let sin cos (2sin cos )
2
1 1
[sin( ) sin )] [ sin sin( ) ].( ( )
2 2
Now sin( ) ( ) sin tan
( ) si
1
2
ax ax
ax ax ax
n n axax
n ax
n
y e bx cx e bx cx
e bx cx x e x e b cbx c b c
b
D bx cx b c e bx c ne
a
a b c e
y
−
= =
= + + = + −− +
  
 + = + + +    
  
+ +
x
∴ =
{ }
{ }
1
/ 22 2 1
n tan ( )/( )
( )
( ) sin tan( )
n ax
x n b c ab c
b c
a b c e x nb c
a
−
−
 + ++
 
 − 
+ − − +  
  
Example. If .0)(2thatproved,sin 22
12 =++−= ybaayybxey ax
Solution.
1
2 2
2
2
1
2 2
Let sin , sin cos
and sin 2 sin ...............(1)
Also 2 2 sin 2 cos ...............(2)
and ( )
ax ax ax
ax ax ax
ax ax
y e bx y ae bx be bx
y a e bx abe b e bx
ay a e bx abe bx
a b y a
= ∴ = +
= + −
− = − −
+ = 2 2
2 2
2 1
sin sin .................(3)
Adding (1),(2)and (3), we get
y - 2ay ( ) 0
ax ax
e bx b e bx
a b y
+
+ + =
LEIBNITZ'S THEOREM:
The find nth
differential coefficient of two function of x
If u and v are any two functions of x such that all their desired differential coefficients exist, then the nth
differential coefficient of their product is given by
1 1 2
1 2
1 2 2
( ) ( ). . . ....... . ...... .
or
( 1)
( ) ( ). . .............
2!
n n n n n n n n r r
r
n n n n
n
D uv D u v c D u Dv c D u D v c D n D v uD v
n n
D uv D u v nD u Dv D uD v n
− − −
− −
= + + + + + +
−
= + + + + 1
.n
DuD v uDv−
+
Proof.
5
Let , we have
( ) ( ) ( ). . ........ ......(1)
From (1) we see that the theorem is true for n 1.
Now assume that the theorem is true for a particular val
n
y uv
Dy uv D u Du v u Dv
=
= = +
=
1 2 2
1 2
1 1
1
ue of n,we have
( ) ( ). . . ....... .
...... ............(2)
Differentiating both siede of (2
n n n n n n r r
c c r
n r r n
r
D uv D u v n D u Dv n D u D v c D u D v
n D uD v uD v
− − −
− − +
+
= + + + +
+ + +
( )
( ) (
( )
1 1 1 2
1 1
1 2 2 3 1 1
2 2
1 1 2
1 1
) w,r,t,x, we get
( ) ( ). . .
. . ..... . .
. . ..... .
n n n n n
c c
n n n r r n r
c c cr cr
n r r n r r n
cr cr
D uv D u v D uDv n D u Dv n D u D v
n D u D v n D u D v n D u D v n D u D v
n D u D v n D u D v DuD v u
+ + −
− − − + −
− + − − +
+ +
 = + + + 
+ + + + +
+ + + + +( )1
1 1 1 2
1 1 2
1 1
1
1
.
Rearranging the term, we get
( ) ( ). (1 ) ( ) ( ) .
..... ( )( . ) ...... ...(3)
But we know that
r
n n n n
c c c
n r r n
cr r
n n
D v
D uv D u v n D uDv n n D u D v
n n D u D v uD v
c c
+
+ + −
− + +
+
= + + + + + +
+ + + +
+ 1
1 1
1 1
1 0 1 1 1 2 2,
1 1 1 1 1 2
1 2
1 1
1
. Therefore
1 , and so on.
Hence(3) gives
( ) ( ). ( ). ( ).( ) .........
..... . .....
n
r r
n n n n n n n
n n n n n n
n n r r
r
c
c c c c c c c
D uv D u v c D u Dv c D u D v
c D u D v
+
+ +
+ +
+ + + + −
+ − +
+
=
+ = + = + =
= + + +
+ + + 1
. . ..............(4)n
u D v+
)r+
From (4) we see that if the theorem is true for any value of n, it is also true for the next value of n. But
we have already seen that the theorem is true for n =1.Hence is must be true for n =2 and so for n =3,
and so on. Thus the Leibnitz's theorem is true for all positive integral values of n.
Example. Find the nth differential coefficients of
(i) sin cos ,
(ii) log[( )( )].
ax bx
ax b cx d+ +
Solution.
6
1 1
(i) Let sin cos [2sin cos ] [2sin( ) sin( ) ].
2 2
1
we know that sin( ) sin .
2
1 1
( ) sin ( ) ( ) sin ( ) .
2 2
n n
n n n
y ax bx ax bx a b x a b
D ax b a ax b n
y a b a b x n a b a b x n
π
π π
= = = + + −
 
+ = + + 
 
    1
2
x

∴ = + + + + − − +   
   


[ ]
n 1
1 1
1
(ii) Let log ( )( ) log( ) log( ).
We know that log( ) ( 1) ( 1)! ( )
( 1) ( 1)! ( ) ( 1) ( 1)! ( )
( 1) ( 1)! .
( ) ( )
n n n
n n n n n
n
n n
n
n n
y ax b cx d ax b cx d
D ax b n a ax b
y n a ax b n c cx
a c
n
ax b cx d
− −
− − −
−
= + + = + + +
+ = − − +
n
d −
∴ = − − + + − − +
 
= − − + 
+ + 
Example. Find the nth derivatives of 2
1
.
1 5 6x x− +
Solution.
2
2
1 1
1
1 1
Let .
(2 1)(3 1)6 5 1
1 (3 1) (2
,
2 1 3 1 (2 1)(3 1)6 5 1
1 1
Putting ,1 , i.e. 3 ; putting , 2.
2 3 2
2 3
Hence 2(2 1) 3(3 1)
2 1 3 1
Therefor 2(2 1)
n
n n
y
x xx x
A B A x B x
x x x xx x
B
x B x A
y x x
x x
d
y x
dx
− −
−
= =
− −− +
− + −1)
∴ ≡ + ≡
− − − −− +
= = − = − = =
= + = − − −
− −
 = − 
1
1 1
1 1
1 1
1 1
3(3 1)
Now we apply the formula,
( ) ( 1) ( !)( ) .
Hence 2.2 ( 1) ( !)(2 1) 3.3 ( 1) ( !)(3 1) .
2 3
or ( 1) ( !) .
(2 1) (3 1)
n
x
n
n n n n
n n n n n n
n n
n
n n n
d
x
dx
D ax b n ax b a
y n x n x
y n
x x
−
− − −
− − − −
+ +
+ +
 − − 
+ = − +
= − − − − −
 
= − + 
− − 
7
Example.
1 /2
If sin cos , prove that 1 ( 1) sin 2 .n n n
y ax ax y a ax = + = + − 
1 /22
1/ 2
Let sin cos , then
1 1
sin cos
2 2
1 1
sin cos
2 2
1 1
1 2sin cos
2 2
[1 sin(2
n n
n
n
n
n
y ax ax
y a ax n a ax n
a ax n ax n
a ax n ax n
a a
π π
π π
π π
= +
   
∴ = + + +   
   
     
= + + +     
      
    
= + + +    
    
= + 1 /2 1/ 2
1/ 2
)] [1 sin cos2 cos sin 2 ]
[1 ( 1) sin 2 ] [ sin 0 and cos ( 1) ]n n n
n
x n n ax n
y a ax n n
π π π
π π
+ = + +
= + − = = −Q
ax
Example.
2 2
2 2 2 2 2
2 3
If cos sin , prove that .
d p a b
p a b p
d p
θ θ
θ
 
= + + = 
 
2
Solution.
2 2 2 2 2
2 2
Given cos sin ...(1)
Differentiating both sides of (1) w.r.t , we get
2 2( )cos sin ...(2)
Aga
p a b
dp
p b a
d
θ θ
θ
θ θ
θ
= +
 
∴ = − 
 
22
2 2 2 2
2
2
in differentiating both sides of (2) w.r.t , we get
( )(cos sin ) ...(3)
Multiplying (3) by and substituting the value of form (1) a
d p dp
p b a
dd
dp
p
d
θ
θ θ
θθ
θ
   
+ = − −   
  
2
3 2 2 2 2 2 2 2 2 2 2
2
2
3 2 2 2 2 2 2 2 2 2 2 2 2 2
2
nd (3), we get
( ) cos sin ( )(cos sin )
or ( cos sin )( )(cos sin ) ( ) cos sin
d p
p b a p b a
d
d p
p a b b a b a
d
θ θ θ θ
θ
θ θ θ θ θ θ θ
θ
 
+ − = − − 
 
 
= + − − − − 
 
8
2
4 3 2 2 2 2 2 2 2 2 2 2 2 2
2
2 2 2 2 2
or ( )[(cos sin )( cos sin ) ( )cos sin ]
( cos sin )
d p
p p b a a b b a
d
a b
θ θ θ θ θ
θ
θ θ
 
+ = − − + − − 
 
+ −
θ
2 2 2 4 2 4 2 2 2 2 2
2 2 2 2 2 2
2 2 2
2 3
=( )[( cos sin ) ( cos sin )
= (cos sin )
Hence .
b a a b a b
b a a b
d p a b
p
d p
θ θ θ θ
θ θ
θ
− − + +
+ =
 
+ = 
 
Example. 1
Find if log .n
ny y x −
= x
Solution.
1 1 1 1 2 1
3 1 3 1
By Leibnitz's theoram, we get
( 1)
( log ) ( )log ( ) log ( ) log
2!
( 1)( 2)
( ) log ....... .
3!
!
Now ;
( )!
n n n n n n n n
n
n n n n
n m m n n n
n n
y D x x D x x nD x D x D x D
n n n
D x D x x D Logx
m
D x x D x
m n
− − − − − −
− − −
−
−
= = + +
− −
+ + +
=
−
2
x
1
1 1 1 1
2 1 3 1 2
1
2
0
!
; ( 1)!
( 1)!
( 1)! ( 1)!
;
1! 2!
( 1)!
and log ( 1)
Hence
1 ( 1) ( 1)! ! ( 1)( 2) ( 1)!
( 1)!
2! 1! 3! 2!
n m m n n n
n n n n
n n
n
n
m
D x x D x n
m n
n n
D x x D x x
n
D x
x
n n n n n n n
n n x
x x
y
−
− − + − −
− − − −
−
=
= ∴ = −
− +
− −
= =
−
= −
− − − − − 
− + − + 
 
=
2
3
1
1
1
1 2 3
2
....
( 1) ( 1)!
.......
( 1)!
= [1 {1 ...... ( 1) }]
( 1)!
=
n
n
n
n n n n
n
x
x
n
x
x
n
c c c c
x
n
x
−
−
+
 
+ 
 
 − −
+ 
 
−
− − − − + + −
− ( 1)!
[1 (1 1)n n
x
−
− − =
9
1 2
1
1 1 1
1
2 1 1 1
1
1 1
Aliter. log ( 1) log .
( 1) log ( 1) .
Differentiating both sides ( 1)times, we have
( ) ( 1) .
( 1) ( 1) (
n n
n n n
n n n n
n n n
y x x y n x x x
xy n x x x n y x
n
D xy n D y D x
xy n y n y
− −
− − −
− − − −
− +
= ∴ = − +
∴ = − + = − +
−
= − +
2n−
∴ + − = − +
( 1)
1)! or n
n
n y
!
x
−
− =
Example.
2
2 1y cos(log ) sin(log ), show that 0If a x b x x y xy y= + + +
2 2
2 1and (2 1) ( 1) 0.n n nx y n xy n y+ ++ − + + =
=
Solution.
1 1
2 1
2
2 1
Let cos(log ) sin(log ),
1 1
sin(log ). cos(log ) or sin(log ) cos(log )
Now again differentiating both sides, we get
1 1
cos(log ). sin(log )
or [ cos(log )
y a x b x
y a x b x xy a x b x
x x
xy y a x b x
x x
x y xy a x b
= +
= − + = − +
+ = − −
+ = − +
2
2 1
2
2 1
2
2 1
2 2 1 2 2 2 1
2 2 2 1 1
sin(log )]
or
or 0.
Again differentiating both sides in times by Leibnitz's theorem,
( ) ( ) ( ) 0.
( 1)
or + 0
2
or
n n n
n n n n n
n
x
x y xy y
x y xy y
D x y D xy D y
n n
x D y nDx D y D x D y xD y nD y y− − +
+ = −
+ + =
+ + =
−
+ + +
2
2 1 1
2 2
2 1
2 ( 1) 0
or (2 1) ( 1) 0.
n n n n n n
n n n
x y nxy n n y xy ny y
x y n xy n y
+ + +
+ +
+ + − + + + =
+ − + + =
+ =
x 2
Example If prove that1
sin( sin ).y m −
= 2
2 1(1 ) 0x y xy m y− − + =
2
and deduce that
2 2
2 12 1) (n nn xy n+ ++ −(1 ) ( ) 0.x y m y− − − n =
xSolution: Let 1
sin( sin ).y m −
=
10
1 2 2 2
1 1
2
2 2 2 2 2 1 2 2 2
1
2 2 2 2
1
2 2 2
1 2 1 1 2
cos( sin ). . or (1 ) cos ( sin ).
(1 )
(1 ) sin ( sin )
(1 ) .
Again differentiating both sides, we have
2 (1 ) 2 2 0. or
m
y m x x y m m
x
or x y m m m x m m y
x y m y m
y y x xy m yy y
− −
−
= − =
−
− = − = −
∴ − + =
− − + =
2 1
x
2 2
1
2 2
2 1 1
2 2 2
2 1
(1 ) 0.
Now differntiating n time by Leibnitz's theorem, we get
( 1)
(1 ) ( 2 ) ( 2) 0,
2!
or (1 ) (2 1) ( ) 0.
n n n n n n
n n n
x xy m y
n n
y x ny x y xy ny m y
x y n xy n m y
+ + +
+ +
− + =
−
− + − + − − − + =
− − + − − =
To find The nth Derivative When x = 0
Example: Find ( 1
0) . if sin( sin ).ny y a −
= x
x
Solution:
Let ……..(1)1
sin( sin ).y a −
=
1
1
2
2 2 2 2 1 2 2 2 1 2 2
1
2 2 2 2 2
1
cos( sin ). ,
(1 )
or (1 ) cos ( sin ) sin ( sin )
or (1 ) 0. ................(2)
Differentiating (2), w
a
y a x
x
y x a a x a a a x a a y
y x a y a
−
− − 2
∴ =
−
− = = − = −
− + − =
2 2 2
1 2 1 1
2 2
2 1 1
2
2 1 1
e have
2 (1 ) ( 2 ) 2 0.
(1 ) 0 ...................(3)
Differentiating (3) n times, we have
( 1)
(1 ) 2 .2
2!
n n n n
y y x y x a yy
or y x xy a y
n n
y x ny x y xy n+ + +
− − − + =
− + + =
−
− − − − − 2
2 2 2
2 1
0.
or (1 ) (2 1) ( ) 0. ..................(4)
n n
n n n
y a y
y x n xy n a y+ +
+ =
− − + − − =
Putting x = 0 in (1), we get (y)0 = 0.
Putting x = 0 in (2), we get (y1)0 = 0
Putting x = 0 in (3), we get (y2)0 = 0 and
11
Putting x = 0 in (4), we get
2 2
2 0 0( ) ( )(n ny n a+ = − )y
.
.
.
a
.
0n
Now putting n = 2 in (5),
2 2
6 0 2 0( ) (2 )( ) 0y a y= − =
Putting n = 4 in (5),
2 2
6 0 4 0( ) (4 )( ) 0y a y= − =
Similarly 8 0( ) 0y =
Thus the derivatives for which n is even are zero
Again, putting
2 2 2 2
3 0 1 01,( ) (1 ).( ) (1 ) .n y a y a= = − −
Now when n is odd.
2 2
2 0 0( ) ( )( )n ny n a y+ = −
Putting n is place of (n-2) we obtain
[ ]
2 2
0 2 0
2 2 2 2 2 2 2 2
3 0
2 2 2 2 2 2 2 2
( ) ( 2) ( )
( 2) ( 4) ( 6) ......... 3
( 2) ( 4) ......... 3 1 . .
n ny n a y
n a n a n a a y
n a n a a a a
−
 = − − 
       = − − − − − − −       
       = − − − − − −       
Example.
1 2
2 1
2
2 1
If tan , prove that (1 ) 2 0 and deduce that
(1 ) 2( 1) ( 1) 0 Hence determine ( )n n n
y x x y xy
x y n xy n n y y
−
+ +
= + + =
+ + + + + =
Solution.
1
1 2
2
1
Let tan .........(1)
1
, ...(2)
(1 )
or (1 ) 1 0. ...(3)
Differentiating (3), we
y x
y
x
x y
−
=
∴ =
+
+ − =
2
2 1
2
2 1 1
2
2 1
get (1 ) 2 0 .........(4)
Now , differentiating (4) n times by Leibnitz's theorem, we get
( 1)
(1 ) (2 ) .2 2 2 0
2!
or (1 ) 2( 1) ( 1)
n n n n n
n n
x y xy
n n
y x ny x y xy ny
x y n xy n n y
+ + +
+ +
+ + =
−
+ + + + + =
+ + + + + 0 .........(5)n =
12
[ ]
0 1 0 2 0
2 0 0
Putting x = 0, in (1),(2) and (4), we get
( ) 0, ( ) 1, ( ) 0.
Also putting x = 0 in (5) we get
( ) ( 1) ( ) . .............(6)
Putting n-2 in
n n
y y y
y n n y+
= = =
= − +
0 2 0
4 0
n-2 0 4 0
place of n in the foumula (6),we get
( ) [( 1)( 2)]( )
[ {( 1)( 2)}][ {( 3)( 4)}]( )
Since from (6), we have (y ) {( 3)( 4)}]( )
Case I. When n is even, we h
n n
n
n
y n n y
n n n n y
n n y
−
−
−
= − −
= − − − − − −
= − − −
0 2 0
2 0
0
ave
( ) [ {[( 1)( 2)}][ {( 3)( 4)}]....[ (3)(2)]( )
= 0, Since ( ) 0.
Case II. When n is odd, we have
( ) [ {[( 1)( 2)][ {( 3)( 4)}]....[ (4)(3)]
n
n
y n n n n y
y
y n n n n
= − − − − − − −
=
= − − − − − − − 1 0
( 1)2
1 0
[ (2)(1)( )
( 1) ( 1)!, since (y ) 1.n
y
n−
−
= − − =
13
ADDITIONAL PROBLEMS:
1. Find the nth differential coefficient of
( )( )
3
2
2
( ) sin
( ) sin cos3
( ) cos sin
x
( )
2 2 3
ax
i x
ii x x
iii e x x
iv
x x+ +
2. If ( )2 2
2 1sin , prove that 2 0ax
bx y ay a b y= − +y e + =
3. If ( ) ( )1 2
2 1cos sin , prove that 1 0x x y xy m y−
= − − 2
+ =y m and
( )2 2
2 11 (2 1) ( )n nx y n xy m n y+ +− − + + − 2
0n =
4. If ( ) ( )
21 2
2 1sin , prove that 1 2 0y x x y xy−
= − − − = and deduce that
( )2 2
2 11 (2 1)n nx y n xy n y+ +− − + − 0n =
5. If (
1
tan
, prove thatx
y e
−
= )2
2 11 {2( 1) 1} ( 1)n nx y n x y n n y+ ++ + + − + + 0n =
14

Weitere ähnliche Inhalte

Was ist angesagt?

Cramers rule
Cramers ruleCramers rule
Cramers rule
mstf mstf
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
C.G.P.I.T
 

Was ist angesagt? (20)

8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equations
 
Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.ppt
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
Jacobians new
Jacobians newJacobians new
Jacobians new
 
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
 
Complex number
Complex numberComplex number
Complex number
 
2. successive differentiation
2. successive differentiation2. successive differentiation
2. successive differentiation
 
Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
Maxima and minima
Maxima and minimaMaxima and minima
Maxima and minima
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
 
Logarithms
LogarithmsLogarithms
Logarithms
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
 
Hyperbolic functions dfs
Hyperbolic functions dfsHyperbolic functions dfs
Hyperbolic functions dfs
 
Quadratic equations class 10
Quadratic equations class 10Quadratic equations class 10
Quadratic equations class 10
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)
 
Equation of a plane
Equation of a planeEquation of a plane
Equation of a plane
 

Ähnlich wie Succesive differntiation

51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
Carlos Fuentes
 

Ähnlich wie Succesive differntiation (20)

maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
Hw5sols
Hw5solsHw5sols
Hw5sols
 
Integral calculus
  Integral calculus   Integral calculus
Integral calculus
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
Maths ms
Maths msMaths ms
Maths ms
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any index
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
Binomial
BinomialBinomial
Binomial
 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin series
 
Vivek
VivekVivek
Vivek
 
Solo edo hasta 20
Solo edo hasta 20Solo edo hasta 20
Solo edo hasta 20
 

Mehr von JaydevVadachhak

Mehr von JaydevVadachhak (20)

Complain management system
Complain management systemComplain management system
Complain management system
 
Formal and informal letters
Formal and informal lettersFormal and informal letters
Formal and informal letters
 
Communicating across cultures
Communicating across culturesCommunicating across cultures
Communicating across cultures
 
7 cs of communication
7 cs of communication7 cs of communication
7 cs of communication
 
communication types , levels , barriers
 communication types , levels , barriers communication types , levels , barriers
communication types , levels , barriers
 
social responsibility
 social responsibility social responsibility
social responsibility
 
2. personality development
2. personality development2. personality development
2. personality development
 
professional ethics and human values
 professional ethics and human values professional ethics and human values
professional ethics and human values
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Transformer
TransformerTransformer
Transformer
 
Electrical safety
Electrical safetyElectrical safety
Electrical safety
 
Non verbal communication
Non verbal communicationNon verbal communication
Non verbal communication
 
Internal communication
Internal communicationInternal communication
Internal communication
 
Ir spectroscopy
Ir spectroscopyIr spectroscopy
Ir spectroscopy
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
 
cement
 cement cement
cement
 
Cathodic protection
Cathodic protectionCathodic protection
Cathodic protection
 
1 bch101 water treatment
1 bch101  water treatment1 bch101  water treatment
1 bch101 water treatment
 
Handprint activities and sustainability
Handprint activities and sustainabilityHandprint activities and sustainability
Handprint activities and sustainability
 
Solid waste
Solid wasteSolid waste
Solid waste
 

Kürzlich hochgeladen

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Kürzlich hochgeladen (20)

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 

Succesive differntiation

  • 1. Lesson 10 SUCCESSIVE DIFFERENTIATION: LEIBNITZ'S THEOREM OBJECTIVES At the end of this session, you will be able to understand: Definition nth Differential Coefficient of Standard Functions Leibnitz’s Theorem DIFFERENTIATION: If be a differentiable function of x, then)(xfy = )(' xf dx dy = is called the first differential coefficient of y w.r.t x. Hence, differentiating both side w.r.t. x, we have ( ) ( ) ( ) ( ) 2 2 2 2 2 3 3 2 3 3 ' '' . d dy d d be represented by ;then '' dx dx d d Similarly is represented by ; ie ''' and so on dx dx T d dy d f x f x dx dx dx y y Let f x dx dx y d y d y f x dx dx     = =              =           =       2 3 2 3 n 1 2 3 he expressions , , ,....... are called the first, second, third, .....nth differen- tial coefficient of y. These function are usually written as y',y'',y''',......y or y ,y y ...... n n dy d y d y d y dx dx d x dx 2 3 n..................y and also , , ,....... .n Dy D y D y D y nth DIFFERENTIAL COEFFICIENT OF STANDARD FUNCTION: (i) Differential Coefficient of :m x m 1 1 2 3 2 3 n y = x , then y ; y ( 1) ;y ( 1)( 2) and so on In general, y ( 1)( 2)( 3).........................( 1) ; m m m m n If mx m m x m m m x m m m m m n x − − − − = = − = − − = − − − − + 1
  • 2. Note: If m be a positive integer, we have ny 1.2.3............ !;m m= = Hence ( ) ( 1)( 2)( 3)............( 1)m m nD x m m m m m n x n− = − − − − + (ii) Differential Coefficient of ( )m ax b+ : m 1 1 2 2 3 3 2 3 If y = (ax+b) , then ( ) ; ( 1)( ) ; ( 1)( 2)( ) and so on. In general ( 1)( 2)( 3)............( 1)( ) m m m n m n n y am ax b y a m m ax b x y a m m m ax b x y a m m m m m n ax b x − − − − = + = − + = − − + = − − − − + + [Note: In the first differentiation, the last term in it is ( )11+−m )2 ; in the second differentiation it is i.e.( ;in the third differentiation it is ()1( −m )12 +−m −m i.e. )13( +−m .So the nth differentiation it will be .])1+− n(m Hence ( ) ( 1)( 2)( 3)............( 1)( ) ! or ( ) ( ) ( )! In case m is negative integer,let , where is positive integer, then ( ) ( )( 1)( 2).... m n m n m n m n p n D ax b a m m m m m n ax b m D ax b a ax b m n m p p D ax b a p p p − − − + = − − − − + + + = + − − + = − − − − − 1 ................[ ( 1)]( ) ( 1) ( 1)( 2)....................[( 1)]( ) ( 1)! ( 1) ( ) ( 1)! Note1. If .then ( ) ! Note2. If 1, we have ( ) ( p n n p nn n n p n n p n n p n ax b p p p p n ax ba p n a ax b p m n D ax b a m D ax b − − − − − − − − − − − + = − + + − + + − + = − + − = + = = − + = 1 1 1 1 1)( 1 1)................( 1 1) ( ) ( 1) ! ( 1) 1.2.3........... ( ) ! ( ) .( 1) ( ) n n n n n n n n nn n n a ax b n a na ax b n a ax b ax b − − − − − − + − − − − − + + − − + = + =− + (iii) Differential Coefficient of ( )ax b+ : 1 1 2 2 3 3 2 32 2 3 3 4 4 3 4 4 4 (0!) If log( ), ( ) ( ) ( ) .1 .(1!) .2 .(2!) . . ( ) ( ) ( ) ( ) 2.3 .(3!) and so on.( 1) . ( ) ( ) a a y ax b then y a ax b ax b ax b a a a a y y ax b ax b ax b ax b a a y ax b ax b − = + = = + = + + = = − = = − + + + + = = − + + 2
  • 3. 1 1 1 .( 1)! In general, ( 1) . ( ) .( 1)! Hence log( ) ( 1) . . ( ) ( 1) ( 1)! Note: log . n n n n n n n n n n n a n y ax b a n D ax b ax b n D x x − − − − = − + − + = − + − − = (iv) Differential Coefficient of :bx a 2 2 1 2 3 3 3 n If , then log , (log ) . , and so no.(log ) In general, ,(log ) Hence D . (log ) . bx bx bx bx n nbx n bx n nbx e y a y ba a y b a a y b a a y b aa a b aa = = = = = = (v) Differential Coefficient of :ax e 2 3 4 1 2 3 4 If , then , , , and so on. In general, , Hence . ax ax ax ax ax n ax n ax n ax n y e y ae y a e y a e y a e y a e D e a e = = = = = = = (vi) Differential Coefficient of sin( ) :ax b+ 1 2 2 2 1 If sin( ), then cos( ) sin ( ) 2 2 cos( ) sin ( ) ,and so on. 2 1 In General, .sin 2 1 Hence, ( ) sin 2 Note: sin n n n n y ax b y a ax b a ax b y a ax b ax ba y ax b na D ax b a ax b n D x π π π π = +   = + = + +     = − + = + +     = + +      + = + +   sin 2 n x π   = +       3
  • 4. (vii) Differential Coefficient of cos( ) :ax b+ 1 2 2 2 If cos( ), then sin( ) cos 2 2 sin cos ,and so on 2 2 1 In general, cos . 2 1 Hence, cos ( ) cos . 2 Note : cos co n n n n n y ax b y a ax b a ax b y a ax b ax ba y a ax b n D x ax b a ax b n D x π π π π π = +   = − + = + +        = − + + = + +          = + +      + = + +    = 1 s . 2 x nπ   +    (viii) Differential Coefficient of sin( ) and cos( ) :ax ax e bx c e bx c+ + 1 2 2 2 1 1 If sin( ), then sin( ) cos( ) [ sin( ) cos( )] Putting cos and sin , we get sin( ), where and tan , similary ax ax ax ax ax y e bx c y e bx c be bx c e a bx c b bx c a r b r b y re bx c r a b a φ φ φ φ − = + = + + + = + + = =   = + + = + =     + 2 1 1 2 2 12 1 2 2 12 , ,and so on.sin( 2 ) Hence, sin( ) sin( ) where ( ) and tan . Similarly, cos( ) cos( ) where ( ) and tan . ax n ax n ax n ax n ax y r bx ce D e bx c r bx c ne b r a b a D e bx c r bx c ne b r a b a φ φ φ φ φ − − = + + + = + +   = + =     + = + +   = + =     Example. Find the derivative ofth n .cossin cxbxeax Solution. 4
  • 5. { } 2 2 / 2 1 / 22 2 1 Let sin cos (2sin cos ) 2 1 1 [sin( ) sin )] [ sin sin( ) ].( ( ) 2 2 Now sin( ) ( ) sin tan ( ) si 1 2 ax ax ax ax ax n n axax n ax n y e bx cx e bx cx e bx cx x e x e b cbx c b c b D bx cx b c e bx c ne a a b c e y − = = = + + = + −− +     + = + + +        + + x ∴ = { } { } 1 / 22 2 1 n tan ( )/( ) ( ) ( ) sin tan( ) n ax x n b c ab c b c a b c e x nb c a − −  + ++    −  + − − +      Example. If .0)(2thatproved,sin 22 12 =++−= ybaayybxey ax Solution. 1 2 2 2 2 1 2 2 Let sin , sin cos and sin 2 sin ...............(1) Also 2 2 sin 2 cos ...............(2) and ( ) ax ax ax ax ax ax ax ax y e bx y ae bx be bx y a e bx abe b e bx ay a e bx abe bx a b y a = ∴ = + = + − − = − − + = 2 2 2 2 2 1 sin sin .................(3) Adding (1),(2)and (3), we get y - 2ay ( ) 0 ax ax e bx b e bx a b y + + + = LEIBNITZ'S THEOREM: The find nth differential coefficient of two function of x If u and v are any two functions of x such that all their desired differential coefficients exist, then the nth differential coefficient of their product is given by 1 1 2 1 2 1 2 2 ( ) ( ). . . ....... . ...... . or ( 1) ( ) ( ). . ............. 2! n n n n n n n n r r r n n n n n D uv D u v c D u Dv c D u D v c D n D v uD v n n D uv D u v nD u Dv D uD v n − − − − − = + + + + + + − = + + + + 1 .n DuD v uDv− + Proof. 5
  • 6. Let , we have ( ) ( ) ( ). . ........ ......(1) From (1) we see that the theorem is true for n 1. Now assume that the theorem is true for a particular val n y uv Dy uv D u Du v u Dv = = = + = 1 2 2 1 2 1 1 1 ue of n,we have ( ) ( ). . . ....... . ...... ............(2) Differentiating both siede of (2 n n n n n n r r c c r n r r n r D uv D u v n D u Dv n D u D v c D u D v n D uD v uD v − − − − − + + = + + + + + + + ( ) ( ) ( ( ) 1 1 1 2 1 1 1 2 2 3 1 1 2 2 1 1 2 1 1 ) w,r,t,x, we get ( ) ( ). . . . . ..... . . . . ..... . n n n n n c c n n n r r n r c c cr cr n r r n r r n cr cr D uv D u v D uDv n D u Dv n D u D v n D u D v n D u D v n D u D v n D u D v n D u D v n D u D v DuD v u + + − − − − + − − + − − + + +  = + + +  + + + + + + + + + +( )1 1 1 1 2 1 1 2 1 1 1 1 . Rearranging the term, we get ( ) ( ). (1 ) ( ) ( ) . ..... ( )( . ) ...... ...(3) But we know that r n n n n c c c n r r n cr r n n D v D uv D u v n D uDv n n D u D v n n D u D v uD v c c + + + − − + + + = + + + + + + + + + + + 1 1 1 1 1 1 0 1 1 1 2 2, 1 1 1 1 1 2 1 2 1 1 1 . Therefore 1 , and so on. Hence(3) gives ( ) ( ). ( ). ( ).( ) ......... ..... . ..... n r r n n n n n n n n n n n n n n n r r r c c c c c c c c D uv D u v c D u Dv c D u D v c D u D v + + + + + + + + + − + − + + = + = + = + = = + + + + + + 1 . . ..............(4)n u D v+ )r+ From (4) we see that if the theorem is true for any value of n, it is also true for the next value of n. But we have already seen that the theorem is true for n =1.Hence is must be true for n =2 and so for n =3, and so on. Thus the Leibnitz's theorem is true for all positive integral values of n. Example. Find the nth differential coefficients of (i) sin cos , (ii) log[( )( )]. ax bx ax b cx d+ + Solution. 6
  • 7. 1 1 (i) Let sin cos [2sin cos ] [2sin( ) sin( ) ]. 2 2 1 we know that sin( ) sin . 2 1 1 ( ) sin ( ) ( ) sin ( ) . 2 2 n n n n n y ax bx ax bx a b x a b D ax b a ax b n y a b a b x n a b a b x n π π π = = = + + −   + = + +        1 2 x  ∴ = + + + + − − +          [ ] n 1 1 1 1 (ii) Let log ( )( ) log( ) log( ). We know that log( ) ( 1) ( 1)! ( ) ( 1) ( 1)! ( ) ( 1) ( 1)! ( ) ( 1) ( 1)! . ( ) ( ) n n n n n n n n n n n n n n y ax b cx d ax b cx d D ax b n a ax b y n a ax b n c cx a c n ax b cx d − − − − − − = + + = + + + + = − − + n d − ∴ = − − + + − − +   = − − +  + +  Example. Find the nth derivatives of 2 1 . 1 5 6x x− + Solution. 2 2 1 1 1 1 1 Let . (2 1)(3 1)6 5 1 1 (3 1) (2 , 2 1 3 1 (2 1)(3 1)6 5 1 1 1 Putting ,1 , i.e. 3 ; putting , 2. 2 3 2 2 3 Hence 2(2 1) 3(3 1) 2 1 3 1 Therefor 2(2 1) n n n y x xx x A B A x B x x x x xx x B x B x A y x x x x d y x dx − − − = = − −− + − + −1) ∴ ≡ + ≡ − − − −− + = = − = − = = = + = − − − − −  = −  1 1 1 1 1 1 1 1 1 3(3 1) Now we apply the formula, ( ) ( 1) ( !)( ) . Hence 2.2 ( 1) ( !)(2 1) 3.3 ( 1) ( !)(3 1) . 2 3 or ( 1) ( !) . (2 1) (3 1) n x n n n n n n n n n n n n n n n n n d x dx D ax b n ax b a y n x n x y n x x − − − − − − − − + + + +  − −  + = − + = − − − − −   = − +  − −  7
  • 8. Example. 1 /2 If sin cos , prove that 1 ( 1) sin 2 .n n n y ax ax y a ax = + = + −  1 /22 1/ 2 Let sin cos , then 1 1 sin cos 2 2 1 1 sin cos 2 2 1 1 1 2sin cos 2 2 [1 sin(2 n n n n n n y ax ax y a ax n a ax n a ax n ax n a ax n ax n a a π π π π π π = +     ∴ = + + +              = + + +                  = + + +          = + 1 /2 1/ 2 1/ 2 )] [1 sin cos2 cos sin 2 ] [1 ( 1) sin 2 ] [ sin 0 and cos ( 1) ]n n n n x n n ax n y a ax n n π π π π π + = + + = + − = = −Q ax Example. 2 2 2 2 2 2 2 2 3 If cos sin , prove that . d p a b p a b p d p θ θ θ   = + + =    2 Solution. 2 2 2 2 2 2 2 Given cos sin ...(1) Differentiating both sides of (1) w.r.t , we get 2 2( )cos sin ...(2) Aga p a b dp p b a d θ θ θ θ θ θ = +   ∴ = −    22 2 2 2 2 2 2 in differentiating both sides of (2) w.r.t , we get ( )(cos sin ) ...(3) Multiplying (3) by and substituting the value of form (1) a d p dp p b a dd dp p d θ θ θ θθ θ     + = − −       2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 nd (3), we get ( ) cos sin ( )(cos sin ) or ( cos sin )( )(cos sin ) ( ) cos sin d p p b a p b a d d p p a b b a b a d θ θ θ θ θ θ θ θ θ θ θ θ θ   + − = − −      = + − − − −    8
  • 9. 2 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 or ( )[(cos sin )( cos sin ) ( )cos sin ] ( cos sin ) d p p p b a a b b a d a b θ θ θ θ θ θ θ θ   + = − − + − −    + − θ 2 2 2 4 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 =( )[( cos sin ) ( cos sin ) = (cos sin ) Hence . b a a b a b b a a b d p a b p d p θ θ θ θ θ θ θ − − + + + =   + =    Example. 1 Find if log .n ny y x − = x Solution. 1 1 1 1 2 1 3 1 3 1 By Leibnitz's theoram, we get ( 1) ( log ) ( )log ( ) log ( ) log 2! ( 1)( 2) ( ) log ....... . 3! ! Now ; ( )! n n n n n n n n n n n n n n m m n n n n n y D x x D x x nD x D x D x D n n n D x D x x D Logx m D x x D x m n − − − − − − − − − − − = = + + − − + + + = − 2 x 1 1 1 1 1 2 1 3 1 2 1 2 0 ! ; ( 1)! ( 1)! ( 1)! ( 1)! ; 1! 2! ( 1)! and log ( 1) Hence 1 ( 1) ( 1)! ! ( 1)( 2) ( 1)! ( 1)! 2! 1! 3! 2! n m m n n n n n n n n n n n m D x x D x n m n n n D x x D x x n D x x n n n n n n n n n x x x y − − − + − − − − − − − = = ∴ = − − + − − = = − = − − − − − −  − + − +    = 2 3 1 1 1 1 2 3 2 .... ( 1) ( 1)! ....... ( 1)! = [1 {1 ...... ( 1) }] ( 1)! = n n n n n n n n x x n x x n c c c c x n x − − +   +     − − +    − − − − − + + − − ( 1)! [1 (1 1)n n x − − − = 9
  • 10. 1 2 1 1 1 1 1 2 1 1 1 1 1 1 Aliter. log ( 1) log . ( 1) log ( 1) . Differentiating both sides ( 1)times, we have ( ) ( 1) . ( 1) ( 1) ( n n n n n n n n n n n n y x x y n x x x xy n x x x n y x n D xy n D y D x xy n y n y − − − − − − − − − − + = ∴ = − + ∴ = − + = − + − = − + 2n− ∴ + − = − + ( 1) 1)! or n n n y ! x − − = Example. 2 2 1y cos(log ) sin(log ), show that 0If a x b x x y xy y= + + + 2 2 2 1and (2 1) ( 1) 0.n n nx y n xy n y+ ++ − + + = = Solution. 1 1 2 1 2 2 1 Let cos(log ) sin(log ), 1 1 sin(log ). cos(log ) or sin(log ) cos(log ) Now again differentiating both sides, we get 1 1 cos(log ). sin(log ) or [ cos(log ) y a x b x y a x b x xy a x b x x x xy y a x b x x x x y xy a x b = + = − + = − + + = − − + = − + 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 sin(log )] or or 0. Again differentiating both sides in times by Leibnitz's theorem, ( ) ( ) ( ) 0. ( 1) or + 0 2 or n n n n n n n n n x x y xy y x y xy y D x y D xy D y n n x D y nDx D y D x D y xD y nD y y− − + + = − + + = + + = − + + + 2 2 1 1 2 2 2 1 2 ( 1) 0 or (2 1) ( 1) 0. n n n n n n n n n x y nxy n n y xy ny y x y n xy n y + + + + + + + − + + + = + − + + = + = x 2 Example If prove that1 sin( sin ).y m − = 2 2 1(1 ) 0x y xy m y− − + = 2 and deduce that 2 2 2 12 1) (n nn xy n+ ++ −(1 ) ( ) 0.x y m y− − − n = xSolution: Let 1 sin( sin ).y m − = 10
  • 11. 1 2 2 2 1 1 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 1 1 2 cos( sin ). . or (1 ) cos ( sin ). (1 ) (1 ) sin ( sin ) (1 ) . Again differentiating both sides, we have 2 (1 ) 2 2 0. or m y m x x y m m x or x y m m m x m m y x y m y m y y x xy m yy y − − − = − = − − = − = − ∴ − + = − − + = 2 1 x 2 2 1 2 2 2 1 1 2 2 2 2 1 (1 ) 0. Now differntiating n time by Leibnitz's theorem, we get ( 1) (1 ) ( 2 ) ( 2) 0, 2! or (1 ) (2 1) ( ) 0. n n n n n n n n n x xy m y n n y x ny x y xy ny m y x y n xy n m y + + + + + − + = − − + − + − − − + = − − + − − = To find The nth Derivative When x = 0 Example: Find ( 1 0) . if sin( sin ).ny y a − = x x Solution: Let ……..(1)1 sin( sin ).y a − = 1 1 2 2 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 1 cos( sin ). , (1 ) or (1 ) cos ( sin ) sin ( sin ) or (1 ) 0. ................(2) Differentiating (2), w a y a x x y x a a x a a a x a a y y x a y a − − − 2 ∴ = − − = = − = − − + − = 2 2 2 1 2 1 1 2 2 2 1 1 2 2 1 1 e have 2 (1 ) ( 2 ) 2 0. (1 ) 0 ...................(3) Differentiating (3) n times, we have ( 1) (1 ) 2 .2 2! n n n n y y x y x a yy or y x xy a y n n y x ny x y xy n+ + + − − − + = − + + = − − − − − − 2 2 2 2 2 1 0. or (1 ) (2 1) ( ) 0. ..................(4) n n n n n y a y y x n xy n a y+ + + = − − + − − = Putting x = 0 in (1), we get (y)0 = 0. Putting x = 0 in (2), we get (y1)0 = 0 Putting x = 0 in (3), we get (y2)0 = 0 and 11
  • 12. Putting x = 0 in (4), we get 2 2 2 0 0( ) ( )(n ny n a+ = − )y . . . a . 0n Now putting n = 2 in (5), 2 2 6 0 2 0( ) (2 )( ) 0y a y= − = Putting n = 4 in (5), 2 2 6 0 4 0( ) (4 )( ) 0y a y= − = Similarly 8 0( ) 0y = Thus the derivatives for which n is even are zero Again, putting 2 2 2 2 3 0 1 01,( ) (1 ).( ) (1 ) .n y a y a= = − − Now when n is odd. 2 2 2 0 0( ) ( )( )n ny n a y+ = − Putting n is place of (n-2) we obtain [ ] 2 2 0 2 0 2 2 2 2 2 2 2 2 3 0 2 2 2 2 2 2 2 2 ( ) ( 2) ( ) ( 2) ( 4) ( 6) ......... 3 ( 2) ( 4) ......... 3 1 . . n ny n a y n a n a n a a y n a n a a a a −  = − −         = − − − − − − −               = − − − − − −        Example. 1 2 2 1 2 2 1 If tan , prove that (1 ) 2 0 and deduce that (1 ) 2( 1) ( 1) 0 Hence determine ( )n n n y x x y xy x y n xy n n y y − + + = + + = + + + + + = Solution. 1 1 2 2 1 Let tan .........(1) 1 , ...(2) (1 ) or (1 ) 1 0. ...(3) Differentiating (3), we y x y x x y − = ∴ = + + − = 2 2 1 2 2 1 1 2 2 1 get (1 ) 2 0 .........(4) Now , differentiating (4) n times by Leibnitz's theorem, we get ( 1) (1 ) (2 ) .2 2 2 0 2! or (1 ) 2( 1) ( 1) n n n n n n n x y xy n n y x ny x y xy ny x y n xy n n y + + + + + + + = − + + + + + = + + + + + 0 .........(5)n = 12
  • 13. [ ] 0 1 0 2 0 2 0 0 Putting x = 0, in (1),(2) and (4), we get ( ) 0, ( ) 1, ( ) 0. Also putting x = 0 in (5) we get ( ) ( 1) ( ) . .............(6) Putting n-2 in n n y y y y n n y+ = = = = − + 0 2 0 4 0 n-2 0 4 0 place of n in the foumula (6),we get ( ) [( 1)( 2)]( ) [ {( 1)( 2)}][ {( 3)( 4)}]( ) Since from (6), we have (y ) {( 3)( 4)}]( ) Case I. When n is even, we h n n n n y n n y n n n n y n n y − − − = − − = − − − − − − = − − − 0 2 0 2 0 0 ave ( ) [ {[( 1)( 2)}][ {( 3)( 4)}]....[ (3)(2)]( ) = 0, Since ( ) 0. Case II. When n is odd, we have ( ) [ {[( 1)( 2)][ {( 3)( 4)}]....[ (4)(3)] n n y n n n n y y y n n n n = − − − − − − − = = − − − − − − − 1 0 ( 1)2 1 0 [ (2)(1)( ) ( 1) ( 1)!, since (y ) 1.n y n− − = − − = 13
  • 14. ADDITIONAL PROBLEMS: 1. Find the nth differential coefficient of ( )( ) 3 2 2 ( ) sin ( ) sin cos3 ( ) cos sin x ( ) 2 2 3 ax i x ii x x iii e x x iv x x+ + 2. If ( )2 2 2 1sin , prove that 2 0ax bx y ay a b y= − +y e + = 3. If ( ) ( )1 2 2 1cos sin , prove that 1 0x x y xy m y− = − − 2 + =y m and ( )2 2 2 11 (2 1) ( )n nx y n xy m n y+ +− − + + − 2 0n = 4. If ( ) ( ) 21 2 2 1sin , prove that 1 2 0y x x y xy− = − − − = and deduce that ( )2 2 2 11 (2 1)n nx y n xy n y+ +− − + − 0n = 5. If ( 1 tan , prove thatx y e − = )2 2 11 {2( 1) 1} ( 1)n nx y n x y n n y+ ++ + + − + + 0n = 14