SlideShare ist ein Scribd-Unternehmen logo
1 von 13
Downloaden Sie, um offline zu lesen
Paper Summary :
beta-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework
Jun-sik Choi
Department of Brain and Cognitive Engineering,
Korea University
November 9, 2019
Overview of beta-VAE [1]
β-VAE is an unsupervised for learning disentangled
representations of independent visual data generative factors.
β-VAE adds an extra hyperparameter β to the VAE objective,
which constricts the encoding capacity of the latent bottleneck
and encourages factorized latent representation.
A protocol that can quantitatively compare the degree of
disentanglement learnt by different models is proposed.
Derivation of beta-VAE framework I
Assumption
Let D = {X, V , W },
x ∈ RN
: images,
v ∈ RK
: conditionally independent factors,
w ∈ RH
: conditionally dependent factors
p(x|v, w) = Sim(v, w): true world simulator using ground truth
generative factors.
An unsupervised deep generative model pθ(x|z) can learn a joint
distribution between x and z ∈ RM
, (M ≥ K) by maximizing :
max
θ
Epθ(z) [pθ(x|z)] then p∗
θ (x|z) ≈ p(x|v, w) = Sim(v, w)
The aim is to ensure that the inference model qφ(z|x) capture the
independent generative factor v in a disentangled manner and keep
conditional generative factors remain entangled in a separate subset
of z.
Derivation of beta-VAE framework II
To encourage disentangling property of qφ(z|x),
1. the prior p(z) is set to an isotropic unit Gaussian N(0, I).
2. qφ(z|x) is constrained to match a prior p(z)
This constrained optimisation problem can be expressed as:
max
φ,θ
Ex∼D Eqφ(z|x) [log pθ(x|z)] subject to DKL (qφ(z|x) p(z)) <
After applying Lagrangian transformation under the KKT
conditions,
F(θ, φ, β; x, z) = Eqφ(z|x) [log pθ(x|z)] − β (DKL (qφ(z|x) p(z)) − )
≥ L(θ, φ; x, z, β)
= Eqφ(z|x) [log pθ(x|z)] − βDKL (qφ(z|x) p(z))
Derivation of beta-VAE framework III
Meaning of β
1. β changes the degree of applied learning pressure during
training, thus encouraging different learnt representations.
2. When β = 1, β-VAE corresponds to the original VAE
formulation.
3. Set β > 1 is putting a stronger constraint on the latent
bottleneck than in the original VAE formulation.
4. Pressure to match KL-divergence limit the capacity of z,
encourage the model to learn the most efficient representation
of the data (the disentangled representation by conditionally
independent factor v).
5. There is a trade-off between reconstruction fidelity and the
quality of disentanglement.
Disentanglement Metric I
The description of calculation of disentanglement in the paper
[1] is too complex, so I summarized it to a form of pseudocode.
Data: D = {V ∈ RK
, C ∈ RH
, X ∈ RN
}
lclf ; Linear classifier, q(z|x) ∼ N(µ(x), σ(x));
for b in Batch do
Sample yb
from Unif[1 · · · K];
for l in L do
Sample v1 from p(v) and Sample v2 from p(v);
[v2]yb ← [v1]yb ;
Sample c1 and c2 from p(c);
x1 ← Sim(v1, c1) and x2 ← Sim(v2, c2);
z1 ← µ(x1) and z2 ← µ(x2);
zl
diff ← |z1 − z2|;
end
zb
diff = 1
L ΣL
l zl
diff ;
Predb
= lclf (zb
diff );
end
Loss = ΣB
b CrossEntropy(Predb
, yb
);
Update lclf ;
Disentanglement Metric II
The linear classifier predict which generative factor [v]i is shared
along the pair of images.
As q(z|x) has disentangled representation, the performance of
classifier increases.
The linear classifier should be very simple and have a low
VC-dimension in order to ensure that it has no capacity to perform
nonlinear disentangling itself.
Qualitative Results - 3D chairs
Figure: Qualitative results comparing disentangling performance of
beta-VAE (beta = 5), and other comparing methods.
Qualitative Results - 3D faces
Figure: Qualitative results comparing disentangling performance of
beta-VAE (beta = 20), and other comparing methods.
Qualitative Results - CelebA
Figure: Traversal of individual latents demonstrates that beta-VAE
discovered.
Quantitative Results
Figure: (Left) Disentanglement metric classification accuracy for 2D
shapes dataset. (Right) Positive correlation between normalized beta and
size of latent variable for disentangled factor learning for a fixed
beta-VAE architecture.
Quantitative Results
Figure: Representations learnt by
beta-VAE (beta=4)
Figure: Representations learnt by
InfoGAN
References
I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot,
M. Botvinick, S. Mohamed, and A. Lerchner, “beta-vae:
Learning basic visual concepts with a constrained variational
framework.,” ICLR, vol. 2, no. 5, p. 6, 2017.

Weitere ähnliche Inhalte

Was ist angesagt?

[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...
[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...
[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...Dongmin Choi
 
「深層学習」第6章 畳込みニューラルネット
「深層学習」第6章 畳込みニューラルネット「深層学習」第6章 畳込みニューラルネット
「深層学習」第6章 畳込みニューラルネットKen'ichi Matsui
 
Finding connections among images using CycleGAN
Finding connections among images using CycleGANFinding connections among images using CycleGAN
Finding connections among images using CycleGANNAVER Engineering
 
Variational AutoEncoder
Variational AutoEncoderVariational AutoEncoder
Variational AutoEncoderKazuki Nitta
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会Kenyu Uehara
 
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation LearningDeep Learning JP
 
【輪読】Taking the Human Out of the Loop, section 8
【輪読】Taking the Human Out of the Loop, section 8【輪読】Taking the Human Out of the Loop, section 8
【輪読】Taking the Human Out of the Loop, section 8Takeru Abe
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」Keisuke Sugawara
 
Policy Gradient Theorem
Policy Gradient TheoremPolicy Gradient Theorem
Policy Gradient TheoremAshwin Rao
 
2014.01.23 prml勉強会4.2確率的生成モデル
2014.01.23 prml勉強会4.2確率的生成モデル2014.01.23 prml勉強会4.2確率的生成モデル
2014.01.23 prml勉強会4.2確率的生成モデルTakeshi Sakaki
 
diffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdfdiffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdf수철 박
 
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
[DL輪読会]Weakly-Supervised Disentanglement Without CompromisesDeep Learning JP
 
PRML輪読#7
PRML輪読#7PRML輪読#7
PRML輪読#7matsuolab
 
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)narumikanno0918
 
(DL hacks輪読) Difference Target Propagation
(DL hacks輪読) Difference Target Propagation(DL hacks輪読) Difference Target Propagation
(DL hacks輪読) Difference Target PropagationMasahiro Suzuki
 
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement LearningDeep Learning JP
 

Was ist angesagt? (20)

[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...
[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...
[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...
 
VAEs for multimodal disentanglement
VAEs for multimodal disentanglementVAEs for multimodal disentanglement
VAEs for multimodal disentanglement
 
「深層学習」第6章 畳込みニューラルネット
「深層学習」第6章 畳込みニューラルネット「深層学習」第6章 畳込みニューラルネット
「深層学習」第6章 畳込みニューラルネット
 
Finding connections among images using CycleGAN
Finding connections among images using CycleGANFinding connections among images using CycleGAN
Finding connections among images using CycleGAN
 
Variational AutoEncoder
Variational AutoEncoderVariational AutoEncoder
Variational AutoEncoder
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
 
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
 
PRML4.3.3
PRML4.3.3PRML4.3.3
PRML4.3.3
 
【輪読】Taking the Human Out of the Loop, section 8
【輪読】Taking the Human Out of the Loop, section 8【輪読】Taking the Human Out of the Loop, section 8
【輪読】Taking the Human Out of the Loop, section 8
 
[DL輪読会]World Models
[DL輪読会]World Models[DL輪読会]World Models
[DL輪読会]World Models
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
 
Chapter9 2
Chapter9 2Chapter9 2
Chapter9 2
 
Policy Gradient Theorem
Policy Gradient TheoremPolicy Gradient Theorem
Policy Gradient Theorem
 
2014.01.23 prml勉強会4.2確率的生成モデル
2014.01.23 prml勉強会4.2確率的生成モデル2014.01.23 prml勉強会4.2確率的生成モデル
2014.01.23 prml勉強会4.2確率的生成モデル
 
diffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdfdiffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdf
 
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
 
PRML輪読#7
PRML輪読#7PRML輪読#7
PRML輪読#7
 
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
 
(DL hacks輪読) Difference Target Propagation
(DL hacks輪読) Difference Target Propagation(DL hacks輪読) Difference Target Propagation
(DL hacks輪読) Difference Target Propagation
 
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
 

Ähnlich wie Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework

GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)Masahiro Suzuki
 
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18Olga Zinkevych
 
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7Ono Shigeru
 
Secure Domination in graphs
Secure Domination in graphsSecure Domination in graphs
Secure Domination in graphsMahesh Gadhwal
 
MLHEP 2015: Introductory Lecture #3
MLHEP 2015: Introductory Lecture #3MLHEP 2015: Introductory Lecture #3
MLHEP 2015: Introductory Lecture #3arogozhnikov
 
Epsrcws08 campbell isvm_01
Epsrcws08 campbell isvm_01Epsrcws08 campbell isvm_01
Epsrcws08 campbell isvm_01Cheng Feng
 
Scalable Global Alignment Graph Kernel Using Random Features: From Node Embed...
Scalable Global Alignment Graph Kernel Using Random Features: From Node Embed...Scalable Global Alignment Graph Kernel Using Random Features: From Node Embed...
Scalable Global Alignment Graph Kernel Using Random Features: From Node Embed...seijihagawa
 
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...Masahiro Suzuki
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Alexander Litvinenko
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsElvis DOHMATOB
 
VJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCNVJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCNDat Nguyen
 
Dl1 deep learning_algorithms
Dl1 deep learning_algorithmsDl1 deep learning_algorithms
Dl1 deep learning_algorithmsArmando Vieira
 
On Convolution of Graph Signals and Deep Learning on Graph Domains
On Convolution of Graph Signals and Deep Learning on Graph DomainsOn Convolution of Graph Signals and Deep Learning on Graph Domains
On Convolution of Graph Signals and Deep Learning on Graph DomainsJean-Charles Vialatte
 

Ähnlich wie Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework (20)

GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
 
Iclr2016 vaeまとめ
Iclr2016 vaeまとめIclr2016 vaeまとめ
Iclr2016 vaeまとめ
 
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
 
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
 
Secure Domination in graphs
Secure Domination in graphsSecure Domination in graphs
Secure Domination in graphs
 
Presentation OCIP 2015
Presentation OCIP 2015Presentation OCIP 2015
Presentation OCIP 2015
 
MLHEP 2015: Introductory Lecture #3
MLHEP 2015: Introductory Lecture #3MLHEP 2015: Introductory Lecture #3
MLHEP 2015: Introductory Lecture #3
 
Epsrcws08 campbell isvm_01
Epsrcws08 campbell isvm_01Epsrcws08 campbell isvm_01
Epsrcws08 campbell isvm_01
 
Scalable Global Alignment Graph Kernel Using Random Features: From Node Embed...
Scalable Global Alignment Graph Kernel Using Random Features: From Node Embed...Scalable Global Alignment Graph Kernel Using Random Features: From Node Embed...
Scalable Global Alignment Graph Kernel Using Random Features: From Node Embed...
 
Pattern baysin
Pattern baysinPattern baysin
Pattern baysin
 
Quantum Deep Learning
Quantum Deep LearningQuantum Deep Learning
Quantum Deep Learning
 
ABC workshop: 17w5025
ABC workshop: 17w5025ABC workshop: 17w5025
ABC workshop: 17w5025
 
Slides4
Slides4Slides4
Slides4
 
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
 
VJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCNVJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCN
 
Dl1 deep learning_algorithms
Dl1 deep learning_algorithmsDl1 deep learning_algorithms
Dl1 deep learning_algorithms
 
On Convolution of Graph Signals and Deep Learning on Graph Domains
On Convolution of Graph Signals and Deep Learning on Graph DomainsOn Convolution of Graph Signals and Deep Learning on Graph Domains
On Convolution of Graph Signals and Deep Learning on Graph Domains
 
Anniversary2012
Anniversary2012Anniversary2012
Anniversary2012
 

Kürzlich hochgeladen

Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 

Kürzlich hochgeladen (20)

Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 

Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework

  • 1. Paper Summary : beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework Jun-sik Choi Department of Brain and Cognitive Engineering, Korea University November 9, 2019
  • 2. Overview of beta-VAE [1] β-VAE is an unsupervised for learning disentangled representations of independent visual data generative factors. β-VAE adds an extra hyperparameter β to the VAE objective, which constricts the encoding capacity of the latent bottleneck and encourages factorized latent representation. A protocol that can quantitatively compare the degree of disentanglement learnt by different models is proposed.
  • 3. Derivation of beta-VAE framework I Assumption Let D = {X, V , W }, x ∈ RN : images, v ∈ RK : conditionally independent factors, w ∈ RH : conditionally dependent factors p(x|v, w) = Sim(v, w): true world simulator using ground truth generative factors. An unsupervised deep generative model pθ(x|z) can learn a joint distribution between x and z ∈ RM , (M ≥ K) by maximizing : max θ Epθ(z) [pθ(x|z)] then p∗ θ (x|z) ≈ p(x|v, w) = Sim(v, w) The aim is to ensure that the inference model qφ(z|x) capture the independent generative factor v in a disentangled manner and keep conditional generative factors remain entangled in a separate subset of z.
  • 4. Derivation of beta-VAE framework II To encourage disentangling property of qφ(z|x), 1. the prior p(z) is set to an isotropic unit Gaussian N(0, I). 2. qφ(z|x) is constrained to match a prior p(z) This constrained optimisation problem can be expressed as: max φ,θ Ex∼D Eqφ(z|x) [log pθ(x|z)] subject to DKL (qφ(z|x) p(z)) < After applying Lagrangian transformation under the KKT conditions, F(θ, φ, β; x, z) = Eqφ(z|x) [log pθ(x|z)] − β (DKL (qφ(z|x) p(z)) − ) ≥ L(θ, φ; x, z, β) = Eqφ(z|x) [log pθ(x|z)] − βDKL (qφ(z|x) p(z))
  • 5. Derivation of beta-VAE framework III Meaning of β 1. β changes the degree of applied learning pressure during training, thus encouraging different learnt representations. 2. When β = 1, β-VAE corresponds to the original VAE formulation. 3. Set β > 1 is putting a stronger constraint on the latent bottleneck than in the original VAE formulation. 4. Pressure to match KL-divergence limit the capacity of z, encourage the model to learn the most efficient representation of the data (the disentangled representation by conditionally independent factor v). 5. There is a trade-off between reconstruction fidelity and the quality of disentanglement.
  • 6. Disentanglement Metric I The description of calculation of disentanglement in the paper [1] is too complex, so I summarized it to a form of pseudocode. Data: D = {V ∈ RK , C ∈ RH , X ∈ RN } lclf ; Linear classifier, q(z|x) ∼ N(µ(x), σ(x)); for b in Batch do Sample yb from Unif[1 · · · K]; for l in L do Sample v1 from p(v) and Sample v2 from p(v); [v2]yb ← [v1]yb ; Sample c1 and c2 from p(c); x1 ← Sim(v1, c1) and x2 ← Sim(v2, c2); z1 ← µ(x1) and z2 ← µ(x2); zl diff ← |z1 − z2|; end zb diff = 1 L ΣL l zl diff ; Predb = lclf (zb diff ); end Loss = ΣB b CrossEntropy(Predb , yb ); Update lclf ;
  • 7. Disentanglement Metric II The linear classifier predict which generative factor [v]i is shared along the pair of images. As q(z|x) has disentangled representation, the performance of classifier increases. The linear classifier should be very simple and have a low VC-dimension in order to ensure that it has no capacity to perform nonlinear disentangling itself.
  • 8. Qualitative Results - 3D chairs Figure: Qualitative results comparing disentangling performance of beta-VAE (beta = 5), and other comparing methods.
  • 9. Qualitative Results - 3D faces Figure: Qualitative results comparing disentangling performance of beta-VAE (beta = 20), and other comparing methods.
  • 10. Qualitative Results - CelebA Figure: Traversal of individual latents demonstrates that beta-VAE discovered.
  • 11. Quantitative Results Figure: (Left) Disentanglement metric classification accuracy for 2D shapes dataset. (Right) Positive correlation between normalized beta and size of latent variable for disentangled factor learning for a fixed beta-VAE architecture.
  • 12. Quantitative Results Figure: Representations learnt by beta-VAE (beta=4) Figure: Representations learnt by InfoGAN
  • 13. References I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained variational framework.,” ICLR, vol. 2, no. 5, p. 6, 2017.