SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Downloaden Sie, um offline zu lesen
COMPLEX NUMBERSCOMPLEX NUMBERS
In this unit we will discuss ……
Introduction and basic definition of Complex numbers.
Algebraic properties of Complex numbers.
De Moivre’s theorem and its expansion.
Exponential form of Complex numbers.
Logarithm of a Complex numbers.
Hyperbolic and Inverse hyperbolic functions.
DEFINITION OF COMPLEX NUMBERS
i=−1
Complex number Z = a + bi is defined as an
ordered pair (a, b), where a & b are real numbers
and . a = Re (z) b = im(z))
Two complex numbers are equal iff their real as well as
imaginary parts are equal
Complex conjugate to z = a + ib is z = a - ib
(0, 1) is called imaginary unit i = (0, 1).
ALGEBRA OF COMPLEX NUMBERS
Addition and subtraction of complex numbers is defined as
idbcadicbia )()()()( ±+±=+±+
Multiplication of complex numbers is defined as
iadbcbdacdicbia )()())(( ++−=++
Division of complex numbers is defined asDivision of complex numbers is defined as
i
dc
adbc
dc
bdac
dic
bia
2222
)(
)(
+
−+
+
+=
+
+
Relation between z and z
(((( )))) )Z(
Z
Z
Z
Z
;ZZZZ
,zzz;zz;z)z(
i
zz
zIm,
zz
zRe
0
22
2
2
1
2
1
2121
2
≠≠≠≠====





====
============
−−−−
====
++++
====
GEOMETRICAL REPRESENTATION OF COMPLEX NUMBERS
If z = a + ib, is a complex
number than in cartesian form
it is as good as (a, b)
For polar form, let us take
a = r cos θ and b = r sin θ
z = rcos θ + i rsin θ
= r(cos θ + i sin θ),
= r cis θ
πθπ
b
tanθ
π
bar
≤≤≤≤<<<<========
±±±±±±±±====++++====
====++++====
−−−−
-,
a
Arg(z)
...2.........1,0,Kk,2Arg(z)arg(z)
,z
1
22
Geometrically, IzI is distance of point z from origin.
θ is directed angle from positive X – axis to (0, 0) – (a, b)
θ between - π < θ < π is called principal argument and
denoted by Arg (z)
The absolute value or modulus o the number z = a + bi is
denoted by |z| given by 22
baz +=
2121 )inequalitytriangular(zzzz ++++≤≤≤≤++++
ABSOLUTE VALUE & DISTANCE
Distance between the points z1 = a1+b1i and z2 = a2+b2i is
denoted by
2
21
2
2121 )()( bbaazz −+−=−
1212 zzzz −−−−≤≤≤≤−−−−
An important interpretation regarding multiplication
given by polar form of complex number
z1 = r1 (cos θ1 + i sin θ1 )
z2 = r2 (cos θ2 + i sin θ2 )
z1z2= r1 r2 (cos θ1 + i sin θ1 ) (cos θ2 + i sin θ2)
=r1r2(cos θ1cos θ2 - sin θ1sin θ2)+i(sin θ1cos θ2+cos θ1sin θ2)
= r1r2 [cos(θ1 + θ2)+i sin (θ1 + θ2)] = r1r2 cis (θ1 + θ2)
The modulus of the product is product of the moduli
The argument of the product is sum of the argument
|z1z2|=|z1 || z2|
arg (z1z2)= arg z1 + argz2
z1
z2
θ1 + θ2
θ2
θ1
z1 z2
EXAMPLES
Q. Find the complex conjugate of
i
i
−−−−
++++
1
23
Q. Determine Region in z – plane represented by
)
z
z
(argand)zz(arg
,izandizIf
2
1
21
21 32231 ++++====++++−−−−====Q.
1<|z-2|<3
Q. Express the
complex number
in polar form
and find the
principle argument.
i++++−−−− 3
Q. Express the
complex number
in polar form
and find the
principle argument.
31 i++++
De Moivre’s Theorem
If n is a rational number than the value or one of the
values of (cos θ + i sin θ)n is cos nθ + i sin nθ.
In particular, (cos θ + i sin θ)n = cos nθ + i sin nθ
for n = 0, ±1, ±2 ………….
For any complex number z = r e i θ
and n = 0, ±1, ±2 …………., we have zn = rn e i nθ
Q. 9090
3131 )i()i(Evaluate −−−−++++++++
θsiniθcos
)θsiniθ(cos)θsiniθ(cos
)θsiniθ(cos)θsiniθ(cos
thatovePr 77
5533
22
3
12
23
2
++++====
−−−−−−−−
−−−−++++
Q.
Examples - De Moivre’s Theorem
)θsiniθ(cos)θsiniθ(cos 5533 −−−−−−−−
Q. 4311
311
58
46
i
)i()i(
)i()i(
thatovePr ====
++++−−−−
−−−−++++
Q. 





−−−−





−−−−====−−−−++++++++++++++++ ++++
2424
211 1 θnπn
cos
θπ
)θcosiθsin()θcosiθsin( nnn
Cos n
Roots of a complex number
n
θ
sini
n
θ
cos)θsiniθ(cos n ++++====++++
1
If n is a positive integer than is one of the root of
that is
n
θ
sini
n
θ
cos ++++
n)θsiniθ(cos
1
++++
nn





 ++++
++++




 ++++
====
++++++++++++====++++
n
θπk
sini
n
θπk
[cos
)]θπksin(i)θπk[cos()θsiniθ(cos
nn
22
22
11
Remaining roots can be obtained by periodic nature of sine and cosine
It gives all roots of for K = 0, 1, 2, 3, …(n – 1)n)θsiniθ(cos
1
++++
Examples:
Q. Solve Z4 + 1 = 0
)i(),i(),i(),i( −−−−−−−−−−−−++++−−−−++++ 1
2
1
1
2
1
1
2
1
1
2
1
Q. Find fifth root of i++++−−−− 3Q. Find fifth root of i++++−−−− 3






++++






++++





++++






++++





++++
30
53
30
53
2
30
41
30
41
2
30
29
30
29
2
30
17
30
17
2
66
2
51
5151
5151
π
sini
π
cos
,
π
sini
π
cos,
π
sini
π
cos
,
π
sini
π
cos,
π
sini
π
cos
Q. Solve the equation x 4 – x3 + x2 – x +1 = 0 using De
Moivre’s theorem.
(((( )))) 



++++++++






++++





++++
77
22
5
3
5
3
2
55
2
5151
5151
,
π
sini
π
cos,πsiniπcos
,
π
sini
π
cos,
π
sini
π
cos
(((( ))))






++++






++++++++
5
9
5
9
2
5
7
5
7
22
51
5151
π
sini
π
cos
,
π
sini
π
cos,πsiniπcos
θsini
z
z,θcos
z
z 2
1
2
1
====−−−−====++++
Expansion of De Moivre’s Theorem
θsin)i(
z
z,θcos
z
z nnnn
n
2
1
2
1
====





−−−−====





++++
θnsini
z
z,θncos
z
z
n
n
n
n
2
1
2
1
====





−−−−====





++++
zz 
Examples:
Q. Express Cos6 θ in terms of cosines of multiples of θ.
Let z is a complex number, then ez is called
exponential function
ez = e x + iy = e x e iy
For each y ∈ R , complex number e iy is defined as
Known as Euler’s formulayiyeiy
sincos +=
EXPONENTIAL FORM OF COMPLEX NUMBER
Known as Euler’s formulayiyeiy
sincos +=
)sin(cos, yiyeeeeeiyxzFor xiyxiyxz
+===+= +
(((( )))) (((( )))) ysineeIm,ycoseeRe xzxz
========
)zRe(ee),z(imy)earg( xzz
================
LOGARITHMIC FORM OF COMPLEX NUMBER
zLogwze,Cw,zIf e
w
====⇒⇒⇒⇒====∈∈∈∈
w)z(Log
Ik,kiπw)z(Log
ze,Now
e
iπkw
====
∈∈∈∈++++====
====++++
2
2
iπk)iyxlog()iyx(Log
reiyxzAs θi
2++++++++====++++
====++++====
iπk)iyxlog()iyx(Log 2++++++++====++++
iπktani)yxlog(
iπkθiyxlog
iπk)elog()rlog(
iπk)relog(
θi
θi
2
2
1
2
2
2
122
22
++++++++++++====
++++++++++++====
++++++++====
++++====
−−−−
x
y
x
y
m 122
2
2
1 −−−−
++++====++++++++====++++ tanπk)]iyx(Log[I),yxlog()]iyx(LogRe[
Examples:
Q. Prove that 22
2
ba
ab
iba
iba
logitan
−−−−
====





++++
−−−−
Q. Find general value of log (-3) and log (- i).
Q. Separate real and imaginary parts of
1) log (1+i)
2) log (4+3i)
Circular functions of complex number
i
ee
xsin,
ee
xcos
ixixixix
22
−−−−−−−−
−−−−
====
++++
====
Hyperbolic functionsHyperbolic functions
xx
xxxxxx
ee
ee
xtanh,
ee
xsinh,
ee
xcosh
−−−−
−−−−−−−−−−−−
++++
−−−−
====
−−−−
====
++++
====
22
HYPERBOLIC AND CIRCULAR FUNCTIONS
sin h (ix) = i sin x
cos h (ix) = cos x
tan h (ix) = i tan x
cosec h (ix) = -i cosec x
sec h (ix) = sec x
cot h (ix) = -i cot x
HYPERBOLIC IDENTITIES
1
1
1
22
22
22
====−−−−
====++++
====−−−−
zheccoszhcot
zhtanzhsec
zhsinzhcos
1====−−−− zheccoszhcot
INVERSE HYPERBOLIC FUNCTIONS



 ++++
====
−−−−++++====
++++++++====
−−−−
−−−−
−−−−
x1
an
os
ln)x(ht
)xx(ln)x(hc
)xx(ln)x(hsin
1
1
1
1
21
21




====−−−−
x-1
an ln)x(ht
2
1

Weitere ähnliche Inhalte

Was ist angesagt?

Complex Number I - Presentation
Complex Number I - PresentationComplex Number I - Presentation
Complex Number I - Presentation
yhchung
 
4 5 fractional exponents
4 5 fractional exponents4 5 fractional exponents
4 5 fractional exponents
math123b
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
Osama Tahir
 

Was ist angesagt? (20)

Systems of linear equations
Systems of linear equationsSystems of linear equations
Systems of linear equations
 
Complex integration
Complex integrationComplex integration
Complex integration
 
Complex Number I - Presentation
Complex Number I - PresentationComplex Number I - Presentation
Complex Number I - Presentation
 
Pascal triangle and binomial theorem
Pascal triangle and binomial theoremPascal triangle and binomial theorem
Pascal triangle and binomial theorem
 
Complex numbers 1
Complex numbers 1Complex numbers 1
Complex numbers 1
 
Complex number
Complex numberComplex number
Complex number
 
Complex number
Complex numberComplex number
Complex number
 
Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.ppt
 
Complex function
Complex functionComplex function
Complex function
 
linear equation
linear equationlinear equation
linear equation
 
complex numbers
complex numberscomplex numbers
complex numbers
 
4 5 fractional exponents
4 5 fractional exponents4 5 fractional exponents
4 5 fractional exponents
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
Complex number
Complex numberComplex number
Complex number
 
1631 the binomial theorem
1631 the binomial theorem1631 the binomial theorem
1631 the binomial theorem
 
Integral Domains
Integral DomainsIntegral Domains
Integral Domains
 
Complex Number's Applications
Complex Number's ApplicationsComplex Number's Applications
Complex Number's Applications
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
 
Presentation of Polynomial
Presentation of PolynomialPresentation of Polynomial
Presentation of Polynomial
 

Andere mochten auch

X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
Nigel Simmons
 
Application of calculus in everyday life
Application of calculus in everyday lifeApplication of calculus in everyday life
Application of calculus in everyday life
Mohamed Ibrahim
 
Calculus in real life
Calculus in real lifeCalculus in real life
Calculus in real life
Samiul Ehsan
 
Roots Of Complex Numbers
Roots Of Complex NumbersRoots Of Complex Numbers
Roots Of Complex Numbers
guest9555f45
 
Roots Of Complex Numbers Rc
Roots Of Complex Numbers RcRoots Of Complex Numbers Rc
Roots Of Complex Numbers Rc
guest35d7c5
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
Nigel Simmons
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
doozer_k
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagram
Nigel Simmons
 
eigen valuesandeigenvectors
eigen valuesandeigenvectorseigen valuesandeigenvectors
eigen valuesandeigenvectors
8laddu8
 

Andere mochten auch (20)

X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
Unit 6.6
Unit 6.6Unit 6.6
Unit 6.6
 
Green's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamicsGreen's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamics
 
Application of calculus in real life.
Application of calculus in real life.Application of calculus in real life.
Application of calculus in real life.
 
Application of calculus in everyday life
Application of calculus in everyday lifeApplication of calculus in everyday life
Application of calculus in everyday life
 
Calculus in real life
Calculus in real lifeCalculus in real life
Calculus in real life
 
C08s3
C08s3C08s3
C08s3
 
Roots Of Complex Numbers
Roots Of Complex NumbersRoots Of Complex Numbers
Roots Of Complex Numbers
 
Roots Of Complex Numbers Rc
Roots Of Complex Numbers RcRoots Of Complex Numbers Rc
Roots Of Complex Numbers Rc
 
What is complex number
What is complex numberWhat is complex number
What is complex number
 
6.5 notes p2 DeMoivres
6.5 notes p2 DeMoivres6.5 notes p2 DeMoivres
6.5 notes p2 DeMoivres
 
Line integeral
Line integeralLine integeral
Line integeral
 
SEQUENTIAL MANUAL GEARBOX
SEQUENTIAL MANUAL GEARBOXSEQUENTIAL MANUAL GEARBOX
SEQUENTIAL MANUAL GEARBOX
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
 
AA Section 6-9
AA Section 6-9AA Section 6-9
AA Section 6-9
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagram
 
eigen valuesandeigenvectors
eigen valuesandeigenvectorseigen valuesandeigenvectors
eigen valuesandeigenvectors
 
1. introduction to complex numbers
1. introduction to complex numbers1. introduction to complex numbers
1. introduction to complex numbers
 
Z transform
 Z transform Z transform
Z transform
 

Ähnlich wie 1 complex numbers

Complex Number From Jayant for TV
Complex Number From Jayant for TVComplex Number From Jayant for TV
Complex Number From Jayant for TV
Jayant Singh
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
AryanMishra860130
 
Aieee maths-quick review
Aieee maths-quick reviewAieee maths-quick review
Aieee maths-quick review
Sharath Kumar
 

Ähnlich wie 1 complex numbers (16)

complex numbers and functions.PDF
complex numbers and functions.PDFcomplex numbers and functions.PDF
complex numbers and functions.PDF
 
Complex Number From Jayant for TV
Complex Number From Jayant for TVComplex Number From Jayant for TV
Complex Number From Jayant for TV
 
1 complex numbers part 1 of 3
1 complex numbers part 1 of 31 complex numbers part 1 of 3
1 complex numbers part 1 of 3
 
2 complex numbers part 2 of 3
2 complex numbers part 2 of 32 complex numbers part 2 of 3
2 complex numbers part 2 of 3
 
1 ca nall
1 ca nall1 ca nall
1 ca nall
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Algebra formulas
Algebra formulasAlgebra formulas
Algebra formulas
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
 
Complex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationComplex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex Differentiation
 
3 complex numbers part 3 of 3
3 complex numbers part 3 of 33 complex numbers part 3 of 3
3 complex numbers part 3 of 3
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Complex nos demo 2
Complex nos demo 2Complex nos demo 2
Complex nos demo 2
 
Aieee maths-quick review
Aieee maths-quick reviewAieee maths-quick review
Aieee maths-quick review
 
Freecomplexnumbers
FreecomplexnumbersFreecomplexnumbers
Freecomplexnumbers
 
Math20001 dec 2015
Math20001 dec 2015Math20001 dec 2015
Math20001 dec 2015
 
qdoc.tips_math-formula and short hand notes
qdoc.tips_math-formula and short hand notesqdoc.tips_math-formula and short hand notes
qdoc.tips_math-formula and short hand notes
 

Mehr von gandhinagar

Led(light emitting diode)
Led(light emitting diode)Led(light emitting diode)
Led(light emitting diode)
gandhinagar
 

Mehr von gandhinagar (20)

Introduction to gis and its application
Introduction to gis and its application Introduction to gis and its application
Introduction to gis and its application
 
Indian air force
Indian air forceIndian air force
Indian air force
 
Remote sensing by jitendra thakor
Remote sensing by jitendra thakorRemote sensing by jitendra thakor
Remote sensing by jitendra thakor
 
Kailash satyarthi
Kailash satyarthiKailash satyarthi
Kailash satyarthi
 
IAS
IASIAS
IAS
 
matrices and determinantes
matrices and determinantes matrices and determinantes
matrices and determinantes
 
Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization
 
Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization
 
matrices and algbra
matrices and algbramatrices and algbra
matrices and algbra
 
Systemsof3 equations
Systemsof3 equationsSystemsof3 equations
Systemsof3 equations
 
Systems of linear equations
Systems of linear equationsSystems of linear equations
Systems of linear equations
 
Vikram batra
Vikram batraVikram batra
Vikram batra
 
Story about big success person
Story about big success personStory about big success person
Story about big success person
 
Chanakya
ChanakyaChanakya
Chanakya
 
Inverse of matrix
Inverse of matrixInverse of matrix
Inverse of matrix
 
The contributor’s vision of success.
The contributor’s vision of success.The contributor’s vision of success.
The contributor’s vision of success.
 
Led(light emitting diode)
Led(light emitting diode)Led(light emitting diode)
Led(light emitting diode)
 
LED
LED LED
LED
 
Solar cell
Solar cellSolar cell
Solar cell
 
Lucid dreaming
Lucid  dreamingLucid  dreaming
Lucid dreaming
 

Kürzlich hochgeladen

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Kürzlich hochgeladen (20)

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 

1 complex numbers

  • 2. In this unit we will discuss …… Introduction and basic definition of Complex numbers. Algebraic properties of Complex numbers. De Moivre’s theorem and its expansion. Exponential form of Complex numbers. Logarithm of a Complex numbers. Hyperbolic and Inverse hyperbolic functions.
  • 3. DEFINITION OF COMPLEX NUMBERS i=−1 Complex number Z = a + bi is defined as an ordered pair (a, b), where a & b are real numbers and . a = Re (z) b = im(z)) Two complex numbers are equal iff their real as well as imaginary parts are equal Complex conjugate to z = a + ib is z = a - ib (0, 1) is called imaginary unit i = (0, 1).
  • 4. ALGEBRA OF COMPLEX NUMBERS Addition and subtraction of complex numbers is defined as idbcadicbia )()()()( ±+±=+±+ Multiplication of complex numbers is defined as iadbcbdacdicbia )()())(( ++−=++ Division of complex numbers is defined asDivision of complex numbers is defined as i dc adbc dc bdac dic bia 2222 )( )( + −+ + += + + Relation between z and z (((( )))) )Z( Z Z Z Z ;ZZZZ ,zzz;zz;z)z( i zz zIm, zz zRe 0 22 2 2 1 2 1 2121 2 ≠≠≠≠====      ==== ============ −−−− ==== ++++ ====
  • 5. GEOMETRICAL REPRESENTATION OF COMPLEX NUMBERS If z = a + ib, is a complex number than in cartesian form it is as good as (a, b) For polar form, let us take a = r cos θ and b = r sin θ z = rcos θ + i rsin θ = r(cos θ + i sin θ), = r cis θ πθπ b tanθ π bar ≤≤≤≤<<<<======== ±±±±±±±±====++++==== ====++++==== −−−− -, a Arg(z) ...2.........1,0,Kk,2Arg(z)arg(z) ,z 1 22
  • 6. Geometrically, IzI is distance of point z from origin. θ is directed angle from positive X – axis to (0, 0) – (a, b) θ between - π < θ < π is called principal argument and denoted by Arg (z)
  • 7. The absolute value or modulus o the number z = a + bi is denoted by |z| given by 22 baz += 2121 )inequalitytriangular(zzzz ++++≤≤≤≤++++ ABSOLUTE VALUE & DISTANCE Distance between the points z1 = a1+b1i and z2 = a2+b2i is denoted by 2 21 2 2121 )()( bbaazz −+−=− 1212 zzzz −−−−≤≤≤≤−−−−
  • 8. An important interpretation regarding multiplication given by polar form of complex number z1 = r1 (cos θ1 + i sin θ1 ) z2 = r2 (cos θ2 + i sin θ2 ) z1z2= r1 r2 (cos θ1 + i sin θ1 ) (cos θ2 + i sin θ2) =r1r2(cos θ1cos θ2 - sin θ1sin θ2)+i(sin θ1cos θ2+cos θ1sin θ2) = r1r2 [cos(θ1 + θ2)+i sin (θ1 + θ2)] = r1r2 cis (θ1 + θ2)
  • 9. The modulus of the product is product of the moduli The argument of the product is sum of the argument |z1z2|=|z1 || z2| arg (z1z2)= arg z1 + argz2 z1 z2 θ1 + θ2 θ2 θ1 z1 z2
  • 10. EXAMPLES Q. Find the complex conjugate of i i −−−− ++++ 1 23 Q. Determine Region in z – plane represented by ) z z (argand)zz(arg ,izandizIf 2 1 21 21 32231 ++++====++++−−−−====Q. 1<|z-2|<3
  • 11. Q. Express the complex number in polar form and find the principle argument. i++++−−−− 3 Q. Express the complex number in polar form and find the principle argument. 31 i++++
  • 12. De Moivre’s Theorem If n is a rational number than the value or one of the values of (cos θ + i sin θ)n is cos nθ + i sin nθ. In particular, (cos θ + i sin θ)n = cos nθ + i sin nθ for n = 0, ±1, ±2 …………. For any complex number z = r e i θ and n = 0, ±1, ±2 …………., we have zn = rn e i nθ
  • 13. Q. 9090 3131 )i()i(Evaluate −−−−++++++++ θsiniθcos )θsiniθ(cos)θsiniθ(cos )θsiniθ(cos)θsiniθ(cos thatovePr 77 5533 22 3 12 23 2 ++++==== −−−−−−−− −−−−++++ Q. Examples - De Moivre’s Theorem )θsiniθ(cos)θsiniθ(cos 5533 −−−−−−−− Q. 4311 311 58 46 i )i()i( )i()i( thatovePr ==== ++++−−−− −−−−++++ Q.       −−−−      −−−−====−−−−++++++++++++++++ ++++ 2424 211 1 θnπn cos θπ )θcosiθsin()θcosiθsin( nnn Cos n
  • 14. Roots of a complex number n θ sini n θ cos)θsiniθ(cos n ++++====++++ 1 If n is a positive integer than is one of the root of that is n θ sini n θ cos ++++ n)θsiniθ(cos 1 ++++ nn       ++++ ++++      ++++ ==== ++++++++++++====++++ n θπk sini n θπk [cos )]θπksin(i)θπk[cos()θsiniθ(cos nn 22 22 11 Remaining roots can be obtained by periodic nature of sine and cosine It gives all roots of for K = 0, 1, 2, 3, …(n – 1)n)θsiniθ(cos 1 ++++
  • 15. Examples: Q. Solve Z4 + 1 = 0 )i(),i(),i(),i( −−−−−−−−−−−−++++−−−−++++ 1 2 1 1 2 1 1 2 1 1 2 1 Q. Find fifth root of i++++−−−− 3Q. Find fifth root of i++++−−−− 3       ++++       ++++      ++++       ++++      ++++ 30 53 30 53 2 30 41 30 41 2 30 29 30 29 2 30 17 30 17 2 66 2 51 5151 5151 π sini π cos , π sini π cos, π sini π cos , π sini π cos, π sini π cos
  • 16. Q. Solve the equation x 4 – x3 + x2 – x +1 = 0 using De Moivre’s theorem. (((( ))))     ++++++++       ++++      ++++ 77 22 5 3 5 3 2 55 2 5151 5151 , π sini π cos,πsiniπcos , π sini π cos, π sini π cos (((( ))))       ++++       ++++++++ 5 9 5 9 2 5 7 5 7 22 51 5151 π sini π cos , π sini π cos,πsiniπcos
  • 17. θsini z z,θcos z z 2 1 2 1 ====−−−−====++++ Expansion of De Moivre’s Theorem θsin)i( z z,θcos z z nnnn n 2 1 2 1 ====      −−−−====      ++++ θnsini z z,θncos z z n n n n 2 1 2 1 ====      −−−−====      ++++ zz 
  • 18. Examples: Q. Express Cos6 θ in terms of cosines of multiples of θ.
  • 19. Let z is a complex number, then ez is called exponential function ez = e x + iy = e x e iy For each y ∈ R , complex number e iy is defined as Known as Euler’s formulayiyeiy sincos += EXPONENTIAL FORM OF COMPLEX NUMBER Known as Euler’s formulayiyeiy sincos += )sin(cos, yiyeeeeeiyxzFor xiyxiyxz +===+= + (((( )))) (((( )))) ysineeIm,ycoseeRe xzxz ======== )zRe(ee),z(imy)earg( xzz ================
  • 20. LOGARITHMIC FORM OF COMPLEX NUMBER zLogwze,Cw,zIf e w ====⇒⇒⇒⇒====∈∈∈∈ w)z(Log Ik,kiπw)z(Log ze,Now e iπkw ==== ∈∈∈∈++++==== ====++++ 2 2 iπk)iyxlog()iyx(Log reiyxzAs θi 2++++++++====++++ ====++++==== iπk)iyxlog()iyx(Log 2++++++++====++++ iπktani)yxlog( iπkθiyxlog iπk)elog()rlog( iπk)relog( θi θi 2 2 1 2 2 2 122 22 ++++++++++++==== ++++++++++++==== ++++++++==== ++++==== −−−− x y x y m 122 2 2 1 −−−− ++++====++++++++====++++ tanπk)]iyx(Log[I),yxlog()]iyx(LogRe[
  • 21. Examples: Q. Prove that 22 2 ba ab iba iba logitan −−−− ====      ++++ −−−− Q. Find general value of log (-3) and log (- i). Q. Separate real and imaginary parts of 1) log (1+i) 2) log (4+3i)
  • 22. Circular functions of complex number i ee xsin, ee xcos ixixixix 22 −−−−−−−− −−−− ==== ++++ ==== Hyperbolic functionsHyperbolic functions xx xxxxxx ee ee xtanh, ee xsinh, ee xcosh −−−− −−−−−−−−−−−− ++++ −−−− ==== −−−− ==== ++++ ==== 22
  • 23. HYPERBOLIC AND CIRCULAR FUNCTIONS sin h (ix) = i sin x cos h (ix) = cos x tan h (ix) = i tan x cosec h (ix) = -i cosec x sec h (ix) = sec x cot h (ix) = -i cot x
  • 25. INVERSE HYPERBOLIC FUNCTIONS     ++++ ==== −−−−++++==== ++++++++==== −−−− −−−− −−−− x1 an os ln)x(ht )xx(ln)x(hc )xx(ln)x(hsin 1 1 1 1 21 21     ====−−−− x-1 an ln)x(ht 2 1