SlideShare ist ein Scribd-Unternehmen logo
1 von 38
Downloaden Sie, um offline zu lesen
Performance optimization of large diameter
SrI2(Eu) detector assemblies
(manufacturing notes)
Ivan Khodyuk, Stacy Swider, Amlan Datta, Maria Hackett, Stephanie Lam, and
Shariar Motakef
CapeSym, Inc., MA, USA
Presented at SPIE Optics + Photonics: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XX
August 20, 2018 at the San Diego Convention Center
MEETING YOUR NEEDS
CapeSym partners with its customers to match the specifications
and form factors required for each sensor module.
CapeSym company overview
CapeSym, Inc. SPIE 2018: Optics + Photonics 2
TEAM
CapeSym’s R&D team includes physicists,
chemists, electrical engineers, mechanical
engineers, and software engineers.
BACKGROUND
Founded in 1992 as Cape Simulations, CapeSym, Inc. is now a multi-faceted company offering novel technical crystals for
nuclear detection, including ScintiClear™ and elpasolite scintillators, and TlBr and CdZnTe semiconductors.
FACILITY
Our 12,000 sq. ft. facility in Natick, MA, USA
Outline and definitions
CapeSym, Inc. SPIE 2018: Optics + Photonics 3
1- Overview of SrI2(Eu) properties
2- Scintillation detectors design and optimization
a) General considerations
b) Read-out selection
c) Crystal optimization
d) Encapsulation
e) Signal acquisition
Performance – energy resolution
Large diameter – 38.1 mm and larger
SrI2(Eu) – high performance scintillator material
ScintiClear™ – SrI2(Eu)-based scintillator manufactured by CapeSym using proprietary crystal
growth and purification methods
Light Yield 80,000 ph/MeV
Energy Resolution
@ 662keV
~3%
Decay Time 1-3 µs
Emission Range 400-480 nm
Max Emission 430 nm
Density 4.59 g/cm3
Zeffective 50
Intrinsic activity <0.05 Bq/cm3
Moisture
Sensitivity
Hygroscopic
(similar to NaI(Tl))
Refractive Index 1.85
Thermal shock up to 10 ˚C/min
SrI2(Eu) was originally proposed as a radiation detector by
R. Hofstadter in 1968.
In 2008 scientists from Lawrence Livermore National Laboratory (USA)
spearheaded the development of SrI2(Eu) into a leading edge radiation detector.
SrI2(Eu) high performance scintillator
CapeSym, Inc. SPIE 2018: Optics + Photonics 4
Linear attenuation coefficient, 1/cm
CapeSym, Inc. SPIE 2018: Optics + Photonics 5
• Sr has naturally stable isotopic
composition.
• Intrinsic activity of SrI2(Eu) is up to forty
times smaller compare to LaBr3(Ce).
• Sr is the 15th most abundant element on
Earth.
• Although Strontium Iodide salt becomes
corrosive when exposed to air, Strontium
is fundamentally non toxic.
SrI2(Eu) has low to no internal activity
Internal activity spectrum of a standard 1.5” SrI2(Eu) in comparison with LaBr3(Ce), as measured inside a Pb castle with 2 inch thick walls.
High energy resolution in the entire energy range
CapeSym, Inc. SPIE 2018: Optics + Photonics 6
Energy resolution can be as good as 2.8% at 662keV and about 2.2% at 1332keV.
CapeSym, Inc. SPIE 2018: Optics + Photonics 7
Unambiguous Identification
Clear detection of both WGPu (414 keV) and HEU (186 keV) and
separation between 214Bi and 137Cs (609 and 662 keV).
High energy resolution in the MeV range, and no internal activity.
How to achieve high scintillation performance?
High performance crystal
How to achieve high scintillation performance?
High performance crystal
Matching readout
How to achieve high scintillation performance?
High performance crystal
Matching readout
Appropriate encapsulation
How to achieve high scintillation performance?
High performance crystal
Matching readout
Appropriate encapsulation
Optimized electronics
How to achieve high scintillation performance?
High performance crystal
Matching readout
Appropriate encapsulation
Optimized electronics
High performance radiation spectrometer
+
+
+
=
How to achieve high scintillation performance?
High performance crystal
Matching readout
Appropriate encapsulation
Optimized electronics
High performance radiation spectrometer
+
+
+
=
Start design
here
Readout selection - PMTs
CapeSym, Inc. SPIE 2018: Optics + Photonics 14
Spectral sensitivity and Quantum efficiency Size and form-factor
Ø2” Ø3” Ø5”
Other shapes are available:
Readout selection – PMTs (sensitivity and QE)
CapeSym, Inc. SPIE 2018: Optics + Photonics 15
0
10000
20000
30000
40000
SrI2_Eu(0,1mol%)_Exc=290nm_T=300K
SrI2_Eu(0,1mol%)_Exc=300nm_T=10K
SrI2(Eu)emission
BA
SBA
UBA
EGBA
BA – bialkali
SBA – super-bialkali
UBA – ultra-bialkali
EGBA – extended green bialkali
Readout selection –PMTs (sensitivity and QE)
CapeSym, Inc. SPIE 2018: Optics + Photonics 16
Photochathode
Material
Curve code Peak QE,
nm
Typical ER,
% at 662keV
BA 400K 420 4%
SBA 440K 380 3%
UBA 441K 400 3%
EGBA 444K 420 3%
SrI2(Eu) emission max 430nm
High quantum efficiency is more
important than spectral match! 0
10000
20000
30000
40000
SrI2_Eu(0,1mol%)_Exc=290nm_T=300K
SrI2_Eu(0,1mol%)_Exc=300nm_T=10K
SrI2(Eu)emission
BA
SBA
UBA
EGBA
Readout selection – PMTs (size and form)
CapeSym, Inc. SPIE 2018: Optics + Photonics 17
d46mm d70mm d111mm
Ø PMT ≠ Ø Photocathode
Readout selection – PMTs (photocathode)
CapeSym, Inc. SPIE 2018: Optics + Photonics 18
6
255.54
0.95
KEY Channel No. (proportional to LY)
Relative Light Yield (normalized to response at position 3)Location #
0 1 2 3 4 5
0
1
2
3
4
5
Y(cm)
X (cm)
244.4
249.3
254.2
259.1
264.0
268.9
273.8
278.7
283.6
Channel No.
Readout selection – PMTs (photocathode)
CapeSym, Inc. SPIE 2018: Optics + Photonics 19
6
255.54
0.95
KEY Channel No. (proportional to LY)
Relative Light Yield (normalized to response at position 3)Location #
0 1 2 3 4 5
0
1
2
3
4
5
Y(cm)
X (cm)
244.4
249.3
254.2
259.1
264.0
268.9
273.8
278.7
283.6
Channel No.
16%
Readout selection – SiPMs
CapeSym, Inc. SPIE 2018: Optics + Photonics 20
J-series C-series
300 350 400 450 500 550 600
0
10000
20000
30000
40000
SrI2_Eu(0,1mol%)_Exc=290nm_T=300K
SrI2_Eu(0,1mol%)_Exc=300nm_T=10K
300 350 400 450 500 550 600
0
10000
20000
30000
40000
50000
SrI2_Eu(0,1mol%)_Exc=290nm_T=300K
SrI2_Eu(0,1mol%)_Exc=300nm_T=10K
emissionspectra
50%
40%
Important factors:
1) Photon detection efficiency; 2) Active area vs total area ratio
Standard readout limitations
• PMTs – SBA
• SiPMs
CapeSym, Inc. SPIE 2018: Optics + Photonics 21
ArrayJ-60035-64P-PCB
Very promising, but:
1) Expensive (economy of scale applies)
2) Pad to pad variations
3) Performance deterioration above 40 degC
4) Square + dead space in between
Very reliable, but:
1) Economy of scale doesn’t apply
2) Performance variation
3) Bulky and fragile
4) Limited choice
5) Sensitive to magnetic field
Crystal size vs scintillation performance
Let’s compare performance of Ø38.1mm vs Ø46mm, and Ø50.8mm ScintiClear
crystals on 2” (R6231-100) and 3” (R6233-100) SBA PMTs.
CapeSym, Inc. SPIE 2018: Optics + Photonics 22
ScintiClear diameter,
mm
R6231-100 – 2” PMT
ER at 662keV, %
R6233-100 – 3” PMT
ER at 662keV, %
38.1 2.9% 3.0%
46.0 2.9% 3.1%
50.8 4.3% 3.1%
Insensitive area on the photocathode perimeter is detrimental to ScintiClear scintillation performance.
Photocathode sensitive area must be ≥ than crystal front face.
Surface treatment
CapeSym, Inc. SPIE 2018: Optics + Photonics 23
Optically polished surface is important for optimal performance
Rough
After shaping
Additional
polishing
SrI2(Eu) crystals anisotropy
CapeSym, Inc. SPIE 2018: Optics + Photonics 24
0 500 1000
0.0
0.5
1.0
1.5
Normcounts
MCA channel
Æ38.1 x 38.1 mm3
SrI2(Eu)
Side A
Side B
Canberra 2005 preamplifier, and 2025 AFT research amplifier (coarse gain 20, shaping mode 12us) were used to shape
the signal and send it to Pocket MCA 8000A digitizer from AmpTek. Data analyzed in OriginPro2018
“Side A” “Side B”
A
B A
B
Side B has high
energy shoulder!
662keV
137Cs
137Cs
SrI2(Eu) crystals anisotropy
CapeSym, Inc. SPIE 2018: Optics + Photonics 25
Canberra 2005 preamplifier, and 2025 AFT research amplifier (coarse gain 20, shaping mode 12us) were used to shape
the signal and send it to Pocket MCA 8000A digitizer from AmpTek. Data analyzed in OriginPro2018
A
B A
B
“Side A”
850 900 950 1000 1050
0.0
5.0x10-1
1.0x100
SubtractedData
Baseline X
Peak Analysis
Fitting Results
BaseLine:Exponential
Adj. R-Square=9.87820E-001 # of Data Points=163
Degrees of Freedom=160SS=1.75327E-001
Chi^2=1.09580E-003
Date:8/14/2018Data Set:[Book1]Sheet1!C
Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP
1 Gaussian 31.40339 31.15829 0.94683 940.80504 100
600 620 640 660 680 700 720
0.0
5.0x10-1
1.0x100
SubtractedData
Baseline X
Peak Analysis
Fitting Results
BaseLine:Exponential
Adj. R-Square=9.98494E-001 # of Data Points=174
Degrees of Freedom=171SS=2.69077E-002
Chi^2=1.57355E-004
Date:8/14/2018Data Set:[Book1]Sheet1!B
Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP
1 Gaussian 20.11298 19.38761 0.97459 661.96755 100
“Side B”
Gaussian fit
2.9%
Same 2.9%
but with
shoulder
“Side A” “Side B”
137Cs
137Cs
SrI2(Eu) crystals anisotropy
CapeSym, Inc. SPIE 2018: Optics + Photonics 26
“Side A”
850 900 950 1000 1050
0.0
5.0x10-1
1.0x100
SubtractedData
Baseline X
Peak Analysis
Fitting Results
BaseLine:Exponential
Adj. R-Square=9.87820E-001 # of Data Points=163
Degrees of Freedom=160SS=1.75327E-001
Chi^2=1.09580E-003
Date:8/14/2018Data Set:[Book1]Sheet1!C
Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP
1 Gaussian 31.40339 31.15829 0.94683 940.80504 100
600 620 640 660 680 700 720
0.0
5.0x10-1
1.0x100
SubtractedData
Baseline X
Peak Analysis
Fitting Results
BaseLine:Exponential
Adj. R-Square=9.98494E-001 # of Data Points=174
Degrees of Freedom=171SS=2.69077E-002
Chi^2=1.57355E-004
Date:8/14/2018Data Set:[Book1]Sheet1!B
Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP
1 Gaussian 20.11298 19.38761 0.97459 661.96755 100
“Side B”
High energy shoulder is caused by impurities or crystal
inhomogeneities but not necessarily self absorption.
Gaussian fit
2.9%
Same 2.9%
but with
shoulder
0 20 40 60 80 100 120 140
0
20
40
60
80
100
Absorption(%)
Thickness (mm)
at 662keV
at 1332keV
Gamma attenuation is anisotropic by definition
ScintiClear™ is a new high-performance SrI2(Eu)-based scintillator manufactured using proprietary purification and
crystal growth process that improves its inherently excellent performance.
Self-absorption?
CapeSym, Inc. SPIE 2018: Optics + Photonics 27
137Cs
101.6mm
50.8mm
Length of the crystal versus performance
Self-absorption?
CapeSym, Inc. SPIE 2018: Optics + Photonics 28
137Cs
101.6mm
50.8mm
Length of the crystal versus performance
Step 1 – Measurement 101.6 mm long crystal
0 500 1000 1500 2000
-200
0
200
400
600
800
1000
1200
1400
1600
Counts
MCA channel
ScintiClear
ER = 3.2%
Peak max = 1034
Canberra 2005 preamplifier, and 2025 AFT research amplifier (coarse gain 20, shaping mode 12us) were used to
shape the signal and send it to Pocket MCA 8000A digitizer from AmpTek. Data analyzed in OriginPro2018
Self-absorption?
CapeSym, Inc. SPIE 2018: Optics + Photonics 29
137Cs
76.2mm
50.8mm
Length of the crystal versus performance
Step 2 – Cut the crystal
Line of cut
25mm
Self-absorption?
CapeSym, Inc. SPIE 2018: Optics + Photonics 30
137Cs
76.2mm
50.8mm
Length of the crystal versus performance
Step 3 – Measurement 76.2 mm long crystal
0 500 1000 1500 2000
-200
0
200
400
600
800
1000
1200
1400
1600
Counts
MCA channel
ScintiClear
ER = 3.2%
Peak max = 1245
Canberra 2005 preamplifier, and 2025 AFT research amplifier (coarse gain 20, shaping mode 12us) were used to
shape the signal and send it to Pocket MCA 8000A digitizer from AmpTek. Data analyzed in OriginPro2018
0 500 1000 1500 2000
0
2000
4000
6000
8000
Counts
MCA channel
ScintiClear
and so on…
Self-absorption?
CapeSym, Inc. SPIE 2018: Optics + Photonics 31
137Cs Length of the crystal versus performance
100 80 60 40 20
3.00
3.05
3.10
3.15
3.20
Energyresolution,%
Crystal length, mm
ScintiClear
100 80 60 40 20
1000
1050
1100
1150
1200
1250
1300
Peakposition
Crystal length, mm
ScintiClear
Performance is governed by the volume where gamma radiation is absorbed.
Self-absorption doesn’t influence energy resolution.
Effects of encapsulation – Ø25.4mm+
CapeSym, Inc. SPIE 2018: Optics + Photonics 32
Larger size crystals Ø25.4mm and up – minor deterioration
-14% Light Output
Comparable resolution
0 500 1000
0.0
0.5
1.0
Normalizedcounts
MCA channel
ScintiClear Æ51x102mm3
Bare
Packed
Peak = 1002
ER = 3.2%
662keV
Peak = 860
ER = 3.2%
CapeSym, Inc. SPIE 2018: Optics + Photonics 33
Effects of encapsulation – smaller crystals
0 500 1000 1500
0.00
0.05
0.10
0.15
0.20
0.25
0.30
Peak = 1294
ER = 3.1%
Normalizedcounts
MCA channel
ScintiClear 12.7mm cube
Bare
Packed
Peak = 1507
ER = 2.9%
Smaller size crystals are more challenging to pack.
We always observe performance deterioration for
packed crystals.
Solution : direct coupling to a readout
Detector encapsulation
CapeSym, Inc. SPIE 2018: Optics + Photonics 34
ScintiClear™ RIID detector
cores comply with ANSI
N42.34 environmental
standards for temperature
and thermal shock.
ScintiClear benefits from long shaping/integration time
Standard Spectroscopic Scintillation electronics:
1) Canberra 2005 preamplifier
2) Ortec 672 - 10μs /Canberra 2025 - 12μs
3) MCA
CapeSym, Inc. SPIE 2018: Optics + Photonics 35
Shaping and integration time - analog
No special signal processing is required
to achieve high energy resolution
Insufficient integration time = poor ER
Decay time of ScintiClear crystals is size and
shape dependent, and ranges from 1 to 3μs on
average.
Optimal ER achieved with ~15-25μs
digital integration time.
ScintiClear benefits from long shaping/integration time
Time, us
Signal,mV
CapeSym, Inc. SPIE 2018: Optics + Photonics 36
Shaping and integration time - digital
Other digital DAQ systems:
Developer’s kit – performance guaranteed
CapeSym, Inc. SPIE 2018: Optics + Photonics 37
Key features:
• Integrated PMT and DAQ
• USB-powered and controlled
• Web-browser base GUI
• Open source API in Python and C++
• Energy resolution <3.3% at 662keV
• -30˚C to +55˚C operation temperature
• Digital pulse-shape acquisition capabilities
ScintiClear kit – plug and measure
Benefits:
• Ready to use in 30 minutes
• Parameters optimized for ScintiClear
• OEM ready
Thank you for your attention.
SPIE 2018: Optics + Photonics

Weitere ähnliche Inhalte

Was ist angesagt?

BurstCube Poster Final Draft
BurstCube Poster Final DraftBurstCube Poster Final Draft
BurstCube Poster Final Draft
Ykeshia Zamore
 
Ευρωστία νευρωνικών δικτύων βαθειάς μάθησης - Ακανθόπουλος Ηλίας
Ευρωστία νευρωνικών δικτύων βαθειάς μάθησης - Ακανθόπουλος ΗλίαςΕυρωστία νευρωνικών δικτύων βαθειάς μάθησης - Ακανθόπουλος Ηλίας
Ευρωστία νευρωνικών δικτύων βαθειάς μάθησης - Ακανθόπουλος Ηλίας
Manos Tsardoulias
 
LinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentationLinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentation
Petr Polovodov
 
DSD-INT 2015 - web application - pascal boderie
DSD-INT 2015 - web application - pascal boderieDSD-INT 2015 - web application - pascal boderie
DSD-INT 2015 - web application - pascal boderie
Deltares
 

Was ist angesagt? (14)

BurstCube Poster Final Draft
BurstCube Poster Final DraftBurstCube Poster Final Draft
BurstCube Poster Final Draft
 
Meng.pptx
Meng.pptxMeng.pptx
Meng.pptx
 
Integrated Detector Electronics (IDEAS) ASIC product update
Integrated Detector Electronics (IDEAS) ASIC product updateIntegrated Detector Electronics (IDEAS) ASIC product update
Integrated Detector Electronics (IDEAS) ASIC product update
 
Ευρωστία νευρωνικών δικτύων βαθειάς μάθησης - Ακανθόπουλος Ηλίας
Ευρωστία νευρωνικών δικτύων βαθειάς μάθησης - Ακανθόπουλος ΗλίαςΕυρωστία νευρωνικών δικτύων βαθειάς μάθησης - Ακανθόπουλος Ηλίας
Ευρωστία νευρωνικών δικτύων βαθειάς μάθησης - Ακανθόπουλος Ηλίας
 
Lab 01 of physics
Lab 01 of physicsLab 01 of physics
Lab 01 of physics
 
Spectral Colorimeter
Spectral ColorimeterSpectral Colorimeter
Spectral Colorimeter
 
X ray radiography
X ray radiographyX ray radiography
X ray radiography
 
IDEAS Technology for Radiation Detection and Imaging, Year 2016
IDEAS Technology for Radiation Detection and Imaging, Year 2016IDEAS Technology for Radiation Detection and Imaging, Year 2016
IDEAS Technology for Radiation Detection and Imaging, Year 2016
 
Resume_optics_Gupta Roy
Resume_optics_Gupta RoyResume_optics_Gupta Roy
Resume_optics_Gupta Roy
 
LinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentationLinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentation
 
IDEAS IC
IDEAS ICIDEAS IC
IDEAS IC
 
Light management schemes for thin silicon solar cells by using bio mimetic st...
Light management schemes for thin silicon solar cells by using bio mimetic st...Light management schemes for thin silicon solar cells by using bio mimetic st...
Light management schemes for thin silicon solar cells by using bio mimetic st...
 
DSD-INT 2015 - Breakout session quick assment tool for under water light - Pa...
DSD-INT 2015 - Breakout session quick assment tool for under water light - Pa...DSD-INT 2015 - Breakout session quick assment tool for under water light - Pa...
DSD-INT 2015 - Breakout session quick assment tool for under water light - Pa...
 
DSD-INT 2015 - web application - pascal boderie
DSD-INT 2015 - web application - pascal boderieDSD-INT 2015 - web application - pascal boderie
DSD-INT 2015 - web application - pascal boderie
 

Ähnlich wie Performance optimization of large diameter SrI(Eu) detector assemblies

Spectral x-ray photon counting
Spectral x-ray photon countingSpectral x-ray photon counting
Spectral x-ray photon counting
Gunnar Maehlum
 
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
Altair
 
pAggieSpecREU2015
pAggieSpecREU2015pAggieSpecREU2015
pAggieSpecREU2015
Shae Hart
 
4. Research Congress Dec 2018.ppt
4. Research Congress Dec 2018.ppt4. Research Congress Dec 2018.ppt
4. Research Congress Dec 2018.ppt
GopalR24
 

Ähnlich wie Performance optimization of large diameter SrI(Eu) detector assemblies (20)

Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...
Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...
Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...
 
IDEAS-Products_2022_2022-11-03_150ppi.pptx
IDEAS-Products_2022_2022-11-03_150ppi.pptxIDEAS-Products_2022_2022-11-03_150ppi.pptx
IDEAS-Products_2022_2022-11-03_150ppi.pptx
 
ASICs for particle and radiation detection
ASICs for particle and radiation detectionASICs for particle and radiation detection
ASICs for particle and radiation detection
 
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
 
Spectral x-ray photon counting
Spectral x-ray photon countingSpectral x-ray photon counting
Spectral x-ray photon counting
 
Portable CCD Spectroradiometer
Portable CCD SpectroradiometerPortable CCD Spectroradiometer
Portable CCD Spectroradiometer
 
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
 
pAggieSpecREU2015
pAggieSpecREU2015pAggieSpecREU2015
pAggieSpecREU2015
 
pAggieSpec
pAggieSpecpAggieSpec
pAggieSpec
 
IDEAS ASICs and System Products 2017
IDEAS ASICs and System Products 2017IDEAS ASICs and System Products 2017
IDEAS ASICs and System Products 2017
 
4. Research Congress Dec 2018.ppt
4. Research Congress Dec 2018.ppt4. Research Congress Dec 2018.ppt
4. Research Congress Dec 2018.ppt
 
04 New opportunities in photon science with high-speed X-ray imaging detecto...
04 New opportunities in photon science with high-speed X-ray imaging  detecto...04 New opportunities in photon science with high-speed X-ray imaging  detecto...
04 New opportunities in photon science with high-speed X-ray imaging detecto...
 
LISUN Spectral colorimeter
LISUN Spectral colorimeterLISUN Spectral colorimeter
LISUN Spectral colorimeter
 
Radiation Detection and Imaging
Radiation Detection and ImagingRadiation Detection and Imaging
Radiation Detection and Imaging
 
極紫外線散射儀於先進製程檢測應用
極紫外線散射儀於先進製程檢測應用極紫外線散射儀於先進製程檢測應用
極紫外線散射儀於先進製程檢測應用
 
High Performance Optically Pumped Cesium Beam Clock
High Performance Optically Pumped Cesium Beam ClockHigh Performance Optically Pumped Cesium Beam Clock
High Performance Optically Pumped Cesium Beam Clock
 
Arctest CR presentation
Arctest CR presentationArctest CR presentation
Arctest CR presentation
 
227Y1A66D1.PPT.pptx
227Y1A66D1.PPT.pptx227Y1A66D1.PPT.pptx
227Y1A66D1.PPT.pptx
 
Seraphim 330w Eclipse
Seraphim 330w EclipseSeraphim 330w Eclipse
Seraphim 330w Eclipse
 
(Public) se 2000-presentation_20140120
(Public) se 2000-presentation_20140120(Public) se 2000-presentation_20140120
(Public) se 2000-presentation_20140120
 

Kürzlich hochgeladen

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Enterprise Knowledge
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Kürzlich hochgeladen (20)

ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 

Performance optimization of large diameter SrI(Eu) detector assemblies

  • 1. Performance optimization of large diameter SrI2(Eu) detector assemblies (manufacturing notes) Ivan Khodyuk, Stacy Swider, Amlan Datta, Maria Hackett, Stephanie Lam, and Shariar Motakef CapeSym, Inc., MA, USA Presented at SPIE Optics + Photonics: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XX August 20, 2018 at the San Diego Convention Center
  • 2. MEETING YOUR NEEDS CapeSym partners with its customers to match the specifications and form factors required for each sensor module. CapeSym company overview CapeSym, Inc. SPIE 2018: Optics + Photonics 2 TEAM CapeSym’s R&D team includes physicists, chemists, electrical engineers, mechanical engineers, and software engineers. BACKGROUND Founded in 1992 as Cape Simulations, CapeSym, Inc. is now a multi-faceted company offering novel technical crystals for nuclear detection, including ScintiClear™ and elpasolite scintillators, and TlBr and CdZnTe semiconductors. FACILITY Our 12,000 sq. ft. facility in Natick, MA, USA
  • 3. Outline and definitions CapeSym, Inc. SPIE 2018: Optics + Photonics 3 1- Overview of SrI2(Eu) properties 2- Scintillation detectors design and optimization a) General considerations b) Read-out selection c) Crystal optimization d) Encapsulation e) Signal acquisition Performance – energy resolution Large diameter – 38.1 mm and larger SrI2(Eu) – high performance scintillator material ScintiClear™ – SrI2(Eu)-based scintillator manufactured by CapeSym using proprietary crystal growth and purification methods
  • 4. Light Yield 80,000 ph/MeV Energy Resolution @ 662keV ~3% Decay Time 1-3 µs Emission Range 400-480 nm Max Emission 430 nm Density 4.59 g/cm3 Zeffective 50 Intrinsic activity <0.05 Bq/cm3 Moisture Sensitivity Hygroscopic (similar to NaI(Tl)) Refractive Index 1.85 Thermal shock up to 10 ˚C/min SrI2(Eu) was originally proposed as a radiation detector by R. Hofstadter in 1968. In 2008 scientists from Lawrence Livermore National Laboratory (USA) spearheaded the development of SrI2(Eu) into a leading edge radiation detector. SrI2(Eu) high performance scintillator CapeSym, Inc. SPIE 2018: Optics + Photonics 4 Linear attenuation coefficient, 1/cm
  • 5. CapeSym, Inc. SPIE 2018: Optics + Photonics 5 • Sr has naturally stable isotopic composition. • Intrinsic activity of SrI2(Eu) is up to forty times smaller compare to LaBr3(Ce). • Sr is the 15th most abundant element on Earth. • Although Strontium Iodide salt becomes corrosive when exposed to air, Strontium is fundamentally non toxic. SrI2(Eu) has low to no internal activity Internal activity spectrum of a standard 1.5” SrI2(Eu) in comparison with LaBr3(Ce), as measured inside a Pb castle with 2 inch thick walls.
  • 6. High energy resolution in the entire energy range CapeSym, Inc. SPIE 2018: Optics + Photonics 6 Energy resolution can be as good as 2.8% at 662keV and about 2.2% at 1332keV.
  • 7. CapeSym, Inc. SPIE 2018: Optics + Photonics 7 Unambiguous Identification Clear detection of both WGPu (414 keV) and HEU (186 keV) and separation between 214Bi and 137Cs (609 and 662 keV). High energy resolution in the MeV range, and no internal activity.
  • 8. How to achieve high scintillation performance? High performance crystal
  • 9. How to achieve high scintillation performance? High performance crystal Matching readout
  • 10. How to achieve high scintillation performance? High performance crystal Matching readout Appropriate encapsulation
  • 11. How to achieve high scintillation performance? High performance crystal Matching readout Appropriate encapsulation Optimized electronics
  • 12. How to achieve high scintillation performance? High performance crystal Matching readout Appropriate encapsulation Optimized electronics High performance radiation spectrometer + + + =
  • 13. How to achieve high scintillation performance? High performance crystal Matching readout Appropriate encapsulation Optimized electronics High performance radiation spectrometer + + + = Start design here
  • 14. Readout selection - PMTs CapeSym, Inc. SPIE 2018: Optics + Photonics 14 Spectral sensitivity and Quantum efficiency Size and form-factor Ø2” Ø3” Ø5” Other shapes are available:
  • 15. Readout selection – PMTs (sensitivity and QE) CapeSym, Inc. SPIE 2018: Optics + Photonics 15 0 10000 20000 30000 40000 SrI2_Eu(0,1mol%)_Exc=290nm_T=300K SrI2_Eu(0,1mol%)_Exc=300nm_T=10K SrI2(Eu)emission BA SBA UBA EGBA BA – bialkali SBA – super-bialkali UBA – ultra-bialkali EGBA – extended green bialkali
  • 16. Readout selection –PMTs (sensitivity and QE) CapeSym, Inc. SPIE 2018: Optics + Photonics 16 Photochathode Material Curve code Peak QE, nm Typical ER, % at 662keV BA 400K 420 4% SBA 440K 380 3% UBA 441K 400 3% EGBA 444K 420 3% SrI2(Eu) emission max 430nm High quantum efficiency is more important than spectral match! 0 10000 20000 30000 40000 SrI2_Eu(0,1mol%)_Exc=290nm_T=300K SrI2_Eu(0,1mol%)_Exc=300nm_T=10K SrI2(Eu)emission BA SBA UBA EGBA
  • 17. Readout selection – PMTs (size and form) CapeSym, Inc. SPIE 2018: Optics + Photonics 17 d46mm d70mm d111mm Ø PMT ≠ Ø Photocathode
  • 18. Readout selection – PMTs (photocathode) CapeSym, Inc. SPIE 2018: Optics + Photonics 18 6 255.54 0.95 KEY Channel No. (proportional to LY) Relative Light Yield (normalized to response at position 3)Location # 0 1 2 3 4 5 0 1 2 3 4 5 Y(cm) X (cm) 244.4 249.3 254.2 259.1 264.0 268.9 273.8 278.7 283.6 Channel No.
  • 19. Readout selection – PMTs (photocathode) CapeSym, Inc. SPIE 2018: Optics + Photonics 19 6 255.54 0.95 KEY Channel No. (proportional to LY) Relative Light Yield (normalized to response at position 3)Location # 0 1 2 3 4 5 0 1 2 3 4 5 Y(cm) X (cm) 244.4 249.3 254.2 259.1 264.0 268.9 273.8 278.7 283.6 Channel No. 16%
  • 20. Readout selection – SiPMs CapeSym, Inc. SPIE 2018: Optics + Photonics 20 J-series C-series 300 350 400 450 500 550 600 0 10000 20000 30000 40000 SrI2_Eu(0,1mol%)_Exc=290nm_T=300K SrI2_Eu(0,1mol%)_Exc=300nm_T=10K 300 350 400 450 500 550 600 0 10000 20000 30000 40000 50000 SrI2_Eu(0,1mol%)_Exc=290nm_T=300K SrI2_Eu(0,1mol%)_Exc=300nm_T=10K emissionspectra 50% 40% Important factors: 1) Photon detection efficiency; 2) Active area vs total area ratio
  • 21. Standard readout limitations • PMTs – SBA • SiPMs CapeSym, Inc. SPIE 2018: Optics + Photonics 21 ArrayJ-60035-64P-PCB Very promising, but: 1) Expensive (economy of scale applies) 2) Pad to pad variations 3) Performance deterioration above 40 degC 4) Square + dead space in between Very reliable, but: 1) Economy of scale doesn’t apply 2) Performance variation 3) Bulky and fragile 4) Limited choice 5) Sensitive to magnetic field
  • 22. Crystal size vs scintillation performance Let’s compare performance of Ø38.1mm vs Ø46mm, and Ø50.8mm ScintiClear crystals on 2” (R6231-100) and 3” (R6233-100) SBA PMTs. CapeSym, Inc. SPIE 2018: Optics + Photonics 22 ScintiClear diameter, mm R6231-100 – 2” PMT ER at 662keV, % R6233-100 – 3” PMT ER at 662keV, % 38.1 2.9% 3.0% 46.0 2.9% 3.1% 50.8 4.3% 3.1% Insensitive area on the photocathode perimeter is detrimental to ScintiClear scintillation performance. Photocathode sensitive area must be ≥ than crystal front face.
  • 23. Surface treatment CapeSym, Inc. SPIE 2018: Optics + Photonics 23 Optically polished surface is important for optimal performance Rough After shaping Additional polishing
  • 24. SrI2(Eu) crystals anisotropy CapeSym, Inc. SPIE 2018: Optics + Photonics 24 0 500 1000 0.0 0.5 1.0 1.5 Normcounts MCA channel Æ38.1 x 38.1 mm3 SrI2(Eu) Side A Side B Canberra 2005 preamplifier, and 2025 AFT research amplifier (coarse gain 20, shaping mode 12us) were used to shape the signal and send it to Pocket MCA 8000A digitizer from AmpTek. Data analyzed in OriginPro2018 “Side A” “Side B” A B A B Side B has high energy shoulder! 662keV 137Cs 137Cs
  • 25. SrI2(Eu) crystals anisotropy CapeSym, Inc. SPIE 2018: Optics + Photonics 25 Canberra 2005 preamplifier, and 2025 AFT research amplifier (coarse gain 20, shaping mode 12us) were used to shape the signal and send it to Pocket MCA 8000A digitizer from AmpTek. Data analyzed in OriginPro2018 A B A B “Side A” 850 900 950 1000 1050 0.0 5.0x10-1 1.0x100 SubtractedData Baseline X Peak Analysis Fitting Results BaseLine:Exponential Adj. R-Square=9.87820E-001 # of Data Points=163 Degrees of Freedom=160SS=1.75327E-001 Chi^2=1.09580E-003 Date:8/14/2018Data Set:[Book1]Sheet1!C Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP 1 Gaussian 31.40339 31.15829 0.94683 940.80504 100 600 620 640 660 680 700 720 0.0 5.0x10-1 1.0x100 SubtractedData Baseline X Peak Analysis Fitting Results BaseLine:Exponential Adj. R-Square=9.98494E-001 # of Data Points=174 Degrees of Freedom=171SS=2.69077E-002 Chi^2=1.57355E-004 Date:8/14/2018Data Set:[Book1]Sheet1!B Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP 1 Gaussian 20.11298 19.38761 0.97459 661.96755 100 “Side B” Gaussian fit 2.9% Same 2.9% but with shoulder “Side A” “Side B” 137Cs 137Cs
  • 26. SrI2(Eu) crystals anisotropy CapeSym, Inc. SPIE 2018: Optics + Photonics 26 “Side A” 850 900 950 1000 1050 0.0 5.0x10-1 1.0x100 SubtractedData Baseline X Peak Analysis Fitting Results BaseLine:Exponential Adj. R-Square=9.87820E-001 # of Data Points=163 Degrees of Freedom=160SS=1.75327E-001 Chi^2=1.09580E-003 Date:8/14/2018Data Set:[Book1]Sheet1!C Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP 1 Gaussian 31.40339 31.15829 0.94683 940.80504 100 600 620 640 660 680 700 720 0.0 5.0x10-1 1.0x100 SubtractedData Baseline X Peak Analysis Fitting Results BaseLine:Exponential Adj. R-Square=9.98494E-001 # of Data Points=174 Degrees of Freedom=171SS=2.69077E-002 Chi^2=1.57355E-004 Date:8/14/2018Data Set:[Book1]Sheet1!B Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP 1 Gaussian 20.11298 19.38761 0.97459 661.96755 100 “Side B” High energy shoulder is caused by impurities or crystal inhomogeneities but not necessarily self absorption. Gaussian fit 2.9% Same 2.9% but with shoulder 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Absorption(%) Thickness (mm) at 662keV at 1332keV Gamma attenuation is anisotropic by definition ScintiClear™ is a new high-performance SrI2(Eu)-based scintillator manufactured using proprietary purification and crystal growth process that improves its inherently excellent performance.
  • 27. Self-absorption? CapeSym, Inc. SPIE 2018: Optics + Photonics 27 137Cs 101.6mm 50.8mm Length of the crystal versus performance
  • 28. Self-absorption? CapeSym, Inc. SPIE 2018: Optics + Photonics 28 137Cs 101.6mm 50.8mm Length of the crystal versus performance Step 1 – Measurement 101.6 mm long crystal 0 500 1000 1500 2000 -200 0 200 400 600 800 1000 1200 1400 1600 Counts MCA channel ScintiClear ER = 3.2% Peak max = 1034 Canberra 2005 preamplifier, and 2025 AFT research amplifier (coarse gain 20, shaping mode 12us) were used to shape the signal and send it to Pocket MCA 8000A digitizer from AmpTek. Data analyzed in OriginPro2018
  • 29. Self-absorption? CapeSym, Inc. SPIE 2018: Optics + Photonics 29 137Cs 76.2mm 50.8mm Length of the crystal versus performance Step 2 – Cut the crystal Line of cut 25mm
  • 30. Self-absorption? CapeSym, Inc. SPIE 2018: Optics + Photonics 30 137Cs 76.2mm 50.8mm Length of the crystal versus performance Step 3 – Measurement 76.2 mm long crystal 0 500 1000 1500 2000 -200 0 200 400 600 800 1000 1200 1400 1600 Counts MCA channel ScintiClear ER = 3.2% Peak max = 1245 Canberra 2005 preamplifier, and 2025 AFT research amplifier (coarse gain 20, shaping mode 12us) were used to shape the signal and send it to Pocket MCA 8000A digitizer from AmpTek. Data analyzed in OriginPro2018 0 500 1000 1500 2000 0 2000 4000 6000 8000 Counts MCA channel ScintiClear and so on…
  • 31. Self-absorption? CapeSym, Inc. SPIE 2018: Optics + Photonics 31 137Cs Length of the crystal versus performance 100 80 60 40 20 3.00 3.05 3.10 3.15 3.20 Energyresolution,% Crystal length, mm ScintiClear 100 80 60 40 20 1000 1050 1100 1150 1200 1250 1300 Peakposition Crystal length, mm ScintiClear Performance is governed by the volume where gamma radiation is absorbed. Self-absorption doesn’t influence energy resolution.
  • 32. Effects of encapsulation – Ø25.4mm+ CapeSym, Inc. SPIE 2018: Optics + Photonics 32 Larger size crystals Ø25.4mm and up – minor deterioration -14% Light Output Comparable resolution 0 500 1000 0.0 0.5 1.0 Normalizedcounts MCA channel ScintiClear Æ51x102mm3 Bare Packed Peak = 1002 ER = 3.2% 662keV Peak = 860 ER = 3.2%
  • 33. CapeSym, Inc. SPIE 2018: Optics + Photonics 33 Effects of encapsulation – smaller crystals 0 500 1000 1500 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Peak = 1294 ER = 3.1% Normalizedcounts MCA channel ScintiClear 12.7mm cube Bare Packed Peak = 1507 ER = 2.9% Smaller size crystals are more challenging to pack. We always observe performance deterioration for packed crystals. Solution : direct coupling to a readout
  • 34. Detector encapsulation CapeSym, Inc. SPIE 2018: Optics + Photonics 34 ScintiClear™ RIID detector cores comply with ANSI N42.34 environmental standards for temperature and thermal shock.
  • 35. ScintiClear benefits from long shaping/integration time Standard Spectroscopic Scintillation electronics: 1) Canberra 2005 preamplifier 2) Ortec 672 - 10μs /Canberra 2025 - 12μs 3) MCA CapeSym, Inc. SPIE 2018: Optics + Photonics 35 Shaping and integration time - analog No special signal processing is required to achieve high energy resolution
  • 36. Insufficient integration time = poor ER Decay time of ScintiClear crystals is size and shape dependent, and ranges from 1 to 3μs on average. Optimal ER achieved with ~15-25μs digital integration time. ScintiClear benefits from long shaping/integration time Time, us Signal,mV CapeSym, Inc. SPIE 2018: Optics + Photonics 36 Shaping and integration time - digital Other digital DAQ systems:
  • 37. Developer’s kit – performance guaranteed CapeSym, Inc. SPIE 2018: Optics + Photonics 37 Key features: • Integrated PMT and DAQ • USB-powered and controlled • Web-browser base GUI • Open source API in Python and C++ • Energy resolution <3.3% at 662keV • -30˚C to +55˚C operation temperature • Digital pulse-shape acquisition capabilities ScintiClear kit – plug and measure Benefits: • Ready to use in 30 minutes • Parameters optimized for ScintiClear • OEM ready
  • 38. Thank you for your attention. SPIE 2018: Optics + Photonics