SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
Chemistry of alkali
alkaline earth metals
halogen compounds
PHARM 1101
Md. Imran Nur Manik
Lecturer
Department of Pharmacy
Northern University Bangladesh
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 1
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
CChheemmiissttrryy ooff AAllkkaallii && AAllkkaalliinnee EEaarrtthh MMeettaallss aanndd HHaallooggeenn CCoommppoouunnddss
Alkali Metals
Except hydrogen the elements of group 1A of the periodic table form alkali solutions by reacting with
water. These elements are called alkali metals such as Lithium (Li), Sodium (Na), Potassium (K),
Rubidium (Rb), Cesium (Cs) and Francium (Fr).
Example: 2Na +2H2O → 2NaOH + H2
Alkali
Of these alkali metals, francium (Fr) is a very rare, radioactive and unstable element. This makes it
difficult to study.
Fig. Group IA – the alkali metals
Electron structure and reactivity of alkali metals
The alkali metals have inert gas configuration in the core and ns1 electron in the outermost shell. This
means that:-
lithium
2,1
sodium
2,8,1
potassium
2,8,8,1
 They can easily obtain the stable configuration of an inert gas by losing one electron.
 They all lose their outer shell electron in reactions to form positive ions with a +1 charge.
 They have similar physical and chemical properties.
Element Atomic number Electronic structure Valence electron
Li 3 [He] 2s1 2s1
Na 11 [Ne] 3s1 3s1
K 19 [Ar] 4s1 4s1
Rb 37 [Kr] 5s1 5s1
Cs 55 [Xe] 6s1 6s1
Fr 87 [Rn] 7s1 7s1
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 2
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
The size of each element’s atoms and the number of full electron shells increase
down the group.
This means that down the group the electron in the outer shell gets further away
from the nucleus and is shielded by more electron shells.
The further an electron is from the positive attraction of the nucleus,
the easier it can be lost in reactions.
This means that reactivity increases as the size of the atom increases.
Physical properties of alkali metals
Alkali metals are different to typical (transition) metals, such as iron and copper. Unlike typical metals,
alkali metals:-
Are soft and can be cut by a knife – softness increases down the group;
Have a low density. e.g. lithium, sodium and potassium float on water;
Have low melting and boiling points.
However, alkali metals do share a few properties with typical metals, such as:
They are good conductors of heat and electricity;
They are shiny. This is only seen when they are freshly cut.
1. Nature:
All of them are metals.
2. Colour:
These metals look like white silver.
3. Physical state:
With the exception of Li, alkali metals are extremely soft readily fused. They are highly malleable and
ductile.
4. Atomic volume, Atomic and ionic radii: increases from Li to Cs. Due to the addition of an
extra shell of electrons to each element
Elements Li Na K Rb Cs
Atomic volume (c.c.) 12.97 23.68 45.36 55.80 69.95
Atomic radii (Aº) 1.5 1.86 2.27 2.43 2.62
Ionic radii (Aº) 0.6 0.96 1.33 1.48 1.69
5. Ionization potential:
They have low ionisation potential. The ns1 electron is so weakly held with the nucleus that it can be
removed very easily .The ionization potential of alkali metals decreases from Li to Cs due to increasing
sizes of the atoms.
6. Electronegativity:
Alkali metals have a strong tendency to lose their ns1 electron and hence have electropositive character.
Because of this electropositive character, these metals have very little electronegative character.
The alkali metals are the most electropositive having very low electronegativity.
Elements Li Na K Rb Cs
Electronegativity 1.0 0.9 0.8 0.8 0.7
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 3
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
7. Melting and boiling points:
The melting and boiling point of alkali metals decreases down the group.
Element Melting point (°C)
Lithium 181
Sodium 98
Potassium 64
Rubidium 39
Caesium 28
Melting points are lower than typical (transition) metals, because of the presence of weak interatomic
bonds in the solid state of alkali metals.
8. Density:
The alkali metals generally become denser down the group, due to the large atomic volumes; but the
trend is not perfect because potassium is less dense than sodium due to an unusual increase in atomic
size of potassium.
Element Density (g/dm3)
Lithium 0.53
Sodium 0.97
Potassium 0.86
Rubidium 1.53
Caesium 1.87
Water has a density of 1 g/dm3. Lithium, sodium and potassium are all less dense than water and so
will float.
9. Electropositive character:
The elements which have a strong tendency to lose their outermost electrons to form cations are said to
be electropositive.
M → M+ + e-
Thus, the alkali metals have a strong tendency to lose their outermost electrons to from M+ cations and
hence show electropositive character. Li shows least electropositive character and Cs shows highest
electropositive character. So, the electropositive character of alkali metals increases from Li to Cs.
10. Reducing properies:
Reducing agent is a substance which can lose electrons. Since the alkali metals have a strong tendency
to lose their outermost electrons, they act as good reducing agents.
2M + 2HCl → 2MCl + H2
11. Colouration to the flame:
The alkali metals give colouration to the flame. For example,
Li → Crimson red; Na → Golden yellow; K → Violet; Rb → Lilac red; Cs → Bright blue
This property of alkali metals is used to detect their presence in salt by a test known as flame test.
12. Conductivity:
Alkali metals are good conductors of heat and electricity.
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 4
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
Chemical properties of alkali metals
1. Reaction with H2:
Alkali metals combine directly with hydrogen on gentle heating and form crystalline colourless
compound known as metal hydrides. These ionic compounds are composed of alkali metal positive ion
(M+) and negative hydride ion (H–).
2M + H2 → 2MH
2Na + H2 → 2NaH
These hydrides are easily decomposed by water producing hydrogen.
MH + H2O → MOH + H2
NaH + H2O → NaOH +H2
2. Reactions with oxygen:
All alkali metals react with O2 or air rapidly to form metal oxides. This produces a layer of dull oxide on
the surface of the metal and gets tarnished.
The speed with which alkali metals react with air increases down the group:
lithium – tarnishes slowly;
sodium – tarnishes quickly;
potassium – tarnishes very quickly.
Why are alkali metals stored in oil?
The kerosene or paraffin oil prevents them from reacting with air and tarnishing. That’s why these
metals are stored under kerosene or paraffin oil.
The reaction between an alkali metal and air is an example of an oxidation reaction:
Lithium + Oxygen → Lithium monoxide
4Li (s) + O2 (g) → 2Li2O (s)
Sodium + Oxygen → Sodium peroxide
2Na (s) + O2 (g) → Na2O2 (s)
Other alkali metals react with O2 to form super oxide.
M + O2 → MO2 (M = K, Rb, Cs)
3. Reaction with water:
All alkali metals react readily with water. The reaction becomes more vigorous down the group, and
creates a lot of heat.
2M + 2H2O → 2MOH + H2
This reaction creates alkaline hydroxide ions. This is why the group IA elements are called the alkali
metals. The reaction also produces hydrogen gas that can be ignited by a lighted splint.
Lithium is the least reactive of the alkali metals. When added to water, it fizzes and moves around
slowly across the surface of the water.
2Li (s) +2H2O (l) → 2LiOH (aq) +H2 (g)
When added to water, sodium fizzes more than lithium, and moves quickly across the surface of the
water. The sodium melts as it reacts, and it becomes spherical and shiny, like a ball bearing. The
hydrogen sometimes catches fire because of the heat from the reaction.
2Na (s) +2H2O (l) →2NaOH (aq) +H2 (g)
When added to water, potassium burns with a lilac flame and the hydrogen catches fire immediately.
The potassium moves across the surface of the water very quickly. Like sodium, it melts with the heat
of the reaction.
2K (s) +2H2O (l) →2KOH (aq) + H2 (g)
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 5
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
4. Reaction with halogens:
All alkali metals react violently when heated with halogens to form metal halides. For example,
2Li (s) +Cl2 (g) → 2LiCl (s)
2Na (s) +Cl2 (g) → 2NaCl (s)
5. Reaction with acid:
The alkali metals react vigorously with dilute acid.
2M + 2HCl → 2MCl + H2
Uses of alkali metals
1. Li
Lithium carbonate is sometimes used to treat mental illnesses such as depression.
LiHCO3 is used as removing agents in gout.
2. Na & K
Na
a) Na+ is the most abundant cation in extracellular fluids.
b) It is the main contributor to osmotic pressure and hydration; and plays a fundamental part in the
electrical activities of the body (e.g., nerve impulse transmission and muscular contraction).
c) A decreased concentration of sodium in the blood produces Hyponatremia. If serum sodium
levels drop rapidly, seizures may occur.
d) An increased level of sodium in the serum is called Hypernatremia.
K
a) A mineral element that serves as both the principal cation in intracellular fluid and an important
electrolyte in extracellular fluid.
b) An abnormally low concentration of potassium in the blood is called Hypokalemia.
c) An excessive amount of potassium in the blood is called hyperkalemia.
d) Along with other electrolytes (e.g. magnesium, calcium, chloride), sodium and potassium
participates in many functions, including cell membrane homeostasis, nerve impulse conduction,
and muscle contraction.
3.NaCl & KCl
a) Hypertonic solution of NaCl is used to prevent the corneal edema.
b) Isotonic solution of NaCl is used as irrigation fluid.
c) 6% NaCl solution is used as preservative.
d) KCl is used as dirutics.
e) NaCl and KCl are the major components of ORS.
f) Oral potassium chloride is given in attacks accompanied by hypokalemia.
g) Iodized salt: A salt containing 1 part sodium or potassium iodide to 10,000 parts of sodium
chloride. Its use prevents goiter due to iodine deficiency
h) Lactated R.’s solution: A crystalloid electrolyte sterile solution of specified amounts of calcium
chloride, potassium chloride, sodium chloride, and sodium lactate in water for injection. It is
used intravenously to replace electrolytes.
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 6
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
4.NaHCO3
a) Sodium bicarbonate is given in metabolic acidosis.
b) It is used in the treatment of tubular acidoses as well as Severe or progressive hyperkalemia.
c) In the pancreatic juice it neutralizes the acidity of the chyme entering the duodenum from the
stomach and prevents irritation of the duodenal mucosa.
d) In the renal tubular acidosis sodium bicarbonate is used as Alkali for effective treatments.
e) Sodium bicarbonate is used as uricosuric agent to alkalinize urine and keep uric acid crystals in
solution.
NaHCO3 is also used
As an antacid.
As a buffering agent in the biological system.
As a component of ORS.
In the preparation of effervescent agents.
In the treatment of CH3OH poisoning.
As backing powder.
5.Na-CMC
Na-CMC is used as suspending agent.
6.KI
It is used
a) In Lugol’s solution :A strong iodine solution used in iodine therapy.
b) As resorbent to promotes the absorption of abnormal matters, as exudates or blood clots
c) As a component of iodized salt.
d) Orally administered potassium iodide is used to protect the thyroid from radioactive iodine.
Alkaline Earth Metals
Group II A of the long form of the periodic table consists of six elements which are: Breyllium (Be),
Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra).
The oxides of the three metals viz., Ca, Sr and Ba were known much earlier than the metals themselves
and were called alkaline earths, since they were alkaline in character and occurred in nature as earths
[lime (CaO), strontia (SrO) and baryta (BaO)]. Later, when Ca, Sr and Ba were discovered, they were
named alkaline earth metals.
Ca +2H2O → Ca(OH)2 + H2
Fig. Group IIA – the alkaline earth metals
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 7
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
Electronic structure of alkaline earth metals:
The alkaline earth metals have inert gas configuration in the core and ns2 electron in the outermost
shell.
Element Atomic number Electronic structure Valence electron
Be 4 [He] 2s2 2s2
Mg 12 [Ne] 3s2 3s2
Ca 20 [Ar] 4s2 4s2
Sr 38 [Kr] 5s2 5s2
Ba 56 [Xe] 6s2 6s2
Ra 88 [Rn] 7s2 7s2
These configurations show that the ultimate shell of these elements has two s-electrons (s2 electrons)
while the penultimate shell contains eight (s2p6 electrons.) When the two s-electrons of the valence-shell
are lost, alkaline earth metals are converted into M2+ ions which have inert gas configuration. Since the
additional electron enters the ns-orbital, these elements are called s-block elements.
The Physical Properties
1. Nature:
These elements all are metals.
2. Physical state:
These elements have a greyish white lustre when freshly cut and are malleable and ductile.
3. Atomic volume, atomic and ionic radii:
There is an increase of atomic and ionic radii as we move from Be to Ra.
Elements Be Mg Ca Sr Ba Ra
Atomic Volume(c.c) 4.90 13.97 25.9 34.54 36.7 38.0
Atomic radii(Aº) 0.96 1.36 1. 74 1.91 1.98 2.20
Ionic radii(Aº) 0.31 0.65 0.99 1.13 1.35 1.52
4. Ionization potential:
The 1st and 2nd ionization potentials of these elements decrease with the increase of atomic radii from
Be to Ba. However, both these values for Ra are slightly higher than those of Ba.
Elements Be Mg Ca Sr Ba Ra
Ionisation energies
(KJ/mole)
I1 899.5 737.7 589.8 549.5 502.9 509.4
I2 1757.1 1450.7 1145.4 1064.3 965.2 979.06
Ionisation energy of an element is defined as the amount of energy required to remove the most loosely bound electron
(i.e. outermost shell electron) from isolated neutral gaseous atom in its lowest energy state (i.e. ground state) to convert
it into a unipositive gaseous cation.
Ionisation energy is also called ionisation potential, since it represents the amount of potential (or voltage) required to
remove the most loosely bound electron from the gaseous atom of an element to get a gaseous cation.
In addition to first ionisation potential (I1) defined above, second, third etc. ionisation potentials are also known. We
know that the cations are formed by removing the electrons from the atom/cation one by one.
→ → →
Thus a given cation has lesser number of electrons than its parent atom or cation. With the decrease of the number of
electrons, the magnitude of the effective nuclear charge increases from M(g) to Mn+
(g). With the increase of effective
nuclear charge, the magnitude of the force of attraction between the nucleus and the outer-most shell electron cloud also
increases. With the increase of force of attraction, the magnitude of energy to remove the outermost shell electron
(i.e. ionisation potential) also goes on increasing from M(g) to M n+
((g) and hence I1 < 12 < 13 < ....... . and so on.
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 8
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
5. Density:
Like alkali metals the density of alkaline earth metals also decreases down the order but in an irregular
manner due to difference in crystal structure of these elements.
Elements Be Mg Ca Sr Ba Ra
Density (gm/cm3) 1.86 1.75 1. 55 2.60 3.59 6.0
Why alkaline earth metals are denser than alkali metals?
Comparing with the alkali metals is denser than alkaline earth metals in the same period. This is due to
the fact that , the elements of group II A are packed more tightly due to the greater nuclear charge and
smaller size.
6. Electropositive character:
The alkaline earth metals show electropositive character which increases from Be to Ba.
M → M2+ + 2e-
Since the ionization energies of these metals are higher than alkali metals, they are not strongly
electropositive as the alkali metals.
7. Electronegativity:
These metals have small electronegativity which decreases from Be to Ra.
Elements Be Mg Ca Sr Ba Ra
Electronegativity 1.5 1.20 1.0 1.0 0.90 0.97
8. Melting and boiling point:
The melting and boiling points of alkaline earth metals do not show any regular trend. They are,
however, higher than alkali metals. This is because of two valence electrons and they are strongly
bonded in the solid state than alkali metals.
Elements Be Mg Ca Sr Ba Ra
Melting Point(ºC) 1280 651 851 776 710 960
Boiling Point(ºC) 1500 1100 1487 1366 1537 1150
9. Colouration to the flame:
In flame test, their electrons absorb energy and excited to higher energy levels. When returning to lower
energy level, they give out extra energy which appears as visible light of characteristic colour as shown
below:
Elements Colour of the flame
Ca Brick red
Sr Crimson red
Ba Apple green
Be and Mg do not give any colour to the flame.
10. Conductivity:
Like alkali metals they are also very good conductor of heat and electricity.
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 9
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
Chemical properties of alkaline earth metals
1. Reducing property:
Alkaline earth metals have two electrons in their valence shell. Due to large size they are comparatively
easily oxidised to M2+ ions. They are, therefore, strong reducing agents.
The oxidation potentials of alkaline earth metals are lower than those of alkali metals because of their higher sublimation
and ionisation energies. Hence alkaline earth metals are weaker reducing agents than the alkali metals.
2. Reaction with oxygen:
The alkaline earth metals react readily on heating with O2 to form oxides, MO.
2M + O2 → 2MO
The peroxides of heavier metals (Ca, Sr, Ba etc.) can be obtained on heating the normal oxides with O2
at high temperature.
2BaO + O2 2BaO2
3. Reaction with hydrogen:
Ca, Sr and Ba react with H2 when heated to produce crystalline metal hydrides. These hydrides react
readily with water to give hydrogen.
MH2 + 2H2O → M(OH)2 + 2H2
4. Reaction with nitrogen:
These metals form nitrides on heating in presence of nitrogen which are hydrolysed by H2O to give
ammonia.
3M+N2 → M3N2
M3N2+6H2O → 3M(OH)2 + 2NH3
5. Reaction with water:
The alkaline earth metals readily react with water giving off hydrogen and forming metal hydroxides.
M +2H2O → M(OH)2 + H2
Be and Mg do not react readily with water due to their low reactivity. Be does not react even at elevated
temperature. Mg reacts only with steam.
6. Reaction with halogen:
The alkaline earth metals directly react with halogen to give metal halides.
M + X2 → MX2, X = F, Cl, Br, I
Comparison between alkali and alkaline earth metal
Similarities:
The alkali and alkaline earth metals have quite a good deal of resemblance in their properties. The
points of similarity are:
1. Like alkali metals, alkaline earth metals are electropositive and have great chemical activity.
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 10
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
2. The electropositive nature continuously increases from beryllium to radium in the second group,
as in the first group from lithium to caesium.
3. They do not occur freely in nature.
4. Both are extracted by electrolytic method from their salts such as chlorides.
5. Both are soft and silvery white in untarnished condition and very light.
6. React with water to give hydroxides and hydrogen (gas).
7. Their hydrides produce strong base with water.
NaH + H2O → NaOH + H2
CaH2 + 2H2O → Ca(OH)2 + 2H2
8. They have strong reducing property and forms ionic compounds.
9. They react with water or oxygen with readiness and show much activity towards other
substances.
Dissimilarities:
The points of the contrast between the alkali and alkaline earth metals arise mainly due to the presence
of 2 valence electrons in the case of alkaline earth metals and 1 valence electron in the case of alkali
metals.
Sl. Features Alkaline Earth Metals (AKM) Alkali Metals (AM)
01. Hardness More harder Less harder
02. Softness Less soft More soft than AKM
03. Heaviness More heavier Less heavier
04. Melting & Boiling pints More than AM Less than AKM
05. Density Greater Lesser
06. Basic character Less basic More basic
07. Size Smaller than AM Larger than AKM
08. Reducing property Lower than AM Higher than AKM
09. Oxides and Hydroxides More covalent in nature Less covalent in nature
10. Reaction with water Ca,Sr & Ba react less vigorously All AM react more vigorously
11. Solubility in water
Sulphates, carbonates and
phosphates of AKM are insoluble
in water
AM are soluble in water except
Li2CO3 and Li3PO4 which are
insoluble
12. Polarizing capacity Greater than AM Lower than AKM
Uses of alkaline earth metals
Magnesium (Mg):
It is the second most common cation in intracellular fluid.
FUNCTION:
Magnesium is needed for DNA repair.
It moderates cellular differentiation and proliferation and improves tissue sensitivity to circulating
insulin.
It is a component of enzymes required for the synthesis of adenosine triphosphate (ATP) and
the release of energy from ATP.
It is also a component of enzymes involved in muscle contraction and protein synthesis.
Decreased magnesium in the blood is called hypomagnesemia. Clinically, it is accompanied by
increased neuromuscular irritability.
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 11
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
1. MgO
MgO is used
As antacid
In Mg deficiency
As an universal antidote
As an ingredient of zinc phosphate cellulose.
Antacid An agent that neutralizes acidity, esp. in the stomach and duodenum. Examples are aluminium
hydroxide and magnesium oxide.
Antidote A substance that neutralizes poisons or their effects.
Zinc phosphate cellulose The oldest of the dental cements, composed of a powder (zinc oxide and magnesium
oxide) and a liquid (phosphoric acid and water).
2. Mg(OH)2
Mg(OH)2 is used
In high dose as a laxative.
Usually as a non-systemic antacid.
Prophylactically in stress induced ulcer.
As soap suspending and emulsifying agent.
3. Magnesium tri-silicate
It is used
As gastric antacid.
In drug toxicity.
M/A: Magnesium tri-silicate is made of large particle having hardness. In addition it has laxative
properties. Thus it absorbs the toxic particles in the stomach and excretes with the stool reducing the
toxic effect.
4. Magnesium tri-silicate hydrated [Mg2Si3O8.2H2O]
It acts as
Suspending agent without the help of any other compound.
Thickening agent in the production of chocolate
5. 7-8.5% Mg(OH)2 is called milk of magnesia and is used as laxative.
6. MgSO4
In the treatment of eclampsia as an intravenous bolus and a continuous infusion of magnesium
sulfate are administered.
A soluble salt of magnesium, is used parenterally in clinical medicine to treat, e.g.,
hypomagnesemia and torsade de pointes.
7. MgCO3
It is used
As an antacid and mid laxative.
As an additive in tooth & face powder.
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 12
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
Calcium (Ca)
Ca is the major component of bone marrow. Bone matrixis made of calcium carbonate, calcium
phosphate, and collagen fibres.
FUNCTION:
Calcium is important for blood clotting, enzyme activation, and acid-base balance;
It gives firmness and rigidity to bones and teeth; and
It is essential for lactation, the function of nerves and muscles including heart muscle, and
maintenance of membrane permeability.
EXCESS: Hypercalcemia can cause constipation, renal stones, cardiac arrhythmias, cardiac arrest, and depressed
brain function (e.g., lethargy or coma). High serum calcium levels are usually the result of either
hyperparathyroidism or metastatic cancer and may be reduced with hydration, diuresis, corticosteroids, or
bisphosphonate drugs like pamidronate.
1. Calcium chloride (CaCl2.2H2O): It is used to raise the calcium content of the blood in
disorders such as in hypocalcemic tetany, calcium channel blocker, or beta blocker overdose.
2. Calcium hydroxide (Ca(OH)2): It is used as an astringent applied to the skin and mucous
membranes.
3. Calcium sulphate (CaSO4): It is used
As diluent in tablet.
As plaster cast in the plaster of broken bone.
4. Calcium disodium edetate: It is used to treat poisoning caused by those metals.
5. Calcium gluconate: It is used to treat hypocalcemia, calcium channel blocker, or beta blocker
overdose.
6. Calcium glycerophosphate: It is used as a dietary supplement and in formulating drugs.
7. Calcium tungstate: A fluorescent material used for radiological imaging.
Halogens
Group VII A of the periodic table consists of five elements viz. Fluorine (F), Chlorine (Cl), Bromine (Br),
Iodine (I) and Astatine (At). The elements F, Cl, Br and I are collectively called Halogens.
The term halogen is derived from the Greek halos (= salt) and genes (= born) meaning salt producers
because most of these elements exist in sea water, notably in the form of their sodium compounds.
Astatine is an unstable element of radioactive origin and is not called halogen.
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 13
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
Electronic structure of halogen:
The alkaline earth metals have inert gas configuration in the core and ns2 electron in the outermost
shell.
Element Atomic number Electronic structure Valence electron
F 9 [He] 2s2p5 2s22p5
Cl 17 [Ne] 3s23p5 3s23p5
Br 35 [Ar] 3d104s24p5 4s24p5
I 53 [Kr] 4d105s25p5 5s25p5
At 85 [Xe4f14 5d106s26p5 6s26p5
These configurations show that all the halogens have seven electrons (ns2p5) in their outer most shell.
The chemical behaviours of halogens, therefore, show a tendency to achieve the inert gas configuration
by accepting an electron from other atoms either by transfer or by sharing.
At the ordinary temperatures the halogens exist as diatomic molecules, F2, Cl,, Br2 and 12 for the same reason, because
diatomic halogens have achieved stability by sharing an electron from each atom in an electron pair bond (covalent
molecules) :
The Physical Properties
Some physical properties are discussed below
1. Occurrence.
These elements do not occur in the free state. But in the combined state they occur fairly abundantly in
nature.
2. Colour.
All the halogens are coloured. Their colour is due to the fact that their molecules absorb light in the
visible region by means of which the outer electrons are excited to higher energy levels.
Fluorine pale yellow Bromine reddish brown
Chlorine greenish yellow Iodine deep violet
3. Odour. All the halogens have very pungent and unpleasant odours. If inhaled even in very small
quantities, they cause inflammation of the mucous membranes of the throat and nose and serious
irritation of respiratory duets. Large quantities may have fatal effect.
4. Physical State and Density:
There is a change of state from gas to solid and hence density increases as we move from F to I.
Here both the number of the electron and size of atom increases from top to bottom. But the number of electron increases
more than the size thereby increases the attractive forces and ultimately the density from top to bottom increases.
Elements F Cl Br I
Physical State Gas Gas Liquid Solid
Density (gm/c.c.) 1.3 1.9 3.4 4.93
5. Atomic and Ionic Radii: These parameters increase as we descend the group form F to I. This is
due to the fact that as the number of shells increases the distantness between the outermost shell and
nucleus also increases resulting in an increase in the radii.
Elements F Cl Br I
Covalent radii (Aº) 0.72 1.00 1.14 1.35
Ionic radii (Aº) 1.36 1.81 1.16 2.16
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 14
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
6. Electronegativity.
Halogens have large values of electronegativity. These values decrease as we proceed from F to I in the
group. Large electronegativity values of halogen atoms indicate that X atoms have a strong tendency to
form X–
ions.
(Here, from top to bottom with the increase of an extra electron shell, the size of the atom increases and the attractive
forces between the electron and nucleus decreases.)
Elements F Cl Br I
Electronegativity 4 3 2.8 2.5
7. Melting and Boiling Points.
The melting and boiling points of the halogens regularly increase form F to I. This happens as the
attractive forces (van der Waals forces) between molecules progressively increases as the molecules
increase in size and mass.
Elements F Cl Br I
Melting point (ºC) - 223 -102 - 7 114
Boiling Point (ºC) -188 - 34 59 185
8. Ionization Potentials.
The ionisation potentials of halogens are very high. As they have tendency to accept electron to
become negative ion so they have a little tendency to lose an electron. These values progressively
decrease from F to I, as the atomic size of these elements increases in the same order.
Elements F Cl Br I
Ionization Potentials (ev) 17.42 13.01 11.84 10.45
9. Electron Affinity.
Electron affinity values decrease from Cl to I.
Elements F Cl Br I
Electron Affinity (ev) 3.70 4.00 3.80 3.40
Why the electron affinity value of F is less than that of Cl?
Electron affinity is the amount of energy released when an electron is added to a neutral isolated
gaseous atom. The atoms with high electron affinity will form the anions quite easily.
The F has smaller size and the electrons are more densely packed to each other. When other electrons
come, it shows repulsion which gives it a lower EA value than Cl.
10. Solubility.
The halogens are slightly soluble in water and their solubility decreases from Cl to I.
F cannot be dissolved in H2O, since it decomposes H2O liberating O2 and some O3. The halogens
dissolve much better than H2Oin many organic solvents like carbon disulphide, chloroform, ether etc.
Chemical properties of Halogens
1. Reactivity. All the halogens are the most reactive elements as a family.
The main reasons for their extreme reactivity are: (a) Dissociation energies required converting the diatomic halogen into
mono atomic and (b) electron affinity required to be an anion. Halogen molecules(X2) have low dissociation energies
values and hence it is much easier for these molecules to dissociate into X atoms and react with other substances more.
Because of high electron affinity values of halogen atoms, halogens have a strong tendency to add on electron to form X–
ion. The reactivity of halogen atoms decreases as we move down the group from F to I.
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 15
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
2. Oxidising Property.
The halogens, due to high electron affinity values, have a great tendency to accept an electron and
hence act as strong oxidising agent. The oxidising property of a halogen molecule, X2 is represented by
-1/2 X2 (s, l or g) + e —+ aq X— (aq)
3. Reaction with water:
Fluorine decomposes H2O vigorously even in dark, chlorine decomposes H2O in sunlight, bromine also
decomposes H2Oin sunlight but very slowly while iodine does not decompose water at all.
2F2 + 2 H2O4HF + O2 I2 + H2O No reaction
Cl2 + H2O HClO + HCl Br2 + H2O HBrO + HBr
4. Formation of Hydracids.
All the elements of this group combine with hydrogen and form hydrogen halides (HX) which are called
hydracids or halogen acids.
The affinity of these elements for hydrogen decreases from fluorine to iodine. Thus F2 combines with
H2 explosively and even in the dark, Cl2reacts with H2 in diffused sunlight, Br2, reacts with H2 only on
heating above 500ºC while I2 reacts with H2 only on heating and in presence of Pt as a catalyst.
X2 + H22HX
5. Reaction with oxygen: Halogens form a number of oxides by indirect reactions and arc.
Halogens do not combine directly with O2. However, binary halogen-oxygen compounds can be
prepared by indirect methods. Examples of such compounds are OF2, O2F2, Cl2O, ClO2, Br2O, BrO2,
I2O4, I2O5 etc.
6. Formation of Oxy-acids.
Excepting F2, all other halogens form oxy.-acids. These are mainly of four types
viz. HXO (e.g. HClO, HBrO, HIO); HXO2 (e.g. HClO2); HXO3 (e.g. HClO3, HBrO3, HIO3) and HXO4
(e.g. HClO4, HBrO4, HIO4).
7. Reactions with metals:
Almost all metals react with halogens at various conditions and with different rates. They normally form
halides of the metals with high oxidations state.
nX2 + 2M2MXn
8. Formation of Interhalogen Compounds.
Two different halogen atoms, due to the difference in their electronegativity values, combine with one
another to form a number of covalent compounds which are called interhalogen compounds. These are
of four types namely AB (e.g. ClF, BrF etc); AB3 (e.g. ClF3, BrF3, ICl3); AB5(e.g. BrF5 , IF5 ) and
AB7 (e.g. IF7 ) where A and B are two different halogen atoms.
9. Reactions with organic compounds:
Hydrocarbons burn in Cl2 gas to form HX and free carbon. Unsaturated organic compounds give
important reaction’s with halogens.
Md.
Imran
Nur
Manik
Chemistry of Alkali & Alkaline earth metals and Halogen compounds
Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 16
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh.
Uses of halogens
1. Chloride
FUNCTION:
Chloride is the major extracellular anion and contributes to many body functions including
The maintenance of osmotic pressure,
Acid base balance,
Muscular activity, and
The movement of water between fluid compartments.
It is associated with sodium in the blood.
2. Chlorine
Chlorine is an active bleaching agent and germicide, owing to its oxidizing powers.
It is used extensively used to disinfect water supplies and treat sewage.
The sodium and chlorine ions are important in maintaining the proper electrolyte balance in
body fluids.
3. Bromide
It is a central nervous system depressant, and over dosage can cause serious mental disturbance.
4. Iodine
FUNCTION:
Iodine is part of the hormones triiodothyronine (T3) and thyroxine (T4), and prevents goiter by
enabling the thyroid gland to function normally.
Iodine is a commonly used antiseptic.
It is used in the Gram staining.
5. Radioactive iodine (131I)
It is used
To treat hyperthyroidism.
In diagnosis and treatment of thyroid disorders and Graves’ disease.
In the treatment of toxic goiter and thyroid carcinoma.
DEFICIENCY SYMPTOMS: Iodine deficiency in the diet may lead to simple goiter characterized by
thyroid enlargement and hypothyroidism. In young children, this deficiency may result in retardation of
physical, sexual, and mental development, a condition called cretinism.
6. Potassium iodide (KI)
This form of potassium is recommended for use following exposure to radioactive iodides
downwind from a nuclear reactor accident.
7. Povidone-iodine
A complex of iodine with povidone is used in dilute concentration as a surgical scrub, in aerosol
spray, in vaginal douche solutions, and in ointments and gels.
8. Iodized salt
Its use prevents goiter due to iodine deficiency.

Weitere ähnliche Inhalte

Was ist angesagt?

Oxo acids of halogens and their structures
Oxo acids of halogens and their structuresOxo acids of halogens and their structures
Oxo acids of halogens and their structuresMithil Fal Desai
 
Acid base concepts Acid Base concepts; Arrhenius, Lowery-Bronsted, Lewis. So...
Acid base concepts Acid Base concepts; Arrhenius,  Lowery-Bronsted, Lewis. So...Acid base concepts Acid Base concepts; Arrhenius,  Lowery-Bronsted, Lewis. So...
Acid base concepts Acid Base concepts; Arrhenius, Lowery-Bronsted, Lewis. So...AnzaDar3
 
Acid base concepts
Acid base conceptsAcid base concepts
Acid base conceptsDr. HN Singh
 
Organic reagents vs inorganic reagents
Organic reagents vs inorganic reagentsOrganic reagents vs inorganic reagents
Organic reagents vs inorganic reagentsDrSeemaPattanshettiG
 
Group iiiA elements and compounds of boron - Fsc. 2ND YEAR CHEMISTRY
Group iiiA elements and compounds of boron - Fsc. 2ND YEAR CHEMISTRYGroup iiiA elements and compounds of boron - Fsc. 2ND YEAR CHEMISTRY
Group iiiA elements and compounds of boron - Fsc. 2ND YEAR CHEMISTRYHumnaMehmood
 
Lanthanide and actinide chemistry
Lanthanide and actinide chemistryLanthanide and actinide chemistry
Lanthanide and actinide chemistrySusovanBhowmik
 
Acid and base theories
Acid and base theoriesAcid and base theories
Acid and base theoriesDhanashree Kad
 
Amazing facts about noble gases...........
Amazing facts about noble gases...........Amazing facts about noble gases...........
Amazing facts about noble gases...........DELHI PUBLIC SCHOOL
 
P – block elements 12 Classes
P – block elements 12 ClassesP – block elements 12 Classes
P – block elements 12 ClassesLOURDU ANTHONI
 
Coordination compound
Coordination compoundCoordination compound
Coordination compoundUsman Shah
 

Was ist angesagt? (20)

Oxo acids of halogens and their structures
Oxo acids of halogens and their structuresOxo acids of halogens and their structures
Oxo acids of halogens and their structures
 
Alkali metals
Alkali metalsAlkali metals
Alkali metals
 
P block elements 1
P block elements 1P block elements 1
P block elements 1
 
Organometallic chemistry G.M.Dongare
Organometallic chemistry G.M.DongareOrganometallic chemistry G.M.Dongare
Organometallic chemistry G.M.Dongare
 
Acid base concepts Acid Base concepts; Arrhenius, Lowery-Bronsted, Lewis. So...
Acid base concepts Acid Base concepts; Arrhenius,  Lowery-Bronsted, Lewis. So...Acid base concepts Acid Base concepts; Arrhenius,  Lowery-Bronsted, Lewis. So...
Acid base concepts Acid Base concepts; Arrhenius, Lowery-Bronsted, Lewis. So...
 
S-Block Elements
S-Block ElementsS-Block Elements
S-Block Elements
 
Acid base concepts
Acid base conceptsAcid base concepts
Acid base concepts
 
Metal carbonyls
Metal carbonylsMetal carbonyls
Metal carbonyls
 
Organic reagents vs inorganic reagents
Organic reagents vs inorganic reagentsOrganic reagents vs inorganic reagents
Organic reagents vs inorganic reagents
 
Group iiiA elements and compounds of boron - Fsc. 2ND YEAR CHEMISTRY
Group iiiA elements and compounds of boron - Fsc. 2ND YEAR CHEMISTRYGroup iiiA elements and compounds of boron - Fsc. 2ND YEAR CHEMISTRY
Group iiiA elements and compounds of boron - Fsc. 2ND YEAR CHEMISTRY
 
Lanthanide and actinide chemistry
Lanthanide and actinide chemistryLanthanide and actinide chemistry
Lanthanide and actinide chemistry
 
Acid and base theories
Acid and base theoriesAcid and base theories
Acid and base theories
 
Amazing facts about noble gases...........
Amazing facts about noble gases...........Amazing facts about noble gases...........
Amazing facts about noble gases...........
 
Alkaline earth metal
Alkaline earth metalAlkaline earth metal
Alkaline earth metal
 
Coordination chemistry-2
Coordination chemistry-2Coordination chemistry-2
Coordination chemistry-2
 
Group 15 elements
Group 15 elementsGroup 15 elements
Group 15 elements
 
Organometallic chemistry
Organometallic chemistry Organometallic chemistry
Organometallic chemistry
 
P – block elements 12 Classes
P – block elements 12 ClassesP – block elements 12 Classes
P – block elements 12 Classes
 
Coordination compound
Coordination compoundCoordination compound
Coordination compound
 
Molecular Orbital Theory
Molecular Orbital Theory  Molecular Orbital Theory
Molecular Orbital Theory
 

Andere mochten auch

Solution (Chemistry) MANIK
Solution (Chemistry) MANIKSolution (Chemistry) MANIK
Solution (Chemistry) MANIKImran Nur Manik
 
Sem 1 CHEM REVIEW EXAM
Sem 1 CHEM REVIEW EXAMSem 1 CHEM REVIEW EXAM
Sem 1 CHEM REVIEW EXAMJeff Kalember
 
Chemical Families Notes
Chemical Families NotesChemical Families Notes
Chemical Families Notesduncanpatti
 
Oxygen Element's Properties and Facts
Oxygen Element's Properties and FactsOxygen Element's Properties and Facts
Oxygen Element's Properties and FactsDinesh Hx
 
C3d The Group 1 Elements
C3d   The Group 1 ElementsC3d   The Group 1 Elements
C3d The Group 1 ElementsM F Ebden
 
Alkaline and alkaline earth metals
Alkaline and alkaline earth metalsAlkaline and alkaline earth metals
Alkaline and alkaline earth metalsalfa_ yuri
 
Group IA table of elements
Group IA table of elements Group IA table of elements
Group IA table of elements Vivien Vivien
 
Polymer Science For Pharmaceuticals-MANIK
Polymer Science For Pharmaceuticals-MANIKPolymer Science For Pharmaceuticals-MANIK
Polymer Science For Pharmaceuticals-MANIKImran Nur Manik
 
national drug policy 2005 (eng) Bangladesh
national drug policy 2005 (eng) Bangladeshnational drug policy 2005 (eng) Bangladesh
national drug policy 2005 (eng) BangladeshImran Nur Manik
 
Halogen: Past, Present, and Future
Halogen: Past, Present, and FutureHalogen: Past, Present, and Future
Halogen: Past, Present, and FutureJohn De Goes
 
Laboratory report homepage;MANIK
Laboratory report homepage;MANIKLaboratory report homepage;MANIK
Laboratory report homepage;MANIKImran Nur Manik
 
3206 law &amp; ethics manik
3206 law &amp; ethics  manik3206 law &amp; ethics  manik
3206 law &amp; ethics manikImran Nur Manik
 
Golongan vii a halogen
Golongan vii a halogenGolongan vii a halogen
Golongan vii a halogenila ila
 
colligative Properties MANIK
colligative Properties MANIKcolligative Properties MANIK
colligative Properties MANIKImran Nur Manik
 
Bioinorganic chemistry
Bioinorganic chemistryBioinorganic chemistry
Bioinorganic chemistryIqra Awan
 

Andere mochten auch (20)

Solution (Chemistry) MANIK
Solution (Chemistry) MANIKSolution (Chemistry) MANIK
Solution (Chemistry) MANIK
 
Sem 1 CHEM REVIEW EXAM
Sem 1 CHEM REVIEW EXAMSem 1 CHEM REVIEW EXAM
Sem 1 CHEM REVIEW EXAM
 
Chemical bonding
Chemical bonding Chemical bonding
Chemical bonding
 
Chemical Families Notes
Chemical Families NotesChemical Families Notes
Chemical Families Notes
 
Oxygen Element's Properties and Facts
Oxygen Element's Properties and FactsOxygen Element's Properties and Facts
Oxygen Element's Properties and Facts
 
C3d The Group 1 Elements
C3d   The Group 1 ElementsC3d   The Group 1 Elements
C3d The Group 1 Elements
 
Alkaline and alkaline earth metals
Alkaline and alkaline earth metalsAlkaline and alkaline earth metals
Alkaline and alkaline earth metals
 
Group IA table of elements
Group IA table of elements Group IA table of elements
Group IA table of elements
 
Polymer Science For Pharmaceuticals-MANIK
Polymer Science For Pharmaceuticals-MANIKPolymer Science For Pharmaceuticals-MANIK
Polymer Science For Pharmaceuticals-MANIK
 
national drug policy 2005 (eng) Bangladesh
national drug policy 2005 (eng) Bangladeshnational drug policy 2005 (eng) Bangladesh
national drug policy 2005 (eng) Bangladesh
 
Halogen: Past, Present, and Future
Halogen: Past, Present, and FutureHalogen: Past, Present, and Future
Halogen: Past, Present, and Future
 
Laboratory report homepage;MANIK
Laboratory report homepage;MANIKLaboratory report homepage;MANIK
Laboratory report homepage;MANIK
 
Oxygen cycle pres 1
Oxygen cycle pres 1Oxygen cycle pres 1
Oxygen cycle pres 1
 
3206 law &amp; ethics manik
3206 law &amp; ethics  manik3206 law &amp; ethics  manik
3206 law &amp; ethics manik
 
Golongan vii a halogen
Golongan vii a halogenGolongan vii a halogen
Golongan vii a halogen
 
colligative Properties MANIK
colligative Properties MANIKcolligative Properties MANIK
colligative Properties MANIK
 
Lab thesis
Lab thesis Lab thesis
Lab thesis
 
HALOGEN
HALOGENHALOGEN
HALOGEN
 
lab manual MANIK
lab manual  MANIKlab manual  MANIK
lab manual MANIK
 
Bioinorganic chemistry
Bioinorganic chemistryBioinorganic chemistry
Bioinorganic chemistry
 

Ähnlich wie Chemistry of alkali and alkaline earth metals and halogen compounds MANIK

S block elements (Alkali metals)
S block elements (Alkali metals)S block elements (Alkali metals)
S block elements (Alkali metals)Mohamed Minas
 
s block element.pptx
s block element.pptxs block element.pptx
s block element.pptxSoniaRani69
 
METAL AND NON METAL CLASS 10.pptx
METAL AND NON METAL CLASS 10.pptxMETAL AND NON METAL CLASS 10.pptx
METAL AND NON METAL CLASS 10.pptxADITYA ARYA
 
Chapter 3-120810061405-phpapp01(1)
Chapter 3-120810061405-phpapp01(1)Chapter 3-120810061405-phpapp01(1)
Chapter 3-120810061405-phpapp01(1)naquib123
 
S.block exercise with solutions
S.block exercise with solutionsS.block exercise with solutions
S.block exercise with solutionssuresh gdvm
 
Properties of metals slides
Properties of metals slidesProperties of metals slides
Properties of metals slidesfatimahbegum
 
Reaction of metal with oxygen
Reaction of metal with oxygenReaction of metal with oxygen
Reaction of metal with oxygenchiragjainsmart13
 
Metallurgy part i (1)
Metallurgy   part i (1)Metallurgy   part i (1)
Metallurgy part i (1)Anand Kumar
 
X chemistry full notes chapter 3
X chemistry full notes chapter 3X chemistry full notes chapter 3
X chemistry full notes chapter 3neeraj_enrique
 
10 s-Block Elements.ppt
10 s-Block Elements.ppt10 s-Block Elements.ppt
10 s-Block Elements.pptLajwanti3
 
Metalsnon metals-150807145346-lva1-app6891
Metalsnon metals-150807145346-lva1-app6891Metalsnon metals-150807145346-lva1-app6891
Metalsnon metals-150807145346-lva1-app6891Tabassum Sabir
 
s-block-elements [Autosaved].ppt
s-block-elements [Autosaved].ppts-block-elements [Autosaved].ppt
s-block-elements [Autosaved].pptRishikesh Deshmukh
 
Core & Extension Metals I Reactivity Series & Redox.pptx
Core & Extension Metals I Reactivity Series & Redox.pptxCore & Extension Metals I Reactivity Series & Redox.pptx
Core & Extension Metals I Reactivity Series & Redox.pptxMathandScienced
 
CHEMISTRY PROJECT.docx
CHEMISTRY PROJECT.docxCHEMISTRY PROJECT.docx
CHEMISTRY PROJECT.docxadityavarte
 

Ähnlich wie Chemistry of alkali and alkaline earth metals and halogen compounds MANIK (20)

S block elements (Alkali metals)
S block elements (Alkali metals)S block elements (Alkali metals)
S block elements (Alkali metals)
 
Group IA.pdf
Group IA.pdfGroup IA.pdf
Group IA.pdf
 
s block element.pptx
s block element.pptxs block element.pptx
s block element.pptx
 
METAL AND NON METAL CLASS 10.pptx
METAL AND NON METAL CLASS 10.pptxMETAL AND NON METAL CLASS 10.pptx
METAL AND NON METAL CLASS 10.pptx
 
Sodium
SodiumSodium
Sodium
 
12.-s-block-notes.pdf
12.-s-block-notes.pdf12.-s-block-notes.pdf
12.-s-block-notes.pdf
 
Group i elements
Group i elementsGroup i elements
Group i elements
 
Chapter 3-120810061405-phpapp01(1)
Chapter 3-120810061405-phpapp01(1)Chapter 3-120810061405-phpapp01(1)
Chapter 3-120810061405-phpapp01(1)
 
S.block exercise with solutions
S.block exercise with solutionsS.block exercise with solutions
S.block exercise with solutions
 
Properties of metals slides
Properties of metals slidesProperties of metals slides
Properties of metals slides
 
Reaction of metal with oxygen
Reaction of metal with oxygenReaction of metal with oxygen
Reaction of metal with oxygen
 
Metallurgy part i (1)
Metallurgy   part i (1)Metallurgy   part i (1)
Metallurgy part i (1)
 
X chemistry full notes chapter 3
X chemistry full notes chapter 3X chemistry full notes chapter 3
X chemistry full notes chapter 3
 
10 s-Block Elements.ppt
10 s-Block Elements.ppt10 s-Block Elements.ppt
10 s-Block Elements.ppt
 
Metals & non metals
Metals & non metalsMetals & non metals
Metals & non metals
 
Metalsnon metals-150807145346-lva1-app6891
Metalsnon metals-150807145346-lva1-app6891Metalsnon metals-150807145346-lva1-app6891
Metalsnon metals-150807145346-lva1-app6891
 
s-block-elements [Autosaved].ppt
s-block-elements [Autosaved].ppts-block-elements [Autosaved].ppt
s-block-elements [Autosaved].ppt
 
Core & Extension Metals I Reactivity Series & Redox.pptx
Core & Extension Metals I Reactivity Series & Redox.pptxCore & Extension Metals I Reactivity Series & Redox.pptx
Core & Extension Metals I Reactivity Series & Redox.pptx
 
Metals and Non-metals
Metals and Non-metalsMetals and Non-metals
Metals and Non-metals
 
CHEMISTRY PROJECT.docx
CHEMISTRY PROJECT.docxCHEMISTRY PROJECT.docx
CHEMISTRY PROJECT.docx
 

Mehr von Imran Nur Manik

Mess meal with bankers fotwa.pdf
Mess meal with bankers fotwa.pdfMess meal with bankers fotwa.pdf
Mess meal with bankers fotwa.pdfImran Nur Manik
 
Ramadan Masael Mufti Delwar Hossain db
Ramadan Masael Mufti Delwar Hossain dbRamadan Masael Mufti Delwar Hossain db
Ramadan Masael Mufti Delwar Hossain dbImran Nur Manik
 
Vitamins &amp; vitamin containing drugs manik
Vitamins &amp; vitamin containing drugs manikVitamins &amp; vitamin containing drugs manik
Vitamins &amp; vitamin containing drugs manikImran Nur Manik
 
হুরমতে মুসাহারাত এর শরয়ী বিধান
হুরমতে মুসাহারাত এর শরয়ী বিধানহুরমতে মুসাহারাত এর শরয়ী বিধান
হুরমতে মুসাহারাত এর শরয়ী বিধানImran Nur Manik
 
Physical Pharmacy-I Lab, Manik
Physical Pharmacy-I Lab, ManikPhysical Pharmacy-I Lab, Manik
Physical Pharmacy-I Lab, ManikImran Nur Manik
 
2114:Laboratory Note Book (Sample),manik
2114:Laboratory Note Book (Sample),manik2114:Laboratory Note Book (Sample),manik
2114:Laboratory Note Book (Sample),manikImran Nur Manik
 
Plants in complimentary and traditional systems of medicine MANIKanik
Plants in complimentary and traditional systems of medicine MANIKanikPlants in complimentary and traditional systems of medicine MANIKanik
Plants in complimentary and traditional systems of medicine MANIKanikImran Nur Manik
 
Plant Analysis (Pharmacognosy) MANIK
Plant Analysis (Pharmacognosy) MANIKPlant Analysis (Pharmacognosy) MANIK
Plant Analysis (Pharmacognosy) MANIKImran Nur Manik
 
The Plant Cell (Pharmacognosy) MANIK
The Plant Cell  (Pharmacognosy) MANIKThe Plant Cell  (Pharmacognosy) MANIK
The Plant Cell (Pharmacognosy) MANIKImran Nur Manik
 
Lipids (Pharmacognosy) MANIK
Lipids (Pharmacognosy) MANIKLipids (Pharmacognosy) MANIK
Lipids (Pharmacognosy) MANIKImran Nur Manik
 
Introduction (Pharmacognosy) MANIK
Introduction (Pharmacognosy) MANIKIntroduction (Pharmacognosy) MANIK
Introduction (Pharmacognosy) MANIKImran Nur Manik
 
Drug Literature and Publications (Pharmacognosy) MANIK
Drug Literature and Publications (Pharmacognosy) MANIKDrug Literature and Publications (Pharmacognosy) MANIK
Drug Literature and Publications (Pharmacognosy) MANIKImran Nur Manik
 
Crude Drugs (Pharmacognosy) MANIK
Crude Drugs (Pharmacognosy) MANIKCrude Drugs (Pharmacognosy) MANIK
Crude Drugs (Pharmacognosy) MANIKImran Nur Manik
 
Carbohydrate (Pharmacognosy) MANIK
Carbohydrate (Pharmacognosy) MANIKCarbohydrate (Pharmacognosy) MANIK
Carbohydrate (Pharmacognosy) MANIKImran Nur Manik
 
Alkaloids (Pharmacognosy) MANIK
Alkaloids (Pharmacognosy) MANIKAlkaloids (Pharmacognosy) MANIK
Alkaloids (Pharmacognosy) MANIKImran Nur Manik
 
Exam Strategy with Imran Nur
Exam Strategy with Imran NurExam Strategy with Imran Nur
Exam Strategy with Imran NurImran Nur Manik
 

Mehr von Imran Nur Manik (20)

Mess meal with bankers fotwa.pdf
Mess meal with bankers fotwa.pdfMess meal with bankers fotwa.pdf
Mess meal with bankers fotwa.pdf
 
Ramadan Masael Mufti Delwar Hossain db
Ramadan Masael Mufti Delwar Hossain dbRamadan Masael Mufti Delwar Hossain db
Ramadan Masael Mufti Delwar Hossain db
 
Vitamins &amp; vitamin containing drugs manik
Vitamins &amp; vitamin containing drugs manikVitamins &amp; vitamin containing drugs manik
Vitamins &amp; vitamin containing drugs manik
 
হুরমতে মুসাহারাত এর শরয়ী বিধান
হুরমতে মুসাহারাত এর শরয়ী বিধানহুরমতে মুসাহারাত এর শরয়ী বিধান
হুরমতে মুসাহারাত এর শরয়ী বিধান
 
Monzil book let
Monzil book letMonzil book let
Monzil book let
 
Physical Pharmacy-I Lab, Manik
Physical Pharmacy-I Lab, ManikPhysical Pharmacy-I Lab, Manik
Physical Pharmacy-I Lab, Manik
 
2114:Laboratory Note Book (Sample),manik
2114:Laboratory Note Book (Sample),manik2114:Laboratory Note Book (Sample),manik
2114:Laboratory Note Book (Sample),manik
 
Plants in complimentary and traditional systems of medicine MANIKanik
Plants in complimentary and traditional systems of medicine MANIKanikPlants in complimentary and traditional systems of medicine MANIKanik
Plants in complimentary and traditional systems of medicine MANIKanik
 
Plant Analysis (Pharmacognosy) MANIK
Plant Analysis (Pharmacognosy) MANIKPlant Analysis (Pharmacognosy) MANIK
Plant Analysis (Pharmacognosy) MANIK
 
The Plant Cell (Pharmacognosy) MANIK
The Plant Cell  (Pharmacognosy) MANIKThe Plant Cell  (Pharmacognosy) MANIK
The Plant Cell (Pharmacognosy) MANIK
 
Lipids (Pharmacognosy) MANIK
Lipids (Pharmacognosy) MANIKLipids (Pharmacognosy) MANIK
Lipids (Pharmacognosy) MANIK
 
Introduction (Pharmacognosy) MANIK
Introduction (Pharmacognosy) MANIKIntroduction (Pharmacognosy) MANIK
Introduction (Pharmacognosy) MANIK
 
Drug Literature and Publications (Pharmacognosy) MANIK
Drug Literature and Publications (Pharmacognosy) MANIKDrug Literature and Publications (Pharmacognosy) MANIK
Drug Literature and Publications (Pharmacognosy) MANIK
 
Crude Drugs (Pharmacognosy) MANIK
Crude Drugs (Pharmacognosy) MANIKCrude Drugs (Pharmacognosy) MANIK
Crude Drugs (Pharmacognosy) MANIK
 
Carbohydrate (Pharmacognosy) MANIK
Carbohydrate (Pharmacognosy) MANIKCarbohydrate (Pharmacognosy) MANIK
Carbohydrate (Pharmacognosy) MANIK
 
Alkaloids (Pharmacognosy) MANIK
Alkaloids (Pharmacognosy) MANIKAlkaloids (Pharmacognosy) MANIK
Alkaloids (Pharmacognosy) MANIK
 
Itehase karbala
Itehase karbalaItehase karbala
Itehase karbala
 
Exam Strategy with Imran Nur
Exam Strategy with Imran NurExam Strategy with Imran Nur
Exam Strategy with Imran Nur
 
Volatile oil (full)
Volatile oil (full)Volatile oil (full)
Volatile oil (full)
 
Tannins
TanninsTannins
Tannins
 

Kürzlich hochgeladen

Top Rated Bangalore Call Girls Mg Road ⟟ 9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Mg Road ⟟   9332606886 ⟟ Call Me For Genuine S...Top Rated Bangalore Call Girls Mg Road ⟟   9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Mg Road ⟟ 9332606886 ⟟ Call Me For Genuine S...narwatsonia7
 
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Dipal Arora
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...perfect solution
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...chandars293
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...parulsinha
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...aartirawatdelhi
 
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Haridwar Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableDipal Arora
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Dipal Arora
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...jageshsingh5554
 
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...narwatsonia7
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...astropune
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...indiancallgirl4rent
 
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomdiscovermytutordmt
 

Kürzlich hochgeladen (20)

Top Rated Bangalore Call Girls Mg Road ⟟ 9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Mg Road ⟟   9332606886 ⟟ Call Me For Genuine S...Top Rated Bangalore Call Girls Mg Road ⟟   9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Mg Road ⟟ 9332606886 ⟟ Call Me For Genuine S...
 
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Haridwar Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
 
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
 
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
 

Chemistry of alkali and alkaline earth metals and halogen compounds MANIK

  • 1. Chemistry of alkali alkaline earth metals halogen compounds PHARM 1101 Md. Imran Nur Manik Lecturer Department of Pharmacy Northern University Bangladesh
  • 2. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 1 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. CChheemmiissttrryy ooff AAllkkaallii && AAllkkaalliinnee EEaarrtthh MMeettaallss aanndd HHaallooggeenn CCoommppoouunnddss Alkali Metals Except hydrogen the elements of group 1A of the periodic table form alkali solutions by reacting with water. These elements are called alkali metals such as Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). Example: 2Na +2H2O → 2NaOH + H2 Alkali Of these alkali metals, francium (Fr) is a very rare, radioactive and unstable element. This makes it difficult to study. Fig. Group IA – the alkali metals Electron structure and reactivity of alkali metals The alkali metals have inert gas configuration in the core and ns1 electron in the outermost shell. This means that:- lithium 2,1 sodium 2,8,1 potassium 2,8,8,1  They can easily obtain the stable configuration of an inert gas by losing one electron.  They all lose their outer shell electron in reactions to form positive ions with a +1 charge.  They have similar physical and chemical properties. Element Atomic number Electronic structure Valence electron Li 3 [He] 2s1 2s1 Na 11 [Ne] 3s1 3s1 K 19 [Ar] 4s1 4s1 Rb 37 [Kr] 5s1 5s1 Cs 55 [Xe] 6s1 6s1 Fr 87 [Rn] 7s1 7s1 Md. Imran Nur Manik
  • 3. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 2 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. The size of each element’s atoms and the number of full electron shells increase down the group. This means that down the group the electron in the outer shell gets further away from the nucleus and is shielded by more electron shells. The further an electron is from the positive attraction of the nucleus, the easier it can be lost in reactions. This means that reactivity increases as the size of the atom increases. Physical properties of alkali metals Alkali metals are different to typical (transition) metals, such as iron and copper. Unlike typical metals, alkali metals:- Are soft and can be cut by a knife – softness increases down the group; Have a low density. e.g. lithium, sodium and potassium float on water; Have low melting and boiling points. However, alkali metals do share a few properties with typical metals, such as: They are good conductors of heat and electricity; They are shiny. This is only seen when they are freshly cut. 1. Nature: All of them are metals. 2. Colour: These metals look like white silver. 3. Physical state: With the exception of Li, alkali metals are extremely soft readily fused. They are highly malleable and ductile. 4. Atomic volume, Atomic and ionic radii: increases from Li to Cs. Due to the addition of an extra shell of electrons to each element Elements Li Na K Rb Cs Atomic volume (c.c.) 12.97 23.68 45.36 55.80 69.95 Atomic radii (Aº) 1.5 1.86 2.27 2.43 2.62 Ionic radii (Aº) 0.6 0.96 1.33 1.48 1.69 5. Ionization potential: They have low ionisation potential. The ns1 electron is so weakly held with the nucleus that it can be removed very easily .The ionization potential of alkali metals decreases from Li to Cs due to increasing sizes of the atoms. 6. Electronegativity: Alkali metals have a strong tendency to lose their ns1 electron and hence have electropositive character. Because of this electropositive character, these metals have very little electronegative character. The alkali metals are the most electropositive having very low electronegativity. Elements Li Na K Rb Cs Electronegativity 1.0 0.9 0.8 0.8 0.7 Md. Imran Nur Manik
  • 4. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 3 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. 7. Melting and boiling points: The melting and boiling point of alkali metals decreases down the group. Element Melting point (°C) Lithium 181 Sodium 98 Potassium 64 Rubidium 39 Caesium 28 Melting points are lower than typical (transition) metals, because of the presence of weak interatomic bonds in the solid state of alkali metals. 8. Density: The alkali metals generally become denser down the group, due to the large atomic volumes; but the trend is not perfect because potassium is less dense than sodium due to an unusual increase in atomic size of potassium. Element Density (g/dm3) Lithium 0.53 Sodium 0.97 Potassium 0.86 Rubidium 1.53 Caesium 1.87 Water has a density of 1 g/dm3. Lithium, sodium and potassium are all less dense than water and so will float. 9. Electropositive character: The elements which have a strong tendency to lose their outermost electrons to form cations are said to be electropositive. M → M+ + e- Thus, the alkali metals have a strong tendency to lose their outermost electrons to from M+ cations and hence show electropositive character. Li shows least electropositive character and Cs shows highest electropositive character. So, the electropositive character of alkali metals increases from Li to Cs. 10. Reducing properies: Reducing agent is a substance which can lose electrons. Since the alkali metals have a strong tendency to lose their outermost electrons, they act as good reducing agents. 2M + 2HCl → 2MCl + H2 11. Colouration to the flame: The alkali metals give colouration to the flame. For example, Li → Crimson red; Na → Golden yellow; K → Violet; Rb → Lilac red; Cs → Bright blue This property of alkali metals is used to detect their presence in salt by a test known as flame test. 12. Conductivity: Alkali metals are good conductors of heat and electricity. Md. Imran Nur Manik
  • 5. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 4 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. Chemical properties of alkali metals 1. Reaction with H2: Alkali metals combine directly with hydrogen on gentle heating and form crystalline colourless compound known as metal hydrides. These ionic compounds are composed of alkali metal positive ion (M+) and negative hydride ion (H–). 2M + H2 → 2MH 2Na + H2 → 2NaH These hydrides are easily decomposed by water producing hydrogen. MH + H2O → MOH + H2 NaH + H2O → NaOH +H2 2. Reactions with oxygen: All alkali metals react with O2 or air rapidly to form metal oxides. This produces a layer of dull oxide on the surface of the metal and gets tarnished. The speed with which alkali metals react with air increases down the group: lithium – tarnishes slowly; sodium – tarnishes quickly; potassium – tarnishes very quickly. Why are alkali metals stored in oil? The kerosene or paraffin oil prevents them from reacting with air and tarnishing. That’s why these metals are stored under kerosene or paraffin oil. The reaction between an alkali metal and air is an example of an oxidation reaction: Lithium + Oxygen → Lithium monoxide 4Li (s) + O2 (g) → 2Li2O (s) Sodium + Oxygen → Sodium peroxide 2Na (s) + O2 (g) → Na2O2 (s) Other alkali metals react with O2 to form super oxide. M + O2 → MO2 (M = K, Rb, Cs) 3. Reaction with water: All alkali metals react readily with water. The reaction becomes more vigorous down the group, and creates a lot of heat. 2M + 2H2O → 2MOH + H2 This reaction creates alkaline hydroxide ions. This is why the group IA elements are called the alkali metals. The reaction also produces hydrogen gas that can be ignited by a lighted splint. Lithium is the least reactive of the alkali metals. When added to water, it fizzes and moves around slowly across the surface of the water. 2Li (s) +2H2O (l) → 2LiOH (aq) +H2 (g) When added to water, sodium fizzes more than lithium, and moves quickly across the surface of the water. The sodium melts as it reacts, and it becomes spherical and shiny, like a ball bearing. The hydrogen sometimes catches fire because of the heat from the reaction. 2Na (s) +2H2O (l) →2NaOH (aq) +H2 (g) When added to water, potassium burns with a lilac flame and the hydrogen catches fire immediately. The potassium moves across the surface of the water very quickly. Like sodium, it melts with the heat of the reaction. 2K (s) +2H2O (l) →2KOH (aq) + H2 (g) Md. Imran Nur Manik
  • 6. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 5 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. 4. Reaction with halogens: All alkali metals react violently when heated with halogens to form metal halides. For example, 2Li (s) +Cl2 (g) → 2LiCl (s) 2Na (s) +Cl2 (g) → 2NaCl (s) 5. Reaction with acid: The alkali metals react vigorously with dilute acid. 2M + 2HCl → 2MCl + H2 Uses of alkali metals 1. Li Lithium carbonate is sometimes used to treat mental illnesses such as depression. LiHCO3 is used as removing agents in gout. 2. Na & K Na a) Na+ is the most abundant cation in extracellular fluids. b) It is the main contributor to osmotic pressure and hydration; and plays a fundamental part in the electrical activities of the body (e.g., nerve impulse transmission and muscular contraction). c) A decreased concentration of sodium in the blood produces Hyponatremia. If serum sodium levels drop rapidly, seizures may occur. d) An increased level of sodium in the serum is called Hypernatremia. K a) A mineral element that serves as both the principal cation in intracellular fluid and an important electrolyte in extracellular fluid. b) An abnormally low concentration of potassium in the blood is called Hypokalemia. c) An excessive amount of potassium in the blood is called hyperkalemia. d) Along with other electrolytes (e.g. magnesium, calcium, chloride), sodium and potassium participates in many functions, including cell membrane homeostasis, nerve impulse conduction, and muscle contraction. 3.NaCl & KCl a) Hypertonic solution of NaCl is used to prevent the corneal edema. b) Isotonic solution of NaCl is used as irrigation fluid. c) 6% NaCl solution is used as preservative. d) KCl is used as dirutics. e) NaCl and KCl are the major components of ORS. f) Oral potassium chloride is given in attacks accompanied by hypokalemia. g) Iodized salt: A salt containing 1 part sodium or potassium iodide to 10,000 parts of sodium chloride. Its use prevents goiter due to iodine deficiency h) Lactated R.’s solution: A crystalloid electrolyte sterile solution of specified amounts of calcium chloride, potassium chloride, sodium chloride, and sodium lactate in water for injection. It is used intravenously to replace electrolytes. Md. Imran Nur Manik
  • 7. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 6 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. 4.NaHCO3 a) Sodium bicarbonate is given in metabolic acidosis. b) It is used in the treatment of tubular acidoses as well as Severe or progressive hyperkalemia. c) In the pancreatic juice it neutralizes the acidity of the chyme entering the duodenum from the stomach and prevents irritation of the duodenal mucosa. d) In the renal tubular acidosis sodium bicarbonate is used as Alkali for effective treatments. e) Sodium bicarbonate is used as uricosuric agent to alkalinize urine and keep uric acid crystals in solution. NaHCO3 is also used As an antacid. As a buffering agent in the biological system. As a component of ORS. In the preparation of effervescent agents. In the treatment of CH3OH poisoning. As backing powder. 5.Na-CMC Na-CMC is used as suspending agent. 6.KI It is used a) In Lugol’s solution :A strong iodine solution used in iodine therapy. b) As resorbent to promotes the absorption of abnormal matters, as exudates or blood clots c) As a component of iodized salt. d) Orally administered potassium iodide is used to protect the thyroid from radioactive iodine. Alkaline Earth Metals Group II A of the long form of the periodic table consists of six elements which are: Breyllium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). The oxides of the three metals viz., Ca, Sr and Ba were known much earlier than the metals themselves and were called alkaline earths, since they were alkaline in character and occurred in nature as earths [lime (CaO), strontia (SrO) and baryta (BaO)]. Later, when Ca, Sr and Ba were discovered, they were named alkaline earth metals. Ca +2H2O → Ca(OH)2 + H2 Fig. Group IIA – the alkaline earth metals Md. Imran Nur Manik
  • 8. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 7 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. Electronic structure of alkaline earth metals: The alkaline earth metals have inert gas configuration in the core and ns2 electron in the outermost shell. Element Atomic number Electronic structure Valence electron Be 4 [He] 2s2 2s2 Mg 12 [Ne] 3s2 3s2 Ca 20 [Ar] 4s2 4s2 Sr 38 [Kr] 5s2 5s2 Ba 56 [Xe] 6s2 6s2 Ra 88 [Rn] 7s2 7s2 These configurations show that the ultimate shell of these elements has two s-electrons (s2 electrons) while the penultimate shell contains eight (s2p6 electrons.) When the two s-electrons of the valence-shell are lost, alkaline earth metals are converted into M2+ ions which have inert gas configuration. Since the additional electron enters the ns-orbital, these elements are called s-block elements. The Physical Properties 1. Nature: These elements all are metals. 2. Physical state: These elements have a greyish white lustre when freshly cut and are malleable and ductile. 3. Atomic volume, atomic and ionic radii: There is an increase of atomic and ionic radii as we move from Be to Ra. Elements Be Mg Ca Sr Ba Ra Atomic Volume(c.c) 4.90 13.97 25.9 34.54 36.7 38.0 Atomic radii(Aº) 0.96 1.36 1. 74 1.91 1.98 2.20 Ionic radii(Aº) 0.31 0.65 0.99 1.13 1.35 1.52 4. Ionization potential: The 1st and 2nd ionization potentials of these elements decrease with the increase of atomic radii from Be to Ba. However, both these values for Ra are slightly higher than those of Ba. Elements Be Mg Ca Sr Ba Ra Ionisation energies (KJ/mole) I1 899.5 737.7 589.8 549.5 502.9 509.4 I2 1757.1 1450.7 1145.4 1064.3 965.2 979.06 Ionisation energy of an element is defined as the amount of energy required to remove the most loosely bound electron (i.e. outermost shell electron) from isolated neutral gaseous atom in its lowest energy state (i.e. ground state) to convert it into a unipositive gaseous cation. Ionisation energy is also called ionisation potential, since it represents the amount of potential (or voltage) required to remove the most loosely bound electron from the gaseous atom of an element to get a gaseous cation. In addition to first ionisation potential (I1) defined above, second, third etc. ionisation potentials are also known. We know that the cations are formed by removing the electrons from the atom/cation one by one. → → → Thus a given cation has lesser number of electrons than its parent atom or cation. With the decrease of the number of electrons, the magnitude of the effective nuclear charge increases from M(g) to Mn+ (g). With the increase of effective nuclear charge, the magnitude of the force of attraction between the nucleus and the outer-most shell electron cloud also increases. With the increase of force of attraction, the magnitude of energy to remove the outermost shell electron (i.e. ionisation potential) also goes on increasing from M(g) to M n+ ((g) and hence I1 < 12 < 13 < ....... . and so on. Md. Imran Nur Manik
  • 9. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 8 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. 5. Density: Like alkali metals the density of alkaline earth metals also decreases down the order but in an irregular manner due to difference in crystal structure of these elements. Elements Be Mg Ca Sr Ba Ra Density (gm/cm3) 1.86 1.75 1. 55 2.60 3.59 6.0 Why alkaline earth metals are denser than alkali metals? Comparing with the alkali metals is denser than alkaline earth metals in the same period. This is due to the fact that , the elements of group II A are packed more tightly due to the greater nuclear charge and smaller size. 6. Electropositive character: The alkaline earth metals show electropositive character which increases from Be to Ba. M → M2+ + 2e- Since the ionization energies of these metals are higher than alkali metals, they are not strongly electropositive as the alkali metals. 7. Electronegativity: These metals have small electronegativity which decreases from Be to Ra. Elements Be Mg Ca Sr Ba Ra Electronegativity 1.5 1.20 1.0 1.0 0.90 0.97 8. Melting and boiling point: The melting and boiling points of alkaline earth metals do not show any regular trend. They are, however, higher than alkali metals. This is because of two valence electrons and they are strongly bonded in the solid state than alkali metals. Elements Be Mg Ca Sr Ba Ra Melting Point(ºC) 1280 651 851 776 710 960 Boiling Point(ºC) 1500 1100 1487 1366 1537 1150 9. Colouration to the flame: In flame test, their electrons absorb energy and excited to higher energy levels. When returning to lower energy level, they give out extra energy which appears as visible light of characteristic colour as shown below: Elements Colour of the flame Ca Brick red Sr Crimson red Ba Apple green Be and Mg do not give any colour to the flame. 10. Conductivity: Like alkali metals they are also very good conductor of heat and electricity. Md. Imran Nur Manik
  • 10. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 9 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. Chemical properties of alkaline earth metals 1. Reducing property: Alkaline earth metals have two electrons in their valence shell. Due to large size they are comparatively easily oxidised to M2+ ions. They are, therefore, strong reducing agents. The oxidation potentials of alkaline earth metals are lower than those of alkali metals because of their higher sublimation and ionisation energies. Hence alkaline earth metals are weaker reducing agents than the alkali metals. 2. Reaction with oxygen: The alkaline earth metals react readily on heating with O2 to form oxides, MO. 2M + O2 → 2MO The peroxides of heavier metals (Ca, Sr, Ba etc.) can be obtained on heating the normal oxides with O2 at high temperature. 2BaO + O2 2BaO2 3. Reaction with hydrogen: Ca, Sr and Ba react with H2 when heated to produce crystalline metal hydrides. These hydrides react readily with water to give hydrogen. MH2 + 2H2O → M(OH)2 + 2H2 4. Reaction with nitrogen: These metals form nitrides on heating in presence of nitrogen which are hydrolysed by H2O to give ammonia. 3M+N2 → M3N2 M3N2+6H2O → 3M(OH)2 + 2NH3 5. Reaction with water: The alkaline earth metals readily react with water giving off hydrogen and forming metal hydroxides. M +2H2O → M(OH)2 + H2 Be and Mg do not react readily with water due to their low reactivity. Be does not react even at elevated temperature. Mg reacts only with steam. 6. Reaction with halogen: The alkaline earth metals directly react with halogen to give metal halides. M + X2 → MX2, X = F, Cl, Br, I Comparison between alkali and alkaline earth metal Similarities: The alkali and alkaline earth metals have quite a good deal of resemblance in their properties. The points of similarity are: 1. Like alkali metals, alkaline earth metals are electropositive and have great chemical activity. Md. Imran Nur Manik
  • 11. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 10 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. 2. The electropositive nature continuously increases from beryllium to radium in the second group, as in the first group from lithium to caesium. 3. They do not occur freely in nature. 4. Both are extracted by electrolytic method from their salts such as chlorides. 5. Both are soft and silvery white in untarnished condition and very light. 6. React with water to give hydroxides and hydrogen (gas). 7. Their hydrides produce strong base with water. NaH + H2O → NaOH + H2 CaH2 + 2H2O → Ca(OH)2 + 2H2 8. They have strong reducing property and forms ionic compounds. 9. They react with water or oxygen with readiness and show much activity towards other substances. Dissimilarities: The points of the contrast between the alkali and alkaline earth metals arise mainly due to the presence of 2 valence electrons in the case of alkaline earth metals and 1 valence electron in the case of alkali metals. Sl. Features Alkaline Earth Metals (AKM) Alkali Metals (AM) 01. Hardness More harder Less harder 02. Softness Less soft More soft than AKM 03. Heaviness More heavier Less heavier 04. Melting & Boiling pints More than AM Less than AKM 05. Density Greater Lesser 06. Basic character Less basic More basic 07. Size Smaller than AM Larger than AKM 08. Reducing property Lower than AM Higher than AKM 09. Oxides and Hydroxides More covalent in nature Less covalent in nature 10. Reaction with water Ca,Sr & Ba react less vigorously All AM react more vigorously 11. Solubility in water Sulphates, carbonates and phosphates of AKM are insoluble in water AM are soluble in water except Li2CO3 and Li3PO4 which are insoluble 12. Polarizing capacity Greater than AM Lower than AKM Uses of alkaline earth metals Magnesium (Mg): It is the second most common cation in intracellular fluid. FUNCTION: Magnesium is needed for DNA repair. It moderates cellular differentiation and proliferation and improves tissue sensitivity to circulating insulin. It is a component of enzymes required for the synthesis of adenosine triphosphate (ATP) and the release of energy from ATP. It is also a component of enzymes involved in muscle contraction and protein synthesis. Decreased magnesium in the blood is called hypomagnesemia. Clinically, it is accompanied by increased neuromuscular irritability. Md. Imran Nur Manik
  • 12. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 11 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. 1. MgO MgO is used As antacid In Mg deficiency As an universal antidote As an ingredient of zinc phosphate cellulose. Antacid An agent that neutralizes acidity, esp. in the stomach and duodenum. Examples are aluminium hydroxide and magnesium oxide. Antidote A substance that neutralizes poisons or their effects. Zinc phosphate cellulose The oldest of the dental cements, composed of a powder (zinc oxide and magnesium oxide) and a liquid (phosphoric acid and water). 2. Mg(OH)2 Mg(OH)2 is used In high dose as a laxative. Usually as a non-systemic antacid. Prophylactically in stress induced ulcer. As soap suspending and emulsifying agent. 3. Magnesium tri-silicate It is used As gastric antacid. In drug toxicity. M/A: Magnesium tri-silicate is made of large particle having hardness. In addition it has laxative properties. Thus it absorbs the toxic particles in the stomach and excretes with the stool reducing the toxic effect. 4. Magnesium tri-silicate hydrated [Mg2Si3O8.2H2O] It acts as Suspending agent without the help of any other compound. Thickening agent in the production of chocolate 5. 7-8.5% Mg(OH)2 is called milk of magnesia and is used as laxative. 6. MgSO4 In the treatment of eclampsia as an intravenous bolus and a continuous infusion of magnesium sulfate are administered. A soluble salt of magnesium, is used parenterally in clinical medicine to treat, e.g., hypomagnesemia and torsade de pointes. 7. MgCO3 It is used As an antacid and mid laxative. As an additive in tooth & face powder. Md. Imran Nur Manik
  • 13. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 12 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. Calcium (Ca) Ca is the major component of bone marrow. Bone matrixis made of calcium carbonate, calcium phosphate, and collagen fibres. FUNCTION: Calcium is important for blood clotting, enzyme activation, and acid-base balance; It gives firmness and rigidity to bones and teeth; and It is essential for lactation, the function of nerves and muscles including heart muscle, and maintenance of membrane permeability. EXCESS: Hypercalcemia can cause constipation, renal stones, cardiac arrhythmias, cardiac arrest, and depressed brain function (e.g., lethargy or coma). High serum calcium levels are usually the result of either hyperparathyroidism or metastatic cancer and may be reduced with hydration, diuresis, corticosteroids, or bisphosphonate drugs like pamidronate. 1. Calcium chloride (CaCl2.2H2O): It is used to raise the calcium content of the blood in disorders such as in hypocalcemic tetany, calcium channel blocker, or beta blocker overdose. 2. Calcium hydroxide (Ca(OH)2): It is used as an astringent applied to the skin and mucous membranes. 3. Calcium sulphate (CaSO4): It is used As diluent in tablet. As plaster cast in the plaster of broken bone. 4. Calcium disodium edetate: It is used to treat poisoning caused by those metals. 5. Calcium gluconate: It is used to treat hypocalcemia, calcium channel blocker, or beta blocker overdose. 6. Calcium glycerophosphate: It is used as a dietary supplement and in formulating drugs. 7. Calcium tungstate: A fluorescent material used for radiological imaging. Halogens Group VII A of the periodic table consists of five elements viz. Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I) and Astatine (At). The elements F, Cl, Br and I are collectively called Halogens. The term halogen is derived from the Greek halos (= salt) and genes (= born) meaning salt producers because most of these elements exist in sea water, notably in the form of their sodium compounds. Astatine is an unstable element of radioactive origin and is not called halogen. Md. Imran Nur Manik
  • 14. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 13 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. Electronic structure of halogen: The alkaline earth metals have inert gas configuration in the core and ns2 electron in the outermost shell. Element Atomic number Electronic structure Valence electron F 9 [He] 2s2p5 2s22p5 Cl 17 [Ne] 3s23p5 3s23p5 Br 35 [Ar] 3d104s24p5 4s24p5 I 53 [Kr] 4d105s25p5 5s25p5 At 85 [Xe4f14 5d106s26p5 6s26p5 These configurations show that all the halogens have seven electrons (ns2p5) in their outer most shell. The chemical behaviours of halogens, therefore, show a tendency to achieve the inert gas configuration by accepting an electron from other atoms either by transfer or by sharing. At the ordinary temperatures the halogens exist as diatomic molecules, F2, Cl,, Br2 and 12 for the same reason, because diatomic halogens have achieved stability by sharing an electron from each atom in an electron pair bond (covalent molecules) : The Physical Properties Some physical properties are discussed below 1. Occurrence. These elements do not occur in the free state. But in the combined state they occur fairly abundantly in nature. 2. Colour. All the halogens are coloured. Their colour is due to the fact that their molecules absorb light in the visible region by means of which the outer electrons are excited to higher energy levels. Fluorine pale yellow Bromine reddish brown Chlorine greenish yellow Iodine deep violet 3. Odour. All the halogens have very pungent and unpleasant odours. If inhaled even in very small quantities, they cause inflammation of the mucous membranes of the throat and nose and serious irritation of respiratory duets. Large quantities may have fatal effect. 4. Physical State and Density: There is a change of state from gas to solid and hence density increases as we move from F to I. Here both the number of the electron and size of atom increases from top to bottom. But the number of electron increases more than the size thereby increases the attractive forces and ultimately the density from top to bottom increases. Elements F Cl Br I Physical State Gas Gas Liquid Solid Density (gm/c.c.) 1.3 1.9 3.4 4.93 5. Atomic and Ionic Radii: These parameters increase as we descend the group form F to I. This is due to the fact that as the number of shells increases the distantness between the outermost shell and nucleus also increases resulting in an increase in the radii. Elements F Cl Br I Covalent radii (Aº) 0.72 1.00 1.14 1.35 Ionic radii (Aº) 1.36 1.81 1.16 2.16 Md. Imran Nur Manik
  • 15. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 14 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. 6. Electronegativity. Halogens have large values of electronegativity. These values decrease as we proceed from F to I in the group. Large electronegativity values of halogen atoms indicate that X atoms have a strong tendency to form X– ions. (Here, from top to bottom with the increase of an extra electron shell, the size of the atom increases and the attractive forces between the electron and nucleus decreases.) Elements F Cl Br I Electronegativity 4 3 2.8 2.5 7. Melting and Boiling Points. The melting and boiling points of the halogens regularly increase form F to I. This happens as the attractive forces (van der Waals forces) between molecules progressively increases as the molecules increase in size and mass. Elements F Cl Br I Melting point (ºC) - 223 -102 - 7 114 Boiling Point (ºC) -188 - 34 59 185 8. Ionization Potentials. The ionisation potentials of halogens are very high. As they have tendency to accept electron to become negative ion so they have a little tendency to lose an electron. These values progressively decrease from F to I, as the atomic size of these elements increases in the same order. Elements F Cl Br I Ionization Potentials (ev) 17.42 13.01 11.84 10.45 9. Electron Affinity. Electron affinity values decrease from Cl to I. Elements F Cl Br I Electron Affinity (ev) 3.70 4.00 3.80 3.40 Why the electron affinity value of F is less than that of Cl? Electron affinity is the amount of energy released when an electron is added to a neutral isolated gaseous atom. The atoms with high electron affinity will form the anions quite easily. The F has smaller size and the electrons are more densely packed to each other. When other electrons come, it shows repulsion which gives it a lower EA value than Cl. 10. Solubility. The halogens are slightly soluble in water and their solubility decreases from Cl to I. F cannot be dissolved in H2O, since it decomposes H2O liberating O2 and some O3. The halogens dissolve much better than H2Oin many organic solvents like carbon disulphide, chloroform, ether etc. Chemical properties of Halogens 1. Reactivity. All the halogens are the most reactive elements as a family. The main reasons for their extreme reactivity are: (a) Dissociation energies required converting the diatomic halogen into mono atomic and (b) electron affinity required to be an anion. Halogen molecules(X2) have low dissociation energies values and hence it is much easier for these molecules to dissociate into X atoms and react with other substances more. Because of high electron affinity values of halogen atoms, halogens have a strong tendency to add on electron to form X– ion. The reactivity of halogen atoms decreases as we move down the group from F to I. Md. Imran Nur Manik
  • 16. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 15 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. 2. Oxidising Property. The halogens, due to high electron affinity values, have a great tendency to accept an electron and hence act as strong oxidising agent. The oxidising property of a halogen molecule, X2 is represented by -1/2 X2 (s, l or g) + e —+ aq X— (aq) 3. Reaction with water: Fluorine decomposes H2O vigorously even in dark, chlorine decomposes H2O in sunlight, bromine also decomposes H2Oin sunlight but very slowly while iodine does not decompose water at all. 2F2 + 2 H2O4HF + O2 I2 + H2O No reaction Cl2 + H2O HClO + HCl Br2 + H2O HBrO + HBr 4. Formation of Hydracids. All the elements of this group combine with hydrogen and form hydrogen halides (HX) which are called hydracids or halogen acids. The affinity of these elements for hydrogen decreases from fluorine to iodine. Thus F2 combines with H2 explosively and even in the dark, Cl2reacts with H2 in diffused sunlight, Br2, reacts with H2 only on heating above 500ºC while I2 reacts with H2 only on heating and in presence of Pt as a catalyst. X2 + H22HX 5. Reaction with oxygen: Halogens form a number of oxides by indirect reactions and arc. Halogens do not combine directly with O2. However, binary halogen-oxygen compounds can be prepared by indirect methods. Examples of such compounds are OF2, O2F2, Cl2O, ClO2, Br2O, BrO2, I2O4, I2O5 etc. 6. Formation of Oxy-acids. Excepting F2, all other halogens form oxy.-acids. These are mainly of four types viz. HXO (e.g. HClO, HBrO, HIO); HXO2 (e.g. HClO2); HXO3 (e.g. HClO3, HBrO3, HIO3) and HXO4 (e.g. HClO4, HBrO4, HIO4). 7. Reactions with metals: Almost all metals react with halogens at various conditions and with different rates. They normally form halides of the metals with high oxidations state. nX2 + 2M2MXn 8. Formation of Interhalogen Compounds. Two different halogen atoms, due to the difference in their electronegativity values, combine with one another to form a number of covalent compounds which are called interhalogen compounds. These are of four types namely AB (e.g. ClF, BrF etc); AB3 (e.g. ClF3, BrF3, ICl3); AB5(e.g. BrF5 , IF5 ) and AB7 (e.g. IF7 ) where A and B are two different halogen atoms. 9. Reactions with organic compounds: Hydrocarbons burn in Cl2 gas to form HX and free carbon. Unsaturated organic compounds give important reaction’s with halogens. Md. Imran Nur Manik
  • 17. Chemistry of Alkali & Alkaline earth metals and Halogen compounds Prepared By: Md. Imran Nur Manik; B.Pharm; M.Pharm Page 16 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Northern University Bangladesh. Uses of halogens 1. Chloride FUNCTION: Chloride is the major extracellular anion and contributes to many body functions including The maintenance of osmotic pressure, Acid base balance, Muscular activity, and The movement of water between fluid compartments. It is associated with sodium in the blood. 2. Chlorine Chlorine is an active bleaching agent and germicide, owing to its oxidizing powers. It is used extensively used to disinfect water supplies and treat sewage. The sodium and chlorine ions are important in maintaining the proper electrolyte balance in body fluids. 3. Bromide It is a central nervous system depressant, and over dosage can cause serious mental disturbance. 4. Iodine FUNCTION: Iodine is part of the hormones triiodothyronine (T3) and thyroxine (T4), and prevents goiter by enabling the thyroid gland to function normally. Iodine is a commonly used antiseptic. It is used in the Gram staining. 5. Radioactive iodine (131I) It is used To treat hyperthyroidism. In diagnosis and treatment of thyroid disorders and Graves’ disease. In the treatment of toxic goiter and thyroid carcinoma. DEFICIENCY SYMPTOMS: Iodine deficiency in the diet may lead to simple goiter characterized by thyroid enlargement and hypothyroidism. In young children, this deficiency may result in retardation of physical, sexual, and mental development, a condition called cretinism. 6. Potassium iodide (KI) This form of potassium is recommended for use following exposure to radioactive iodides downwind from a nuclear reactor accident. 7. Povidone-iodine A complex of iodine with povidone is used in dilute concentration as a surgical scrub, in aerosol spray, in vaginal douche solutions, and in ointments and gels. 8. Iodized salt Its use prevents goiter due to iodine deficiency.