SlideShare ist ein Scribd-Unternehmen logo
1 von 24
Downloaden Sie, um offline zu lesen
1
I. Dejanović, I.J. Halvorsen, S. Skogestad, H. Jansen, Ž. Olujić
University of Zagreb, Croatia; SINTEF, Norway; NTNU, Norway; Julius MONTZ GmbH, Germany;
Delft University of Technology, the Netherlands
Cost-effective design
of energy efficient four-product dividing wall
columns
16th Conference Process Integration,
Modelling and Optimisation for Energy
Saving and Pollution Reduction
2
STATE OF THE ART
Established: 3-product DWCs
• More than 200 in operation worldwide.
• Packed and tray columns.
• Know-how pioneers: BASF SE and Julius
MONTZ GmbH.
Proven in practice: about 30 % savings in
energy, capital and plot area
Next step: 4-product DWCs
• Potential gains could increase to 50%
compared to conventional, three-column
sequences
• Complex internal configurations: design
and operation concerns increase.
• Subject of academic studies: providing
basic and technically sound know-how
3
AVAILABLE CONCEPTUAL DESIGN TOOLS
SHORT-CUT DESIGN
• Vmin diagram method (I.J. Halvorsen).
• Identification of feasible internal configurations.
• Initial values for detailed simulations.
A B
B C
C D
A B C B C D
A B C D
A B C D
VT/F
D/F
1-q
0 1
PAB
PBC
PCD
PAC PBD
PAD
DETAILED STAGE NUMBER AND REFLUX CALCULATION
• Use of commercial process simulators.
• Thermodynamically equivalent conventional column sequences.
• Minimizig N(R+1)
HYDRAULIC DESIGN
• Packed DWC dimensioning considerations and methods
• Main design and operation concern: vapor splits
4
Starting point: 4-P Kaibel DWC ("2-4" configuration)
CD
ABCD
A
B
C
D
AB
• Single partition wall (G. Kaibel, BASF, 1987)
• Theoretical savings: > 30% compared to conventional 3 column sequences
• Not a full Petlyuk arrangement, but practical
One column in operation in a BASF plant
A B C D
A B
C D
A
B
C
D
C 1
C 2
C 3
Feed
D
S 1
S 2
B
5
Fully extended 4-P Petlyuk arrangement
CD
ABCD
ABC
A
B
BCD C
D
AB
BC A, B, C, D
A
A, B, C
B, C, D
B
C
D
A, B
B, C
C, D
C1
C2.1
C2.2
C3.1
C3.2
C3.3
V/B
S1
S2
R
N1.1
N1.2
N3.1
N2.2
N2.3
N2.4
N2.1 N3.2
N3.3
N3.4
N3.5
N3.6
RV1
RV2
RV3
RL1
RL2
RL3
A B C D
A
B
C
D
Easiest separation performed in each sub-column minimizes energy
requirement
6
Vmin diagram for a 4-P ("2-3-4" configuration)
Vmin diagram
contains all internal
DWC rates at min
reflux
Highest peak – sets overall
Petlyuk/DWC Vmin
7
DESIGN CASE: 15 component feed ⟶ 4 products
Based on actual plant data
Base case configuration
Product specs:
• C5-C6 fraction < 1.3 mass % benzene
• BRC > 67 mass % benzene
• Toluene purity > 97 mass %
C1
C2
C3
Feed
D (C5-C6)
S1 (BRC)
S2 (toluene)
B (heavies)
31.7 t/h
8.0 t/h
7.4 t/h
3.9 t/h
12.4 t/h
8
Differences in peak heights give operational/design flexibility
Vmin diagram: Internal configuration layout tool
A, B, C, D
A
A, B, C
B, C, D
B
C
D
A, B
B, C
C, D
C1
C2.1
C2.2
C3.1
C3.2
C3.3
CD
ABCD
ABC
A
B
BCD C
D
AB
BC
9
Aligning PAC and PDB eliminates vapor connection with C3.2 – simpler design and
construction (one vapor split eliminated!)
Vmin diagram: Internal configuration layout tool
A, B, C, D
A
A, B, C
B, C, D
B
C
D
A, B
B, C
C, D
C1
C2.1
C2.2
C3.1
C3.2
C3.3
CD
ABCD
ABC
A
B
BCD C
D
AB
BC
10
Vmin diagram: Internal configuration layout tool
A, B, C, D
A
A, B, C
B, C, D
B
C
D
A, B
B, C
C, D
C1
C2.1
C2.2
C3.1
C3.2
C3.3
CD
ABCD
ABC
A
B
BCD C
D
AB
BC
11
Moving prefractionator operating point to align PAD and PBD allows
elimination of section C2.2
A, B, C, D
A
A, B, C
B
C
D
A, B
B, C
C, D
C1
C2.1
C3.1
C3.2
C3.3
Vmin diagram: Internal configuration layout tool
CD
ABCD
ABC
A
B
C
D
AB
BC
12
Vmin diagram: Internal configuration layout tool
A, B, C, D
A
A, B, C
B, C, D
B
C
D
A, B
B, C
C, D
C1
C2.1
C2.2
C3.1
C3.2
C3.3
CD
ABCD
ABC
A
B
BCD C
D
AB
BC
13
Vmin diagram: Internal configuration layout tool
CD
ABCD
ABC B
BCD C
D
A
BC
Moving C2.1 operating point to align PAC and PAB allows
elimination of section C3.1
A, B, C, D
A
A, B, C
B, C, D
B
C
D
B, C
C, D
C1
C2.1
C2.2
C3.2
C3.3
14
Alternative configurations of a 4-P DWC
A B C D
D
B
A
C
A
B
C
D
A B C D
A B C D
A
B
C
D
B
C
D
A
A B C D
2-4 2-3-4 2-2-4 2-3-3
Details on preliminary rigorous simulation, dimensioning and cost estimation of these configurations can be found in:
Dejanović, Matijašević, Halvorsen, Skogestad, Jansen, Kaibel, Olujić, Chem.Eng.Res.Des., 89 (2011) 1155-1167
Olujić, Dejanović, Kaibel, Jansen, Chem. Eng. Technol., 35 (2012) 1392-1404
Halvorsen, Dejanović, Skogestad, Olujić, Chem.Eng.Res.Des., 91 (2013), in print.
15
Separation task:
F, q, xi, rLK,i, rHK,i
Vmin diagram (N³4Nmin):
DPF, BPF, LT, VT, LB, VB, RL,
RV,D, S, B
min(V/B)
Ni(0)
RL(0), RV(0)
min(N(R+1)
min(Qr)
Detailed model
Converged DWC profile
Dimensioning
Short-cut
Reflux and stage calculation procedure
16
2-3-3 configuration results
A B C D
A B C
B C D
A
B C
C D
B
C
D
17
A
B
C
D
F
F
A
B
C
D
B
C
F
29
39
18
17
33
16
10
18
10
12
D
A
18
7 15
10 15 20
12 9
18
17
19
42 42
12 17
18
10 15 20
18
7 15
2.1
2.2
1.1 3.1
2.3
1.2 3.2
2.4 3.3
3.4
Stage requirement distribution
”2-2-4”
”s-2-3-4” ”2-3-3”
18
Stage and energy requirements of considered
configurations
Configuration Conventional 2-4 2-3-4 2-2-4 2-3-3
Column C1 C2 C3 - - - -
Top pressure bar 1.70 2.70 1.01 2.53 2.57 2.57 2.57
Stages, total - 40 38 38 169 202 174 202
Stages, main
column
- 129 130 130 116
Trays - 61 59 59
Reboiler heat duty MW 10.0 5.82 4.81 4.81 4.81
19
Converged column
profiles
Determine critical stage –
maximum vapour load
Dshell(0)
Wall position below/
above feed stage
Δp<3 mbar/m
Pressure drop –
packed beds
H(bed)=N*HETP
Choice of packing type
Choice of internals
(collectors and
distributors)
Initial values of free area:
Distributors: φ(0)=0,40
Colectors: φ(0)=0,25
Equal pressure
drops
Final dimensions and
pressure drops
FG
Yes
Yes
No
No
No
No
Dimensioning procedure
20
Design rules:
Up to 20 equilibrium stages in a single bed;
Δp < 3 mbar/m;
Liquid collectors:
CT for side stream draw-off
CT for liquid loads > 20 m3/m2h
CC for lower liquid loads
Predictive models:
•Delft Model for structured packings
•Rix & Olujić model for internals
Chimney tray collector (CT)
Chevron collector (CC)
Narrow trough distributor (NT)
Various packing types and sizes to maximize flexibility:
B1-250, B1-250MN, B1-350, and B1-350MN
B1-250M
Equipment choice/modeling considerations
21
Y
X
H
G
A
P3
P4
P5
P2
P1
I
F
P6
2.1a
2.1b
1.1
1.2
2.2
2.3
2.4
3.1a
3.2
3.3
3.4a
3.1b
R
d1
AII
AI
d2
AIII
d3
R
d1
AII
AI
d2
For p5=p6:
pI + pH = p
pH + pG = pA
pG + pF = pX
Fine-tuning by adjusting free area of
collectors
Range: 5 – 30%
If insufficient: additional flow
resistance needs to be introduced
to generate missing Δp!
Pressure drop balancing situation in partitioned part of
a DWC: 2-3-3 configuration
22
Configuration Conventional 2-4 2-3-4 2-2-4 2-3-3
Column C1 C2 C3 - - - -
Shell tangent
height
m 40.5 39.5 39.5 68.6 69.0 69.0 66.6
Shell diameter m 2.0 2.0 1.8 2.2 2.0 2.0 2.0
Top pressure bar 1.70 2.70 1.01 2.53 2.57 2.57 2.57
Pressure drop bar 0.313 0.272 0.244 0.118 0.117 0.104 0.108
Reboiler heat duty MW 10.0 5.82 4.81 4.81 4.81
Dimensions and pressure drops comparison
23
Configuration Conventional 2-4 2-3-4 2-2-4 2-3-3
Equipped with Sieve trays Struct. packings Struct. packings Struct. packings Struct.packings
Equipment costs ($)
Shell 1,886,347 1,076,376 976,932 976,932 949,585
Internals 1,011,708 2,100,466 1,982,504 1,622,853 1,847,310
Reboiler 743,701 384,685 327,778 237,754 230,719
Condenser 571,972 234,103 238,622 325,641 325,641
Total 4,213,728 3,795,629 3,525,877 3,163,181 3,353,255
Operating costs ($/year)
Cooling water 196,233 107,354 85,883 86,632 85,384
Fuel oil 1,482,288 731,389 601,674 596,894 596,894
Total 1,678,523 838,742 687,557 683,526 682,227
Savings - 50% 59% 59% 59%
Total annualized costs ($/year)
TAC ($/year) 2,075,552 1,218,305 1,040,145 999,844 1,017,603
Savings - 42% 50% 52% 52%
A B C D
A
B
D
C
A B C D
A
B
D
C
A B C D
A
B
D
C
b) kolona s vertikalnom i
horizontalnom stijenkom
a) Kaibelova kolona c) kolona s više vertikalnih
stijenki
C D
A B
C D
A B
A B C D
A
B
D
C
A B C D
A
B
D
C
A B C D
A
B
D
C
b) kolona s vertikalnom i
horizontalnom stijenkom
a) Kaibelova kolona c) kolona s više vertikalnih
stijenki
C D
A B
C D
A B
A,B,C,D
A
B
D
C
Cost comparison
24
Four-product packed DWC can be designed and constructed using available
process and mechanical design tools, know-how and equipment
Single partition ”2-4” configuration is an attractive option in present case
Maximizing energy saving gains requires consideration of alternative
multipartition configurations
TAC is not a decisive factor for the choice of alternatives
Simplest, ”2-2-4” DWC appears to be the most adequate choice for first
attempt in this respect
Conclusions
1.1 2.2 3.3
2.1 3.2
3.4
3.5
1.2
”2-2-4”

Weitere ähnliche Inhalte

Ähnlich wie PRES_Dejanovic_et al.pdf

Jawanza Bassue Design Portfolio
Jawanza Bassue Design PortfolioJawanza Bassue Design Portfolio
Jawanza Bassue Design Portfolio
Jawanza Bassue
 
finalprojectreportg2-141218075116-conversion-gate01 (1).pdf
finalprojectreportg2-141218075116-conversion-gate01 (1).pdffinalprojectreportg2-141218075116-conversion-gate01 (1).pdf
finalprojectreportg2-141218075116-conversion-gate01 (1).pdf
AbdurRazzak187410
 

Ähnlich wie PRES_Dejanovic_et al.pdf (20)

Original N-Channel Mosfet IRFZ14PBF TO-220 New Vishay Semiconductors
Original N-Channel Mosfet IRFZ14PBF TO-220 New Vishay SemiconductorsOriginal N-Channel Mosfet IRFZ14PBF TO-220 New Vishay Semiconductors
Original N-Channel Mosfet IRFZ14PBF TO-220 New Vishay Semiconductors
 
Nowak NVSMW-ICMTD'08
Nowak NVSMW-ICMTD'08Nowak NVSMW-ICMTD'08
Nowak NVSMW-ICMTD'08
 
Design and analasys of a g+2 residential building
Design and analasys of a g+2 residential building Design and analasys of a g+2 residential building
Design and analasys of a g+2 residential building
 
Jawanza Bassue Design Portfolio
Jawanza Bassue Design PortfolioJawanza Bassue Design Portfolio
Jawanza Bassue Design Portfolio
 
finalprojectreportg2-141218075116-conversion-gate01 (1).pdf
finalprojectreportg2-141218075116-conversion-gate01 (1).pdffinalprojectreportg2-141218075116-conversion-gate01 (1).pdf
finalprojectreportg2-141218075116-conversion-gate01 (1).pdf
 
DESIGNING FRAMED STRUCTURE IN ETABS AND STAAD PRO
DESIGNING FRAMED STRUCTURE IN ETABS AND STAAD PRODESIGNING FRAMED STRUCTURE IN ETABS AND STAAD PRO
DESIGNING FRAMED STRUCTURE IN ETABS AND STAAD PRO
 
A Silicon-to-System Thermo-Mechanical Review of Electronics
A Silicon-to-System Thermo-Mechanical Review of ElectronicsA Silicon-to-System Thermo-Mechanical Review of Electronics
A Silicon-to-System Thermo-Mechanical Review of Electronics
 
Electrical-single-line-diagram
 Electrical-single-line-diagram Electrical-single-line-diagram
Electrical-single-line-diagram
 
FYP Structure.pdf
FYP Structure.pdfFYP Structure.pdf
FYP Structure.pdf
 
Laboratory_Manual_ARE EXP 5.pdf
Laboratory_Manual_ARE EXP 5.pdfLaboratory_Manual_ARE EXP 5.pdf
Laboratory_Manual_ARE EXP 5.pdf
 
EFYP2 Presentation
EFYP2 PresentationEFYP2 Presentation
EFYP2 Presentation
 
Green Belt Project V2
Green Belt Project V2Green Belt Project V2
Green Belt Project V2
 
02_waman_mcvay SOIL.pdf
02_waman_mcvay SOIL.pdf02_waman_mcvay SOIL.pdf
02_waman_mcvay SOIL.pdf
 
Presentation
PresentationPresentation
Presentation
 
Solomon Brown (University College London) - Material Considerations in CO2 Pi...
Solomon Brown (University College London) - Material Considerations in CO2 Pi...Solomon Brown (University College London) - Material Considerations in CO2 Pi...
Solomon Brown (University College London) - Material Considerations in CO2 Pi...
 
Design Assessment and Parametric Study of Expansion Bellow
Design Assessment and Parametric Study of Expansion BellowDesign Assessment and Parametric Study of Expansion Bellow
Design Assessment and Parametric Study of Expansion Bellow
 
T HERMAL C ONTROL I N 3D L IQUID C OOLED P ROCESSORS V IA H OTSPOT S ...
T HERMAL  C ONTROL  I N  3D L IQUID  C OOLED  P ROCESSORS  V IA  H OTSPOT  S ...T HERMAL  C ONTROL  I N  3D L IQUID  C OOLED  P ROCESSORS  V IA  H OTSPOT  S ...
T HERMAL C ONTROL I N 3D L IQUID C OOLED P ROCESSORS V IA H OTSPOT S ...
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
 
Gravity water supply design illustration using SW software
Gravity water supply design illustration using SW softwareGravity water supply design illustration using SW software
Gravity water supply design illustration using SW software
 
Nace workshop 2017
Nace workshop 2017Nace workshop 2017
Nace workshop 2017
 

Kürzlich hochgeladen

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 

Kürzlich hochgeladen (20)

Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 

PRES_Dejanovic_et al.pdf

  • 1. 1 I. Dejanović, I.J. Halvorsen, S. Skogestad, H. Jansen, Ž. Olujić University of Zagreb, Croatia; SINTEF, Norway; NTNU, Norway; Julius MONTZ GmbH, Germany; Delft University of Technology, the Netherlands Cost-effective design of energy efficient four-product dividing wall columns 16th Conference Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction
  • 2. 2 STATE OF THE ART Established: 3-product DWCs • More than 200 in operation worldwide. • Packed and tray columns. • Know-how pioneers: BASF SE and Julius MONTZ GmbH. Proven in practice: about 30 % savings in energy, capital and plot area Next step: 4-product DWCs • Potential gains could increase to 50% compared to conventional, three-column sequences • Complex internal configurations: design and operation concerns increase. • Subject of academic studies: providing basic and technically sound know-how
  • 3. 3 AVAILABLE CONCEPTUAL DESIGN TOOLS SHORT-CUT DESIGN • Vmin diagram method (I.J. Halvorsen). • Identification of feasible internal configurations. • Initial values for detailed simulations. A B B C C D A B C B C D A B C D A B C D VT/F D/F 1-q 0 1 PAB PBC PCD PAC PBD PAD DETAILED STAGE NUMBER AND REFLUX CALCULATION • Use of commercial process simulators. • Thermodynamically equivalent conventional column sequences. • Minimizig N(R+1) HYDRAULIC DESIGN • Packed DWC dimensioning considerations and methods • Main design and operation concern: vapor splits
  • 4. 4 Starting point: 4-P Kaibel DWC ("2-4" configuration) CD ABCD A B C D AB • Single partition wall (G. Kaibel, BASF, 1987) • Theoretical savings: > 30% compared to conventional 3 column sequences • Not a full Petlyuk arrangement, but practical One column in operation in a BASF plant A B C D A B C D A B C D C 1 C 2 C 3 Feed D S 1 S 2 B
  • 5. 5 Fully extended 4-P Petlyuk arrangement CD ABCD ABC A B BCD C D AB BC A, B, C, D A A, B, C B, C, D B C D A, B B, C C, D C1 C2.1 C2.2 C3.1 C3.2 C3.3 V/B S1 S2 R N1.1 N1.2 N3.1 N2.2 N2.3 N2.4 N2.1 N3.2 N3.3 N3.4 N3.5 N3.6 RV1 RV2 RV3 RL1 RL2 RL3 A B C D A B C D Easiest separation performed in each sub-column minimizes energy requirement
  • 6. 6 Vmin diagram for a 4-P ("2-3-4" configuration) Vmin diagram contains all internal DWC rates at min reflux Highest peak – sets overall Petlyuk/DWC Vmin
  • 7. 7 DESIGN CASE: 15 component feed ⟶ 4 products Based on actual plant data Base case configuration Product specs: • C5-C6 fraction < 1.3 mass % benzene • BRC > 67 mass % benzene • Toluene purity > 97 mass % C1 C2 C3 Feed D (C5-C6) S1 (BRC) S2 (toluene) B (heavies) 31.7 t/h 8.0 t/h 7.4 t/h 3.9 t/h 12.4 t/h
  • 8. 8 Differences in peak heights give operational/design flexibility Vmin diagram: Internal configuration layout tool A, B, C, D A A, B, C B, C, D B C D A, B B, C C, D C1 C2.1 C2.2 C3.1 C3.2 C3.3 CD ABCD ABC A B BCD C D AB BC
  • 9. 9 Aligning PAC and PDB eliminates vapor connection with C3.2 – simpler design and construction (one vapor split eliminated!) Vmin diagram: Internal configuration layout tool A, B, C, D A A, B, C B, C, D B C D A, B B, C C, D C1 C2.1 C2.2 C3.1 C3.2 C3.3 CD ABCD ABC A B BCD C D AB BC
  • 10. 10 Vmin diagram: Internal configuration layout tool A, B, C, D A A, B, C B, C, D B C D A, B B, C C, D C1 C2.1 C2.2 C3.1 C3.2 C3.3 CD ABCD ABC A B BCD C D AB BC
  • 11. 11 Moving prefractionator operating point to align PAD and PBD allows elimination of section C2.2 A, B, C, D A A, B, C B C D A, B B, C C, D C1 C2.1 C3.1 C3.2 C3.3 Vmin diagram: Internal configuration layout tool CD ABCD ABC A B C D AB BC
  • 12. 12 Vmin diagram: Internal configuration layout tool A, B, C, D A A, B, C B, C, D B C D A, B B, C C, D C1 C2.1 C2.2 C3.1 C3.2 C3.3 CD ABCD ABC A B BCD C D AB BC
  • 13. 13 Vmin diagram: Internal configuration layout tool CD ABCD ABC B BCD C D A BC Moving C2.1 operating point to align PAC and PAB allows elimination of section C3.1 A, B, C, D A A, B, C B, C, D B C D B, C C, D C1 C2.1 C2.2 C3.2 C3.3
  • 14. 14 Alternative configurations of a 4-P DWC A B C D D B A C A B C D A B C D A B C D A B C D B C D A A B C D 2-4 2-3-4 2-2-4 2-3-3 Details on preliminary rigorous simulation, dimensioning and cost estimation of these configurations can be found in: Dejanović, Matijašević, Halvorsen, Skogestad, Jansen, Kaibel, Olujić, Chem.Eng.Res.Des., 89 (2011) 1155-1167 Olujić, Dejanović, Kaibel, Jansen, Chem. Eng. Technol., 35 (2012) 1392-1404 Halvorsen, Dejanović, Skogestad, Olujić, Chem.Eng.Res.Des., 91 (2013), in print.
  • 15. 15 Separation task: F, q, xi, rLK,i, rHK,i Vmin diagram (N³4Nmin): DPF, BPF, LT, VT, LB, VB, RL, RV,D, S, B min(V/B) Ni(0) RL(0), RV(0) min(N(R+1) min(Qr) Detailed model Converged DWC profile Dimensioning Short-cut Reflux and stage calculation procedure
  • 16. 16 2-3-3 configuration results A B C D A B C B C D A B C C D B C D
  • 17. 17 A B C D F F A B C D B C F 29 39 18 17 33 16 10 18 10 12 D A 18 7 15 10 15 20 12 9 18 17 19 42 42 12 17 18 10 15 20 18 7 15 2.1 2.2 1.1 3.1 2.3 1.2 3.2 2.4 3.3 3.4 Stage requirement distribution ”2-2-4” ”s-2-3-4” ”2-3-3”
  • 18. 18 Stage and energy requirements of considered configurations Configuration Conventional 2-4 2-3-4 2-2-4 2-3-3 Column C1 C2 C3 - - - - Top pressure bar 1.70 2.70 1.01 2.53 2.57 2.57 2.57 Stages, total - 40 38 38 169 202 174 202 Stages, main column - 129 130 130 116 Trays - 61 59 59 Reboiler heat duty MW 10.0 5.82 4.81 4.81 4.81
  • 19. 19 Converged column profiles Determine critical stage – maximum vapour load Dshell(0) Wall position below/ above feed stage Δp<3 mbar/m Pressure drop – packed beds H(bed)=N*HETP Choice of packing type Choice of internals (collectors and distributors) Initial values of free area: Distributors: φ(0)=0,40 Colectors: φ(0)=0,25 Equal pressure drops Final dimensions and pressure drops FG Yes Yes No No No No Dimensioning procedure
  • 20. 20 Design rules: Up to 20 equilibrium stages in a single bed; Δp < 3 mbar/m; Liquid collectors: CT for side stream draw-off CT for liquid loads > 20 m3/m2h CC for lower liquid loads Predictive models: •Delft Model for structured packings •Rix & Olujić model for internals Chimney tray collector (CT) Chevron collector (CC) Narrow trough distributor (NT) Various packing types and sizes to maximize flexibility: B1-250, B1-250MN, B1-350, and B1-350MN B1-250M Equipment choice/modeling considerations
  • 21. 21 Y X H G A P3 P4 P5 P2 P1 I F P6 2.1a 2.1b 1.1 1.2 2.2 2.3 2.4 3.1a 3.2 3.3 3.4a 3.1b R d1 AII AI d2 AIII d3 R d1 AII AI d2 For p5=p6: pI + pH = p pH + pG = pA pG + pF = pX Fine-tuning by adjusting free area of collectors Range: 5 – 30% If insufficient: additional flow resistance needs to be introduced to generate missing Δp! Pressure drop balancing situation in partitioned part of a DWC: 2-3-3 configuration
  • 22. 22 Configuration Conventional 2-4 2-3-4 2-2-4 2-3-3 Column C1 C2 C3 - - - - Shell tangent height m 40.5 39.5 39.5 68.6 69.0 69.0 66.6 Shell diameter m 2.0 2.0 1.8 2.2 2.0 2.0 2.0 Top pressure bar 1.70 2.70 1.01 2.53 2.57 2.57 2.57 Pressure drop bar 0.313 0.272 0.244 0.118 0.117 0.104 0.108 Reboiler heat duty MW 10.0 5.82 4.81 4.81 4.81 Dimensions and pressure drops comparison
  • 23. 23 Configuration Conventional 2-4 2-3-4 2-2-4 2-3-3 Equipped with Sieve trays Struct. packings Struct. packings Struct. packings Struct.packings Equipment costs ($) Shell 1,886,347 1,076,376 976,932 976,932 949,585 Internals 1,011,708 2,100,466 1,982,504 1,622,853 1,847,310 Reboiler 743,701 384,685 327,778 237,754 230,719 Condenser 571,972 234,103 238,622 325,641 325,641 Total 4,213,728 3,795,629 3,525,877 3,163,181 3,353,255 Operating costs ($/year) Cooling water 196,233 107,354 85,883 86,632 85,384 Fuel oil 1,482,288 731,389 601,674 596,894 596,894 Total 1,678,523 838,742 687,557 683,526 682,227 Savings - 50% 59% 59% 59% Total annualized costs ($/year) TAC ($/year) 2,075,552 1,218,305 1,040,145 999,844 1,017,603 Savings - 42% 50% 52% 52% A B C D A B D C A B C D A B D C A B C D A B D C b) kolona s vertikalnom i horizontalnom stijenkom a) Kaibelova kolona c) kolona s više vertikalnih stijenki C D A B C D A B A B C D A B D C A B C D A B D C A B C D A B D C b) kolona s vertikalnom i horizontalnom stijenkom a) Kaibelova kolona c) kolona s više vertikalnih stijenki C D A B C D A B A,B,C,D A B D C Cost comparison
  • 24. 24 Four-product packed DWC can be designed and constructed using available process and mechanical design tools, know-how and equipment Single partition ”2-4” configuration is an attractive option in present case Maximizing energy saving gains requires consideration of alternative multipartition configurations TAC is not a decisive factor for the choice of alternatives Simplest, ”2-2-4” DWC appears to be the most adequate choice for first attempt in this respect Conclusions 1.1 2.2 3.3 2.1 3.2 3.4 3.5 1.2 ”2-2-4”