SlideShare ist ein Scribd-Unternehmen logo
1 von 10
Downloaden Sie, um offline zu lesen
IOSR Journal of Applied Physics (IOSR-JAP)
e-ISSN: 2278-4861. Volume 3, Issue 4 (Mar. - Apr. 2013), PP 34-43
www.iosrjournals.org
www.iosrjournals.org 34 | Page
Seismic Strain Energy Release Pattern in Northeast India and its
Adjoining Region
Anupama Devi1
, Dr. S. Kalita2
1.
Department of Physics, Arya Vidyapeeth College, Guwahati, Assam, India
2.
Dept. of Environmental Science, Gauhati University, Guwahati,Assam,India
Abstract: Northeast India and its adjoining region constitutes an important geotectonic element of Southeast
Asia and is connected to India via a narrow corridor squeezed between Nepal and Bangladesh.
Geomorphologically, the entire NE India is located in an earthquake prone zone ( Zone – V ) of the Indian
subcontinent. The strain energy release has been studied by dividing the region into in the six geo – tectonic
block. It has been found that the Arakan – Yoma to be seismically active followed by Naga Hills region. It also
showed that the probability of occurring an earthquake is more in the Shillong Plateau than the other five
tectonic blocks. For the region as a whole there is the probability that an earthquake of intensity around 6.64
mb may occur as determined from strain energy bearing capacity of the region. Moreover, it has also been
found that if strain energy released by a tectonic block is large it might effect the stress building process in the
rocks of adjacent tectonic blocks. The iso-strain release map depicted areas of high and low seismic activity.
Key words: Geo – Tectonic block, Seismicity, Strain Energy, Iso – Strain.
I. Introduction
The source of energy of an earthquake is the potential energy stored in rocks due to accumulation
of strain over a period of time. When the accompanying elastic stress accumulates beyond the competence of the
rocks, an earthquake occurs. The strain energy release pattern of a region helps in identifying the probable
source region for the occurrence of an earthquake in near future. Historical documents indicate the occurrence of
destructive earthquakes in the region in the year 1548, 1596, 1642, 1663 and 1696 – 1714. In modern times
destructive earthquakes have occurred in 1869, 1875, 1897, 1918, 1930, 1950 and 1988. Since earthquake is a
great natural hazard, it has become important to study the probability of occurrence of high magnitude
earthquakes in this region due to large increase in population of the region, for developmental activities and for
proper land-use planning. [1,2]. The relation between geological characteristics and occurrence of earthquakes
has been studied since the very beginning of twentieth century. The study of seismic activity in a probabilistic
manner for a long period of time is useful in the long range forecasting of earthquakes.[3] The method used for
long range forecasting is based on the periodicity of large earthquakes (if any) and accumulation of tectonic
strain. The elastic rebound of the volume of rock under stress generates the earthquake[4] and most of the strain
energy stored in the rocks is released in the form of seismic waves, which radiate in all directions from its
source region. However, a part of the original potential energy stored in the rock mass goes into mechanical
work like raising crustal blocks against gravity or in crushing material in the fractal zone and the other part is
dissipated as heat. The strain rebounded during an earthquake is proportional to the square root of the energy
released[5]. Thus, earthquakes are manifestation of strain energy released from a region and its spatio-temporal
behavior represents the seismo-tectonic characteristics of the region. Moreover, temporal variation of strain
energy released from a seismotectonic block reveals the earthquake generation potentiality of the block at any
specified time. The characteristic features and trends of stress field in a tectonic block can be investigated by
examining the pattern of strain energy release over it. Assuming a linear probability of earthquake occurrences
over a period of few years, a direct extrapolation of the pattern of strain release in immediate future can throw
some light on the probable future earthquake activity expected in the region. The areal distribution of strain
energy released helps in identifying the seismically active zones. Chouhan [6] studied the regional strain release
characteristics of Indian earthquakes. He observed that every region is characterized by a certain minimum level
of strain energy and strain may persist in a tectonic block even after the release of the accumulated strain by a
large earthquake. Therefore, taking it as a reference, it is possible to estimate the amount of strain energy
available in a tectonic block at a given time in near future. Thus, in turn, it may give an estimate about the
possible maximum magnitude earthquake that may occur in the block, if the accumulated strain energy releases
simultaneously [7].
II. Geo – tectonic setting of the study region
The study region is North-East India and its adjoining region demarcated by latitude (220
N – 300
N) and longitude (890
E – 980
E). Northeastern India and its adjoining territories display tectonically distinct
Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region
www.iosrjournals.org 35 | Page
geological domains occurring in intimate spatial association. Rocks representing the entire span from archean to
recent, occur in this very small region. Eocene (Disang) sediments of trench facies occur in juxtaposition with
those of platform facies (Jaintia) of stable shelf condition; Neogene Siwalik foredeep molasse in front of the
Himalaya and Tipam molasse of Upper Assam basin in front of the Indo – Myanmaar mobile belt occur in close
proximity and are separated by the Brahmaputra alluvium. Proteozoic to early Paleozonic intrusive granites are
common in Meghalaya Plateau, while Tertiary granites are found in the upper reaches of the Eastern
Himalaya.[8] The eastern part of this region is formed by Naga - Lushai Hills. To the south of the Shillong
Plateau there is the Surma Valley region comprising of the Bengal Basin separated by an east-west trending set
of faults known as Dauki fault (Figure. 1). The vertical movements have also played their part in the deposition
of large thicknesses of sediments belonging to the Irrawady system of Burma and Bengal basin in India [9]. In
the south, Bengal basin is open to the Bay of Bengal .The Mikir Massif is believed to be a fragmented portion of
the Shillong Plateau and parted with a set of faults called Kopili fault [9,10]. The upper Assam Valley or the
Brahmaputra Valley bounded on the southwest by the Mikir Hills and the Shillong Plateau. Geological,
geophysical morphological trends and seismicity of Indo-Burma region (20 o
- 26 o
) N and ( 92 o
– 96 o
) E
suggest active sub-duction. This area is a transition zone between the main Himalayan collision belt and the
Indonesian arc where the Indian plate is currently sub-ducting under Asia. The Indo-Burman ranges extend from
Arakan - Yoma upto Mishimi thrust belts and bulk of the ranges consist of Cretaceous to upper Eocene shales
and sandstones which are considered to have undergone a major phase folding during Oligocene and
Miocene.[11]
Figure 1: The map of the study region with the geo-tectonic subdivisions or zones.
The Bengal and Nicobar Fans were, for the first time, delineated and named by Curray and Moore
[12]. The Bengal Fan is the largest and prodigious submarine fan in the world, with a length of about 3000 km,
a width of about 1000 km with varying thicknesses. It has been formed as a direct result of the India – Asia
collision and uplift of the Himalayas and the Tibetan Plateau. The northeastern edges of the fans have been sub-
ducted, and some of the Tertiary turbidities cropping out in the Indo-Burma Ranges of Myanmar, the Andaman
and Nicobar Islands, and in the outer arc ridge off Sumatra have been interpreted as old Bengal and Nicobar Fan
sediments . It is currently supplied mainly by the confluent Ganges and Brahmaputra Rivers with smaller
contributions of sediment from several other large rivers in Bangladesh and India.
The region has experienced 19 large earthquakes (M >=7) during the last hundred years including
the great earthquakes of Shillong (1897, M=8.7) and the Assam earthquake (1950, M=8.7) . Besides, several
hundred small and micro earthquakes have also been recorded in the region. The high seismicity in the region is
attributed to the collision tectonics between the Indian plate and the Eurasian plate in the north and subduction
tectonics along the Indo-Myanmar range (IMR) in the east [13,14,15,16,17]. Verma[18] stated that the
Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region
www.iosrjournals.org 36 | Page
lithospheric subduction at the Himalayan belt ceased during Pliocene time and shallow seismic activity is the
effect of continental-continental collision. Subduction, on the other hand, is still continuing in the IMR, which is
evidenced by the intermediate to deep focus earthquakes in this range. Now, based on the geotectonic features,
northeastern region can be divided into six zones.[8]
The zones are:
(i) The Eastern Himalayan collision belt including the trans – Himalayan Tethyan zone, the Tsangpo Suture
zone (with ophiolites) and the Andean type grano – diorite margin to the north.
(ii) The Naga Hills region which comprises of Diorite – grandiorite complex of the Mishmi block with frontal
folded and thrusted metamorphic belt.
(iii) The Indo – Myanmar mobile belt and the Arakan – Yoma.
(iv) The Shillong Plateau with platform sediments to the south and the east and the Mikir hills.
(v) Brahmaputra Valley with cover of alluvium and Tertiary sub – crop elements.
(vi) Surma Valley covering almost whole of West Bengal and Bangladesh with Cretaceous to Recent
sediments.
(vii)
III. Datasource and Methodology
The comprehensive data file prepared by using earthquake catalogues of ISC and USGS that are
available for the study region has been used for the period 1964 – 2012 (31st
July). In order to study the strain
energy release pattern of the region, earthquakes of magnitude greater than 3.1mb has been considered.
3.1. Theory:
Benioff’s theory has been used for determining the strain energy of the study region. Benioff [4] has
shown that the potential energy Ep of a volume of rock (w) is given by:
Ep = 0.5 µwS2
---------------------- (1)
where µ is the co-efficient of shear and S is average strain just before the earthquake. Thus the energy released
by seismic waves is given by,
ET = 0.5 µfwS2
------------------ (2)
where f is the function of energy released as seismic waves.
If the strain is reduced to zero during the earthquake by some movement along a fault, then the average
strain S is proportional to the fault displacement (Xf). Thus,
S = CXf ------------------------ (3)
where C is the constant of proportionality. Putting the value of S in eq. (2) we get,
ET = 0.5µfwC2
Xf
2
= G1
2
Xf
2
----------------------------- (4)
where G1
2
= 0.5µfwC2
Equation (4) implies that fault displacement (Xf) is proportional to the square root of energy released.
log ET
1/2
= log G1Xf ---------------- (5)
Gutenberg and Richter [19] derived the energy, E of an earthquake having magnitude, M by the relation,
log E = 12 + 1.8*M
Later on, they modified the relationship using strain energy released and body wave magnitude, mb, recorded at
teleseismic distance and represented as :
log E = 5.8 + 2.4*mb
log E1/2
= 2.9 + 1.2*mb -------------- (6)
Now, using the magnitude energy relation of Gutenberg and Richter (eq. 6) in eq. 5, we get,
log (Xf G1) = 2.9 + 1.2*mb
Or, Xf = (1/G1) 102.9 + 1.2 *mb
------------ (7)
The equation (7) gives the relation between fault displacement (Xf) and earthquake magnitude mb. Thus, if the
magnitudes of all earthquakes occurring in any fault system over a period are known, one can plot the fault
displacement (strain) that may occur during that time period. Such plots which give strain release characteristics,
represent spurts of seismic activity separated by quiescent periods. The resulting curve will be a saw-tooth curve
representing the exhaustion of accumulated strain caused by earthquakes.
3.2 Application of the method to the study region :
3.2.1. Temporal Variation:
The epicentral distribution of the earthquake events considered is given in Figure. 2. The strain
energy released in each of the six tectonic zone has been computed for each year by considering strain energy as
the sum of the square root of energy of all the earthquakes that had occurred in each tectonic zone in the
specified year [5,20]. Then, strain energy has been added up year by year to get the strain release characteristic
curve. Hence the vertical line represents the release of earthquake energy E1/2
, which again represents the strain
Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region
www.iosrjournals.org 37 | Page
factor in erg1/2
. Since S is proportional to E1/2
, the continuous lines represent the secular strain generation
showing that strain accumulation is linear and may be represented as,
∑E1/2
= A + Bt------------------ (8)
where A and B are constants and t is time in years.
Figure. 2: Epicentral plot of the earthquake events of the study region
3.2.2. Spatial Variation:
The energy of each earthquake has been determined using relation (6) and iso-strain release map
has been prepared. For this, the whole study region is divided into small grids having dimension 10
by 10
. The
sum total of the energy released by all the earthquakes those occurred in a particular grid are computed out and
plotted at the centre of the grid. Then the isolines of energy have been drawn to prepare the iso-strain release
map.
3.3. Effect of release of strain energy by a tectonic block on nearby blocks:
Using equation (6) the total strain energy released by earthquakes in each year by each tectonic
zone is determined and is represented together graphically. Next, correlation coefficeient of the total strain
energy released is computed between the six tectonic zones. Also, one – way ANOVA technique is applied here
by taking earthquakes of magnitude greater than 6.0 mb. The null hypothesis taken is that when strain energy is
released by a tectonic block there is some effect on adjacent tectonic blocks.
IV. Results and Observations
4.1. Temporal Variation of Strain Energy Released:
Generally, it is assumed that the strain energy accumulation in a tectonic block is almost linear.
But the strain energy release pattern is not linear because of the frictional force developed in the rock –
fractures and the temporal variation pattern of strain energy release forms a saw – toothed curve, commonly
known as Benioff Graph. It gives an idea about the strain energy accumulation in a tectonic block at a
particular time and is considered as complementary to the study of the magnitude – frequency relationship
which defines the mean recurrence rate of any particular magnitude earthquake in a tectonic block or region.
Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region
www.iosrjournals.org 38 | Page
Moreover, it indicates the trend of activity with time and allows extrapolation for estimating strain energy
accumulation in the block in near future. The study region is divided into six tectonic blocks on the basis of the
concentration of earthquakes, convergence, alignment and direction of thrusting as well as structural pattern.
Benioff graphs have been prepared for all the six blocks and for the region as a whole. Thus, altogether seven
Benioff graphs are obtained which are shown from Figure 3 to Figure 9. The lower and the upper bound in the
variation of strain energy represented by the Benioff graphs are also shown in the figures. The difference
between this upper bound and the lower bound gives an idea about the strain energy bearing capacity of the
respective block. The slope of the Benioff graphs gives the rate of strain energy accumulation. The rate of strain
energy accumulation estimated from the graphs, approximate strain energy bearing capacity and the strain
energy stored as off 31st
July, 2012 in each block and in the region as a whole are represented in table 1. On the
basis of strain energy accumulation as off 31st
July, 2012 the magnitudes of the maximum possible earthquakes
that may occur in the near future in different blocks and the region as a whole are computed and presented in
the table.
Figure 3: Surma Valley Figure 4: Arakan Yoma
Figure 5: Shillong Plateau Figure 6: Brahmaputra Valley
1960 1970 1980 1990 2000 2010 2020
0
1000
2000
3000
4000
5000
6000
SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10
7
YEAR
1960 1970 1980 1990 2000 2010 2020
0
10000
20000
30000
40000
50000
SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10
7
YEAR
1960 1970 1980 1990 2000 2010 2020
0
1000
2000
3000
4000
5000
SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10
7
YEAR
1960 1970 1980 1990 2000 2010 2020
0
1000
2000
3000
4000
5000
SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10
7
YEAR
Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region
www.iosrjournals.org 39 | Page
Figure 7: Eastern Himalayas Figure 8: Naga Hills
Figure 9: Whole Study Region
The observations made from the above Benioff Graphs for the six zones are:
 From fig: 3, it is seen that in the Surma Valley there is a gradual accumulation of strain energy from 1964
till around 1988 when the energy was released in the form of an earthquake , and thereafter a quiescent
period was indicated till 1997 when again energy was released.
 From fig: 4, it is seen that most of the accumulated energy in the Arakan – Yoma region was probably
released around 1988. The rest of the accumulated energy is released almost regularly.
 Fig: 5 and Fig: 6 shows that in the Shillong Plateau region and Brahmaputra Valley there is a gradual
accumulation of energy together with its release at regular intervals.
 In the Eastern Himalayas, as seen from fig: 7 there was an accumulation of energy till 1970 when it was
released. After that there is a period of low seismic activity with gradual accumulation of energy.
 Strain energy release pattern of Naga hills as shown in fig: 8, depicts gradual accumulation of energy till it
was released in 1970. Then, there was a quiescent period till 1988 when energy was released again.
Thereafter, it is seen that small amount energy was again released in 2000.
 The strain energy releases at a regular interval in the whole study region together with a gradual
accumulation of energy as shown in fig: 9.
1960 1970 1980 1990 2000 2010 2020
0
2000
4000
6000
8000
10000
12000
SQUAREROOTOFCUMMULATIVESTRAINENERGY(ERGS)x10
7
YEAR
1960 1970 1980 1990 2000 2010 2020
0
5000
10000
15000
20000
25000
30000
35000
40000
45000
SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10
7
YEAR
1960 1970 1980 1990 2000 2010 2020
0
20000
40000
60000
80000
100000
120000
SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10
7
YEAR
Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region
www.iosrjournals.org 40 | Page
Table 1. Strain energy accumulation in the study region as off 2012 (31 – 07 – 2012 )
Region
Rate of square root of
strain energy
accumulation (in
ergs/year) x10
7
Estimated
maximum strain
bearing capacity
(in ergs) x 10
20
Strain energy
due for release
as of 2012 (31st
July)
(in ergs) x 10
20
Size of the
probable
earthquake as
of 31st
July,
2012 (mb)
Arakan - Yoma 8.8445 118.81 5.59 6.22
Naga Hills 7.97 102.73 88.34 6.72
Eastern Himalayas 1.6993 17.73 2.44 6.07
Brahmaputra
Valley
1.0421 0.8172 0.1604
5.58
Shillong Plateau 1.0212 0.998 0.993 5.91
Surma Valley 1.2359 2.55 0.153 5.57
Whole Region 21.5383 359.32 54.63 6.64
From the Table 1. above it is seen that the strain energy bearing capacity is maximum in the Arakan –
Yoma region and it is minimum in the Brahmaputra Valley which is in accordance to the seismic activity as
observed in the epicentral plot of the study region (Fig. 2). Rate of strain accumulation is maximum in the
Arakan – Yoma region and minimum in the Shillong Plateau. It is also seen that in the Shillong Plateau amount
of strain energy due to release as on 31 – 07 – 2012 is comparable with the estimated strain bearing capacity of
the rocks of the region. Hence the probability of occurrence of earthquake in that region in the near future is
greater than the other regions. The study of strain energy bearing capacity of a region is very helpful in
estimating the size of the future earthquakes that might occur in the region. These curves provide a reference
and minimum strain energy level which gives an estimate about the amount of stored strain in the region and
hence, the possible size of the earthquake that may occur if the entire stored strain would release at a time.
From the table above, it is observed from the amount of strain energy accumulated in the study region as off 31st
July, 2012, that there is a probability of occurrence of an earthquake of magnitude of 6.64 mb in the area. Also,
it is seen that the size of most probable earthquake is maximum at Naga Hills.
The above results show that the earthquake risk in the area is not so high. The size of the maximum
magnitude earthquake that may occur in each of the six tectonic blocks as well as the region as a whole indicate
that only moderate earthquakes are likely in the near future.
4.2. Spatial Variation of Strain Energy Released:
Figure 10: Iso-strain energy (ergs) x 107
release map of the study region with grid {(1)0
x (1)0
}
Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region
www.iosrjournals.org 41 | Page
Iso-strain release map of the study region have been prepared at an interval of {(1)0
x (1)0
} and is
presented in Fig. 10. The map reveals that high strain energy is released at Central Burma Mollasse Basin along
the Eastern Boundary thrust. This may be due to bending of the subducting Indian plate as well as external
forces due to overriding Burmese plate in this zone. The seismic events of Indo – Burma region has deep focus
due to subduction of the Indian Plate under the Burmese Plate.[21] It is also high at the Naga Hills tectonic
block near the Lohit and Mishmi Thrust. Since these are made up of diorite and granodiorite complex with a
frontal belt of high grade schists and migmatites, and inner belt of low grade schist with crystalline limestone
and serpentinite lenses. The 1950 Assam Earthquake had its epicenter in the Po Chu fault which is at the NW
extremity of Mismi Massif [8]. It is medium along the MCT and MBT. This may be the result of shallow
seismic events due to collision tectonics between the Indian Plate and the Eurasian Plate [15,18,21,22]. The
Shillong Plateau show medium release of strain energy. This is due to the occurrence of Upper Cretaceous
carbonatite – ultramafic complex along a NE fracture zone in the east – central part of the plateau. The region
between the volcanic line and Sagiang fault at the Indo – Burma boundary also show medium release of strain
energy which is attributed to the presence of the 200 km wide and 1400 km long Palaeogene – Neogene Central
Myanmar Sedimentary Basin. The strain energy released is low in the Brahmaputra Valley except near the
Kopili fault where it is medium as a consequence of transverse tectonics that extend to the Bhutan Himalaya. In
fact, at present this fault which seperates the Shillong Plateau and the Mikir Massif by strike slip movement has
been identified as one of the most active fault of the Brahmaputra Valley [23,24]. The studies carried out by
Nandy and Dasgupta[25] and again by Nandy[26] indicated future probability of occurrence of an seismic event
of significant size in the region around the Kopili fault and the Shillong Plateau. But in the Surma Valley near
the Open Tripura Frontal Fold it is low. Since there is a thick deposit of sediments and locking of the Indian
plate below the basin.[8]. Iso – strain contour map also indicated crustal homogeneity of Brahmaputra valley
and also the presence of Assam gap[2]. Thus, the strain energy release map reflects the areas of high and low
seismic activity, which is very much applicable in the seismic risk analysis.
4.3 Effect of release of strain energy by a tectonic block on other nearby blocks:
4.3.1 From Graph:
Cumulative strain energy (square root) released in each tectonic block is shown in fig. 11. On 29th
July, 1970 an earthquake of magnitude 6.4 mb occurred with its epicenter at the Naga Hills tectonic block (
26.020
N and 95.370
E ). From fig.11 it is observed that the occurrence of this earthquake is indicated by the
release of strain energy. As this released energy propagates along the earth’s crust as waves, it triggers the
release of energy in the nearby tectonic block also (Eastern Himalayas) as seen in fig. 11. Again on 6th
August,
1988, an earthquake of magnitude 7.3Ms or 7.1mb occurred with its epicenter at the Indo – Myanmaar border
i.e. in the Arakan – Yoma region (24.140
N and 95.120
E). From the Benioff curve below (fig. 11.) it is seen
that this event is indicated by the release of strain energy in the Arakan – Yoma tectonic block triggering the
release of energy in the Naga Hills.
1960 1970 1980 1990 2000 2010 2020
0
5000
10000
15000
20000
25000
30000
35000
40000
SQUAREROOTOFSTRAINENERGYRELEASEDINERGS(X10
7
)
YEARS
Arakan - Yoma
Naga Hills
Eastern Himalayas
Brahmaputra Valley
Shillong Plateau
Surma Valley
Figure 11: Cumulative strain energy (square root) release curve of all the six tectonic blocks
Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region
www.iosrjournals.org 42 | Page
This phenomenon may be attributed to the fact that the released strain energy dissipates as heat energy
along the fault and as seismic vibration which causes the rocks to go back to their original undeformed shape.
Due to this movement and also due to the propagation of seismic vibration as waves along the earth’s crust,
stress builds up in the nearby tectonic blocks causing the release of strain energy in these blocks.[5] Thus it can
be said that if strain energy released by a tectonic block is large it might effect the stress building process in the
rocks of adjacent tectonic blocks.
4.3.2 By statistical method (ANOVA):
ANOVA technique is applied to investigate any number of factors which are hypothesized or said to
influence the dependent variable. Here we have applied one – way ANOVA technique to see the effect of strain
energy released by a tectonic block (Arakan – Yoma block) on the other five blocks by taking only those
earthquakes whose magnitude is greater than or equal to 6.0 mb. From the table 2. below, it is seen that the
calculated value of F is less than the value of F obtained from table at 5% level of significance. Thus, this
analysis supports the null hypothesis of dependence of strain energy released by a tectonic block on strain
energy released by a nearby block provided the earthquake event is equal or greater than 6.0 mb. Thus, the
strain energy released in a tectonic block due to the occurrence of an earthquake may effect the strain energy
release pattern of the rocks of adjacent tectonic blocks.
Table 2: ANOVA table
4.3.3. Determination of correlation co-efficient of the strain energy released between the tectonic blocks:
From the table 3. below, it is observed that the value of correlation coefficient is positive in Naga Hills
– Arakan Yoma, Naga Hills – Surma Valley, Naga Hills – Eastern Himalayas, Arakan Yoma – Surma Valley,
Arakan Yoma – Brahmaputra Valley and Shillong Plateau – Brahmaputra Valley tectonic blocks. This value is
negative between all the other tectonic blocks. The positive value implies that when strain energy is released by
a tectonic block it is also released in the corresponding block while negative value indicates accumulation of
energy in the other block.
Table 3: Correlation coefficient between different tectonic blocks
Block
Eastern
Himalayas
Naga Hills Arakan Yoma
Surma
Valley
Shillong
Plateau
Brahma.
Valley
Eastern
Himalayas
1 -------- ------------- ----------- ----------- -----------
Naga Hills 0.690 1 -------------- ------------ ----------- -----------
Arakan Yoma -0.093 0.471 1 ------------ ----------- ----------
Surma
Valley
-0.049 0.183 0.282 1 ----------- -----------
Shillong
Plateau
-0.134 -0.172 -0.092 -0.079 1 ------------
Brahma.
Valley
-0.074 -0.200 0.031 -0.040 0.405 1
From the above values it is seen that the correlation coefficient is maximum between Naga Hills –
Eastern Himalayas followed by Naga Hills – Arakan Yoma which is in accordance with fig.11. The values of
correlation coefficient obtained thus indicate that if strain energy released by a tectonic block is significant then
it may influence the accumulation and release of energy by the rocks of the nearby tectonic blocks.
Source of
variation
(Sum of
Squares) SS
(degree
of
freedom)
d.f.
(Mean
Square) MS
F-ratio
5% F – limit
(from table)
Between
Sample
67139064 5 13427813 2.679766
2.772853
Within
Sample
90194664 18 5010815
Total 1.57 x 108
23
Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region
www.iosrjournals.org 43 | Page
V. Conclusion
It can be inferred from the study of strain release pattern of the six tectonic blocks of the study
region that,
 Eastern side of the region consisting of the Naga Hills and Arakan – Yoma block is seismically more active
than the other regions.
 The strain energy due to release as off 2012 (31st
July) of the study region is 54.63 x 1020
ergs which
indicates that there is a probability of occurrence of an earthquake of magnitude around 6.64 mb in the near
future.
 Again, it has been observed that the strain energy bearing capacity of the rocks of the Arakan – Yoma
region is high as compared to other regions. Moreover, in the Shillong Plateau amount of strain energy due
to release as on 31 – 07 – 2012 is comparable with the estimated strain bearing capacity of the rocks of the
region. Hence the probability of occurrence of earthquake in that region in the near future is greater than the
other regions.
 It is also seen that there is some effect of release of energy by a tectonic block on nearby blocks when
earthquakes of magnitude greater than 6.0mb occur.
 From the iso-strain release map we get some idea about the crustal structure of the study region and also
areas of different seismic activity could be identified.
The present study has great significance as a number of devastating earthquakes have occurred
in this region. Again, knowledge of the size of the most probable earthquake that might occur in the region will
help the structural and architect engineers while designing buildings. Thus, a detailed analysis of strain energy
release pattern of the region would be very useful in minimizing the loss of life and property due to a seismic
event.
References
[1] H.C. Goswami, and S.K. Sarmah,, Probabilistic Earthquake Expectancy in the North-East Indian region. Bulletin of the
Seismological Society of America, Vol. 72, 1982, 999 – 1009.
[2] K.N. Khattri, Great Earthquake, Seismicity Gaps and Potential for Earthquake Disaster along Himalayan plate boundary.
Tectonophysics. Vol. 138, 1987, 79 – 92.
[3] H.N. Srivastava, Forecasting Earthquakes (National Book Trust, India, 1983).
[4] H. Benioff, Seismic evidence for fault origin of oceanic depth. Bulletin of the Seismological Society of America, Vol. 60,
1949, 1837 – 1856.
[5] H. Benioff, Global strain accumulation and release and reserved by great earthquakes, Bulletin of the Seismological Society of
America, Vol. 56,1951, 331 – 338.
[6] R.K.S. Chauhan, Regional strain energy release characteristics for Indian region. Bulletin of the Seismological Society of America,
Vol. 56, 1966, 749 – 754.
[7] H.C. Goswami, A Study of seismic risk in the North-East Indian region, doctoral thesis, Gauhati University, Guwahati,1984.
[8] D.R. Nandy, Geodynamics of Northeastern India and the adjoining region ( ABC Publications, Calcutta, 2001)
[9] P. Evans, The tectonic framework of Assam. Geological Society, India, Vol.5, 1964, 80-90.
[10] D.R. Nandy, Geological set up of the eastern Himalaya and Patkoi-Naga-Arakan-Yoma (Indo-Burma) hill ranges in relation to the
Indian plate movement. Himalayan Geol. Soc. IIA, Misc. Publ., Vol. 41, 1976, 205-213.
[11] A.H.G. Mitchell, Phanerozoic plate boundaries in mainland SE Asia, The Himalayas and Tibet. Geol. Soc. London J.,Vol. 138,
1981, 109-122.
[12] J.R. Curray, D. G. Moore, L. A. Lawver, F. J. Emmel, R. W. Raitt, M. Henry, and R.Kieckhefer , Tectonics of Andaman Sea and
Burma. American Association Petro. Geolog. Memoir, Vol. 29, 1979, 189-198.
[13] J.F. Dewey and J.M. Bird, Mountain belts and the new global tectonics. Jour. Of Geophys. Res., Vol. 75, 1970, 2625-2647.
[14] J.R. Kayal, Seismicity of Northeast India and surroundings – development over the past 100 years, Jour. Of Geophysics, Vol.
19(1), 1998, 9-34.
[15] P. Molnar and P. Tapponnier, Cenozoic tectonics of Asia: effects of a continental collision. Science, Vol. 189, 1975, 419-426.
[16] P. Molnar, and P.Tapponnier, Relation of the tectonics of Eastern China to the India-Eurasia collision: application of slip-line field
theory to large-scale control tectonics. Geology,Vol. 5, 1977, 212-216.
[17] S.K. Sarmah, The probability of occurrence of a high magnitude earthquake in Northeast India. Journal Of Geophysics, Vol. 20(3),
1999, 129-135.
[18] R.K. Verma, M. Mukhopadhyay, and M.S.Ahluwalia, Seismicity, gravity and tectonics of Northeast India and Northern
Burma. Bull. Seism. Soc., Vol. 66, 1976, 1683-1694.
[19] B. Guttenberg and C.F. Richter, Magnitude and energy of earthquake, Journal of Am. De.Geophysics, Vol. 9,1956,1-15.
[20] A.R. Ritsma, A statistical study of the seismicity of the earth, Material and Geophysics Surv. Indonesia, 1954, 46 – 47.
[21] S. Baruah, and D. Hazorika, A GIS based tectonic map of Northeastern India, Current Science, Vol. 95(25), 2008.
[22] K.N. Khattri, and A.K. Tyagi, Seismicity patterns in the Himalayan plate boundary and identification of the areas of high seismic
potential.Tectonophysics, Vol.96, 1993, 281-297.
[23] J.R .Kayal, S.S. Arefiev, S. Baruah,D. Hazarika, N. Gogoi, A. Kumar,S.N. Chowdhury, and S. Kalita, Shillong Plateau
earthquakes in Northeast India region: Complex tectonic model Current Science Vol. 91 (1), 2006, 109-114.
[24] P.M. Bhattacharya, S. Mukhopadhyay,R.K. Majumder, and J.R. Kayal, 3-D Seismic Structure of Northeast India Region and Its
Implication for Local and Regional Tectonics. Journal of Asian Earth Sciences, Vol. 33 No. 1-2, 2008, 25-41.
[25] D.R. Nandy and S. Dasgupta, Application of remote sensing in regional geological studies – a case study in Northeastern part of
India, Proceedings International Seminar On Photogrametry and remote sensing for developing countries, Vol.1, 1986, T.4-P/6.1 –
T.4-P/6.4.
[26] D.R. Nandy, Geodynamics of Northeastern India and the adjoining region, Geological Survey of India, Spl. Pub. Vol. 85,
2005, 49-59.

Weitere ähnliche Inhalte

Was ist angesagt?

Marmara Sea: Deep Seismic Survey
Marmara Sea: Deep Seismic SurveyMarmara Sea: Deep Seismic Survey
Marmara Sea: Deep Seismic SurveyAli Osman Öncel
 
Preliminary Studies of the Litho-Structural Evolution of Areas Around Obudu N...
Preliminary Studies of the Litho-Structural Evolution of Areas Around Obudu N...Preliminary Studies of the Litho-Structural Evolution of Areas Around Obudu N...
Preliminary Studies of the Litho-Structural Evolution of Areas Around Obudu N...IJRESJOURNAL
 
SEISMIC ZONES OF INDIA
SEISMIC ZONES OF INDIASEISMIC ZONES OF INDIA
SEISMIC ZONES OF INDIAHimadri Samal
 
Evolution of tethys sea
Evolution of tethys seaEvolution of tethys sea
Evolution of tethys seaBadal Mathur
 
Paleodepositional environment and sequence stratigraphy of outcropping sedime...
Paleodepositional environment and sequence stratigraphy of outcropping sedime...Paleodepositional environment and sequence stratigraphy of outcropping sedime...
Paleodepositional environment and sequence stratigraphy of outcropping sedime...Alexander Decker
 
Internal Structure of Earth
Internal Structure of Earth Internal Structure of Earth
Internal Structure of Earth Mithun Ray
 
Mechanism of Plate Tectonics and Resultant Landforms
Mechanism of Plate Tectonics and Resultant LandformsMechanism of Plate Tectonics and Resultant Landforms
Mechanism of Plate Tectonics and Resultant LandformsMithun Ray
 
Evolution of Tethys Ocean
Evolution of Tethys OceanEvolution of Tethys Ocean
Evolution of Tethys OceanOmar Radwan
 
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİAli Osman Öncel
 
Evolution Analysis of Structures And Landforms Of Thalisain Area, Garhwal Him...
Evolution Analysis of Structures And Landforms Of Thalisain Area, Garhwal Him...Evolution Analysis of Structures And Landforms Of Thalisain Area, Garhwal Him...
Evolution Analysis of Structures And Landforms Of Thalisain Area, Garhwal Him...paperpublications3
 
Granomeric Analysis of Mamu Formation and Enugu Shale around Ozalla and Its E...
Granomeric Analysis of Mamu Formation and Enugu Shale around Ozalla and Its E...Granomeric Analysis of Mamu Formation and Enugu Shale around Ozalla and Its E...
Granomeric Analysis of Mamu Formation and Enugu Shale around Ozalla and Its E...iosrjce
 
Himalaya Formation By Junaidurrehman
Himalaya Formation By JunaidurrehmanHimalaya Formation By Junaidurrehman
Himalaya Formation By JunaidurrehmanJunaidurrehman26
 
COAL DEPOSIT IN MAMU FORMATION...
COAL DEPOSIT IN MAMU FORMATION...COAL DEPOSIT IN MAMU FORMATION...
COAL DEPOSIT IN MAMU FORMATION...Agbaje Mayowa
 

Was ist angesagt? (20)

Arboit et al_2017
Arboit et al_2017Arboit et al_2017
Arboit et al_2017
 
Paper 4
Paper 4Paper 4
Paper 4
 
Evolution of tethys
Evolution of tethysEvolution of tethys
Evolution of tethys
 
Marmara Sea: Deep Seismic Survey
Marmara Sea: Deep Seismic SurveyMarmara Sea: Deep Seismic Survey
Marmara Sea: Deep Seismic Survey
 
Preliminary Studies of the Litho-Structural Evolution of Areas Around Obudu N...
Preliminary Studies of the Litho-Structural Evolution of Areas Around Obudu N...Preliminary Studies of the Litho-Structural Evolution of Areas Around Obudu N...
Preliminary Studies of the Litho-Structural Evolution of Areas Around Obudu N...
 
5.earthquake xi
5.earthquake xi5.earthquake xi
5.earthquake xi
 
SEISMIC ZONES OF INDIA
SEISMIC ZONES OF INDIASEISMIC ZONES OF INDIA
SEISMIC ZONES OF INDIA
 
Evolution of tethys sea
Evolution of tethys seaEvolution of tethys sea
Evolution of tethys sea
 
Paleodepositional environment and sequence stratigraphy of outcropping sedime...
Paleodepositional environment and sequence stratigraphy of outcropping sedime...Paleodepositional environment and sequence stratigraphy of outcropping sedime...
Paleodepositional environment and sequence stratigraphy of outcropping sedime...
 
Internal Structure of Earth
Internal Structure of Earth Internal Structure of Earth
Internal Structure of Earth
 
Mechanism of Plate Tectonics and Resultant Landforms
Mechanism of Plate Tectonics and Resultant LandformsMechanism of Plate Tectonics and Resultant Landforms
Mechanism of Plate Tectonics and Resultant Landforms
 
Evolution of Tethys Ocean
Evolution of Tethys OceanEvolution of Tethys Ocean
Evolution of Tethys Ocean
 
H05425558
H05425558H05425558
H05425558
 
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
 
Evolution Analysis of Structures And Landforms Of Thalisain Area, Garhwal Him...
Evolution Analysis of Structures And Landforms Of Thalisain Area, Garhwal Him...Evolution Analysis of Structures And Landforms Of Thalisain Area, Garhwal Him...
Evolution Analysis of Structures And Landforms Of Thalisain Area, Garhwal Him...
 
Granomeric Analysis of Mamu Formation and Enugu Shale around Ozalla and Its E...
Granomeric Analysis of Mamu Formation and Enugu Shale around Ozalla and Its E...Granomeric Analysis of Mamu Formation and Enugu Shale around Ozalla and Its E...
Granomeric Analysis of Mamu Formation and Enugu Shale around Ozalla and Its E...
 
Relationship Between Fault and Earthquake in sumatera
Relationship Between Fault and Earthquake in sumateraRelationship Between Fault and Earthquake in sumatera
Relationship Between Fault and Earthquake in sumatera
 
Himalaya Formation By Junaidurrehman
Himalaya Formation By JunaidurrehmanHimalaya Formation By Junaidurrehman
Himalaya Formation By Junaidurrehman
 
Earthquake
EarthquakeEarthquake
Earthquake
 
COAL DEPOSIT IN MAMU FORMATION...
COAL DEPOSIT IN MAMU FORMATION...COAL DEPOSIT IN MAMU FORMATION...
COAL DEPOSIT IN MAMU FORMATION...
 

Andere mochten auch

Pretext Knowledge Grids on Unstructured Data for Facilitating Online Education
Pretext Knowledge Grids on Unstructured Data for Facilitating  Online EducationPretext Knowledge Grids on Unstructured Data for Facilitating  Online Education
Pretext Knowledge Grids on Unstructured Data for Facilitating Online EducationIOSR Journals
 
Preclusion Measures for Protecting P2P Networks from Malware Spread
Preclusion Measures for Protecting P2P Networks from Malware  SpreadPreclusion Measures for Protecting P2P Networks from Malware  Spread
Preclusion Measures for Protecting P2P Networks from Malware SpreadIOSR Journals
 
Solar Cells Technology: An Engine for National Development
Solar Cells Technology: An Engine for National DevelopmentSolar Cells Technology: An Engine for National Development
Solar Cells Technology: An Engine for National DevelopmentIOSR Journals
 
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...A Density Based Clustering Technique For Large Spatial Data Using Polygon App...
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...IOSR Journals
 
A Study in Employing Rough Set Based Approach for Clustering on Categorical ...
A Study in Employing Rough Set Based Approach for Clustering  on Categorical ...A Study in Employing Rough Set Based Approach for Clustering  on Categorical ...
A Study in Employing Rough Set Based Approach for Clustering on Categorical ...IOSR Journals
 

Andere mochten auch (20)

Pretext Knowledge Grids on Unstructured Data for Facilitating Online Education
Pretext Knowledge Grids on Unstructured Data for Facilitating  Online EducationPretext Knowledge Grids on Unstructured Data for Facilitating  Online Education
Pretext Knowledge Grids on Unstructured Data for Facilitating Online Education
 
A0340108
A0340108A0340108
A0340108
 
E0463137
E0463137E0463137
E0463137
 
I0545760
I0545760I0545760
I0545760
 
K0466974
K0466974K0466974
K0466974
 
F0953744
F0953744F0953744
F0953744
 
C0541925
C0541925C0541925
C0541925
 
K0957079
K0957079K0957079
K0957079
 
Preclusion Measures for Protecting P2P Networks from Malware Spread
Preclusion Measures for Protecting P2P Networks from Malware  SpreadPreclusion Measures for Protecting P2P Networks from Malware  Spread
Preclusion Measures for Protecting P2P Networks from Malware Spread
 
D0532328
D0532328D0532328
D0532328
 
H0444750
H0444750H0444750
H0444750
 
Solar Cells Technology: An Engine for National Development
Solar Cells Technology: An Engine for National DevelopmentSolar Cells Technology: An Engine for National Development
Solar Cells Technology: An Engine for National Development
 
C0311217
C0311217C0311217
C0311217
 
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...A Density Based Clustering Technique For Large Spatial Data Using Polygon App...
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...
 
G0945361
G0945361G0945361
G0945361
 
K0347480
K0347480K0347480
K0347480
 
E0441929
E0441929E0441929
E0441929
 
A Study in Employing Rough Set Based Approach for Clustering on Categorical ...
A Study in Employing Rough Set Based Approach for Clustering  on Categorical ...A Study in Employing Rough Set Based Approach for Clustering  on Categorical ...
A Study in Employing Rough Set Based Approach for Clustering on Categorical ...
 
D0521522
D0521522D0521522
D0521522
 
G0514551
G0514551G0514551
G0514551
 

Ähnlich wie E0343443

Seismic Microzonation Study in Tabriz Metropolitan City for Earthquake Risk M...
Seismic Microzonation Study in Tabriz Metropolitan City for Earthquake Risk M...Seismic Microzonation Study in Tabriz Metropolitan City for Earthquake Risk M...
Seismic Microzonation Study in Tabriz Metropolitan City for Earthquake Risk M...IJERA Editor
 
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...iosrjce
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
Tectono-magmatic Development of Accreted West Burma Block from Gondwana Land-...
Tectono-magmatic Development of Accreted West Burma Block from Gondwana Land-...Tectono-magmatic Development of Accreted West Burma Block from Gondwana Land-...
Tectono-magmatic Development of Accreted West Burma Block from Gondwana Land-...MYO AUNG Myanmar
 
Tectonic Framework Tectonic Framework of Bengal Basin.pptx
Tectonic Framework Tectonic Framework of Bengal Basin.pptxTectonic Framework Tectonic Framework of Bengal Basin.pptx
Tectonic Framework Tectonic Framework of Bengal Basin.pptxAlMamun560346
 
Regional Tectonic Features, Processes and elements.
Regional Tectonic Features, Processes and elements.Regional Tectonic Features, Processes and elements.
Regional Tectonic Features, Processes and elements.Rukaia Aktar
 
Terminology related to earthquake and structural dynamics
Terminology related to earthquake and structural dynamicsTerminology related to earthquake and structural dynamics
Terminology related to earthquake and structural dynamicsDr. Nitin Naik
 
Terminology related to earthquake and structural dynamics
Terminology related to earthquake and structural dynamicsTerminology related to earthquake and structural dynamics
Terminology related to earthquake and structural dynamicsDr. Nitin Naik
 
Dynamical Stress Analysis of Tectonic Earthquakes in Nusa Tenggara and its po...
Dynamical Stress Analysis of Tectonic Earthquakes in Nusa Tenggara and its po...Dynamical Stress Analysis of Tectonic Earthquakes in Nusa Tenggara and its po...
Dynamical Stress Analysis of Tectonic Earthquakes in Nusa Tenggara and its po...IJERA Editor
 
Lessons learned from past earthquake - Structural dynamics and Earthquake Eng...
Lessons learned from past earthquake - Structural dynamics and Earthquake Eng...Lessons learned from past earthquake - Structural dynamics and Earthquake Eng...
Lessons learned from past earthquake - Structural dynamics and Earthquake Eng...Shanmugasundaram N
 
hamran seismic zone.pptx
hamran seismic zone.pptxhamran seismic zone.pptx
hamran seismic zone.pptxSyedBilal914598
 
Marmara Earthquakes - 2000 yrs
Marmara Earthquakes - 2000 yrsMarmara Earthquakes - 2000 yrs
Marmara Earthquakes - 2000 yrsAli Osman Öncel
 
Marmara Sea: Çınarcık Basin
Marmara Sea: Çınarcık BasinMarmara Sea: Çınarcık Basin
Marmara Sea: Çınarcık BasinAli Osman Öncel
 
Seismicity in india & seismic zonation map
Seismicity in india & seismic zonation mapSeismicity in india & seismic zonation map
Seismicity in india & seismic zonation mapSubhendu Pradhan
 
The Review of the Historical and Recent Seismic Activity in Nigeria
The Review of the Historical and Recent Seismic Activity in Nigeria The Review of the Historical and Recent Seismic Activity in Nigeria
The Review of the Historical and Recent Seismic Activity in Nigeria iosrjce
 

Ähnlich wie E0343443 (20)

C0274015028
C0274015028C0274015028
C0274015028
 
Seismic Microzonation Study in Tabriz Metropolitan City for Earthquake Risk M...
Seismic Microzonation Study in Tabriz Metropolitan City for Earthquake Risk M...Seismic Microzonation Study in Tabriz Metropolitan City for Earthquake Risk M...
Seismic Microzonation Study in Tabriz Metropolitan City for Earthquake Risk M...
 
Paper 6
Paper 6Paper 6
Paper 6
 
Paper 6
Paper 6Paper 6
Paper 6
 
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
Tectono-magmatic Development of Accreted West Burma Block from Gondwana Land-...
Tectono-magmatic Development of Accreted West Burma Block from Gondwana Land-...Tectono-magmatic Development of Accreted West Burma Block from Gondwana Land-...
Tectono-magmatic Development of Accreted West Burma Block from Gondwana Land-...
 
Tectonic Framework Tectonic Framework of Bengal Basin.pptx
Tectonic Framework Tectonic Framework of Bengal Basin.pptxTectonic Framework Tectonic Framework of Bengal Basin.pptx
Tectonic Framework Tectonic Framework of Bengal Basin.pptx
 
Regional Tectonic Features, Processes and elements.
Regional Tectonic Features, Processes and elements.Regional Tectonic Features, Processes and elements.
Regional Tectonic Features, Processes and elements.
 
Terminology related to earthquake and structural dynamics
Terminology related to earthquake and structural dynamicsTerminology related to earthquake and structural dynamics
Terminology related to earthquake and structural dynamics
 
Terminology related to earthquake and structural dynamics
Terminology related to earthquake and structural dynamicsTerminology related to earthquake and structural dynamics
Terminology related to earthquake and structural dynamics
 
Dynamical Stress Analysis of Tectonic Earthquakes in Nusa Tenggara and its po...
Dynamical Stress Analysis of Tectonic Earthquakes in Nusa Tenggara and its po...Dynamical Stress Analysis of Tectonic Earthquakes in Nusa Tenggara and its po...
Dynamical Stress Analysis of Tectonic Earthquakes in Nusa Tenggara and its po...
 
Lessons learned from past earthquake - Structural dynamics and Earthquake Eng...
Lessons learned from past earthquake - Structural dynamics and Earthquake Eng...Lessons learned from past earthquake - Structural dynamics and Earthquake Eng...
Lessons learned from past earthquake - Structural dynamics and Earthquake Eng...
 
hamran seismic zone.pptx
hamran seismic zone.pptxhamran seismic zone.pptx
hamran seismic zone.pptx
 
4
44
4
 
Marmara Earthquakes - 2000 yrs
Marmara Earthquakes - 2000 yrsMarmara Earthquakes - 2000 yrs
Marmara Earthquakes - 2000 yrs
 
Marmara Sea: Çınarcık Basin
Marmara Sea: Çınarcık BasinMarmara Sea: Çınarcık Basin
Marmara Sea: Çınarcık Basin
 
Seismicity in india & seismic zonation map
Seismicity in india & seismic zonation mapSeismicity in india & seismic zonation map
Seismicity in india & seismic zonation map
 
The Review of the Historical and Recent Seismic Activity in Nigeria
The Review of the Historical and Recent Seismic Activity in Nigeria The Review of the Historical and Recent Seismic Activity in Nigeria
The Review of the Historical and Recent Seismic Activity in Nigeria
 
J227984
J227984J227984
J227984
 

Mehr von IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Kürzlich hochgeladen

SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfSeasiaInfotech2
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 

Kürzlich hochgeladen (20)

SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdf
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 

E0343443

  • 1. IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 3, Issue 4 (Mar. - Apr. 2013), PP 34-43 www.iosrjournals.org www.iosrjournals.org 34 | Page Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region Anupama Devi1 , Dr. S. Kalita2 1. Department of Physics, Arya Vidyapeeth College, Guwahati, Assam, India 2. Dept. of Environmental Science, Gauhati University, Guwahati,Assam,India Abstract: Northeast India and its adjoining region constitutes an important geotectonic element of Southeast Asia and is connected to India via a narrow corridor squeezed between Nepal and Bangladesh. Geomorphologically, the entire NE India is located in an earthquake prone zone ( Zone – V ) of the Indian subcontinent. The strain energy release has been studied by dividing the region into in the six geo – tectonic block. It has been found that the Arakan – Yoma to be seismically active followed by Naga Hills region. It also showed that the probability of occurring an earthquake is more in the Shillong Plateau than the other five tectonic blocks. For the region as a whole there is the probability that an earthquake of intensity around 6.64 mb may occur as determined from strain energy bearing capacity of the region. Moreover, it has also been found that if strain energy released by a tectonic block is large it might effect the stress building process in the rocks of adjacent tectonic blocks. The iso-strain release map depicted areas of high and low seismic activity. Key words: Geo – Tectonic block, Seismicity, Strain Energy, Iso – Strain. I. Introduction The source of energy of an earthquake is the potential energy stored in rocks due to accumulation of strain over a period of time. When the accompanying elastic stress accumulates beyond the competence of the rocks, an earthquake occurs. The strain energy release pattern of a region helps in identifying the probable source region for the occurrence of an earthquake in near future. Historical documents indicate the occurrence of destructive earthquakes in the region in the year 1548, 1596, 1642, 1663 and 1696 – 1714. In modern times destructive earthquakes have occurred in 1869, 1875, 1897, 1918, 1930, 1950 and 1988. Since earthquake is a great natural hazard, it has become important to study the probability of occurrence of high magnitude earthquakes in this region due to large increase in population of the region, for developmental activities and for proper land-use planning. [1,2]. The relation between geological characteristics and occurrence of earthquakes has been studied since the very beginning of twentieth century. The study of seismic activity in a probabilistic manner for a long period of time is useful in the long range forecasting of earthquakes.[3] The method used for long range forecasting is based on the periodicity of large earthquakes (if any) and accumulation of tectonic strain. The elastic rebound of the volume of rock under stress generates the earthquake[4] and most of the strain energy stored in the rocks is released in the form of seismic waves, which radiate in all directions from its source region. However, a part of the original potential energy stored in the rock mass goes into mechanical work like raising crustal blocks against gravity or in crushing material in the fractal zone and the other part is dissipated as heat. The strain rebounded during an earthquake is proportional to the square root of the energy released[5]. Thus, earthquakes are manifestation of strain energy released from a region and its spatio-temporal behavior represents the seismo-tectonic characteristics of the region. Moreover, temporal variation of strain energy released from a seismotectonic block reveals the earthquake generation potentiality of the block at any specified time. The characteristic features and trends of stress field in a tectonic block can be investigated by examining the pattern of strain energy release over it. Assuming a linear probability of earthquake occurrences over a period of few years, a direct extrapolation of the pattern of strain release in immediate future can throw some light on the probable future earthquake activity expected in the region. The areal distribution of strain energy released helps in identifying the seismically active zones. Chouhan [6] studied the regional strain release characteristics of Indian earthquakes. He observed that every region is characterized by a certain minimum level of strain energy and strain may persist in a tectonic block even after the release of the accumulated strain by a large earthquake. Therefore, taking it as a reference, it is possible to estimate the amount of strain energy available in a tectonic block at a given time in near future. Thus, in turn, it may give an estimate about the possible maximum magnitude earthquake that may occur in the block, if the accumulated strain energy releases simultaneously [7]. II. Geo – tectonic setting of the study region The study region is North-East India and its adjoining region demarcated by latitude (220 N – 300 N) and longitude (890 E – 980 E). Northeastern India and its adjoining territories display tectonically distinct
  • 2. Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region www.iosrjournals.org 35 | Page geological domains occurring in intimate spatial association. Rocks representing the entire span from archean to recent, occur in this very small region. Eocene (Disang) sediments of trench facies occur in juxtaposition with those of platform facies (Jaintia) of stable shelf condition; Neogene Siwalik foredeep molasse in front of the Himalaya and Tipam molasse of Upper Assam basin in front of the Indo – Myanmaar mobile belt occur in close proximity and are separated by the Brahmaputra alluvium. Proteozoic to early Paleozonic intrusive granites are common in Meghalaya Plateau, while Tertiary granites are found in the upper reaches of the Eastern Himalaya.[8] The eastern part of this region is formed by Naga - Lushai Hills. To the south of the Shillong Plateau there is the Surma Valley region comprising of the Bengal Basin separated by an east-west trending set of faults known as Dauki fault (Figure. 1). The vertical movements have also played their part in the deposition of large thicknesses of sediments belonging to the Irrawady system of Burma and Bengal basin in India [9]. In the south, Bengal basin is open to the Bay of Bengal .The Mikir Massif is believed to be a fragmented portion of the Shillong Plateau and parted with a set of faults called Kopili fault [9,10]. The upper Assam Valley or the Brahmaputra Valley bounded on the southwest by the Mikir Hills and the Shillong Plateau. Geological, geophysical morphological trends and seismicity of Indo-Burma region (20 o - 26 o ) N and ( 92 o – 96 o ) E suggest active sub-duction. This area is a transition zone between the main Himalayan collision belt and the Indonesian arc where the Indian plate is currently sub-ducting under Asia. The Indo-Burman ranges extend from Arakan - Yoma upto Mishimi thrust belts and bulk of the ranges consist of Cretaceous to upper Eocene shales and sandstones which are considered to have undergone a major phase folding during Oligocene and Miocene.[11] Figure 1: The map of the study region with the geo-tectonic subdivisions or zones. The Bengal and Nicobar Fans were, for the first time, delineated and named by Curray and Moore [12]. The Bengal Fan is the largest and prodigious submarine fan in the world, with a length of about 3000 km, a width of about 1000 km with varying thicknesses. It has been formed as a direct result of the India – Asia collision and uplift of the Himalayas and the Tibetan Plateau. The northeastern edges of the fans have been sub- ducted, and some of the Tertiary turbidities cropping out in the Indo-Burma Ranges of Myanmar, the Andaman and Nicobar Islands, and in the outer arc ridge off Sumatra have been interpreted as old Bengal and Nicobar Fan sediments . It is currently supplied mainly by the confluent Ganges and Brahmaputra Rivers with smaller contributions of sediment from several other large rivers in Bangladesh and India. The region has experienced 19 large earthquakes (M >=7) during the last hundred years including the great earthquakes of Shillong (1897, M=8.7) and the Assam earthquake (1950, M=8.7) . Besides, several hundred small and micro earthquakes have also been recorded in the region. The high seismicity in the region is attributed to the collision tectonics between the Indian plate and the Eurasian plate in the north and subduction tectonics along the Indo-Myanmar range (IMR) in the east [13,14,15,16,17]. Verma[18] stated that the
  • 3. Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region www.iosrjournals.org 36 | Page lithospheric subduction at the Himalayan belt ceased during Pliocene time and shallow seismic activity is the effect of continental-continental collision. Subduction, on the other hand, is still continuing in the IMR, which is evidenced by the intermediate to deep focus earthquakes in this range. Now, based on the geotectonic features, northeastern region can be divided into six zones.[8] The zones are: (i) The Eastern Himalayan collision belt including the trans – Himalayan Tethyan zone, the Tsangpo Suture zone (with ophiolites) and the Andean type grano – diorite margin to the north. (ii) The Naga Hills region which comprises of Diorite – grandiorite complex of the Mishmi block with frontal folded and thrusted metamorphic belt. (iii) The Indo – Myanmar mobile belt and the Arakan – Yoma. (iv) The Shillong Plateau with platform sediments to the south and the east and the Mikir hills. (v) Brahmaputra Valley with cover of alluvium and Tertiary sub – crop elements. (vi) Surma Valley covering almost whole of West Bengal and Bangladesh with Cretaceous to Recent sediments. (vii) III. Datasource and Methodology The comprehensive data file prepared by using earthquake catalogues of ISC and USGS that are available for the study region has been used for the period 1964 – 2012 (31st July). In order to study the strain energy release pattern of the region, earthquakes of magnitude greater than 3.1mb has been considered. 3.1. Theory: Benioff’s theory has been used for determining the strain energy of the study region. Benioff [4] has shown that the potential energy Ep of a volume of rock (w) is given by: Ep = 0.5 µwS2 ---------------------- (1) where µ is the co-efficient of shear and S is average strain just before the earthquake. Thus the energy released by seismic waves is given by, ET = 0.5 µfwS2 ------------------ (2) where f is the function of energy released as seismic waves. If the strain is reduced to zero during the earthquake by some movement along a fault, then the average strain S is proportional to the fault displacement (Xf). Thus, S = CXf ------------------------ (3) where C is the constant of proportionality. Putting the value of S in eq. (2) we get, ET = 0.5µfwC2 Xf 2 = G1 2 Xf 2 ----------------------------- (4) where G1 2 = 0.5µfwC2 Equation (4) implies that fault displacement (Xf) is proportional to the square root of energy released. log ET 1/2 = log G1Xf ---------------- (5) Gutenberg and Richter [19] derived the energy, E of an earthquake having magnitude, M by the relation, log E = 12 + 1.8*M Later on, they modified the relationship using strain energy released and body wave magnitude, mb, recorded at teleseismic distance and represented as : log E = 5.8 + 2.4*mb log E1/2 = 2.9 + 1.2*mb -------------- (6) Now, using the magnitude energy relation of Gutenberg and Richter (eq. 6) in eq. 5, we get, log (Xf G1) = 2.9 + 1.2*mb Or, Xf = (1/G1) 102.9 + 1.2 *mb ------------ (7) The equation (7) gives the relation between fault displacement (Xf) and earthquake magnitude mb. Thus, if the magnitudes of all earthquakes occurring in any fault system over a period are known, one can plot the fault displacement (strain) that may occur during that time period. Such plots which give strain release characteristics, represent spurts of seismic activity separated by quiescent periods. The resulting curve will be a saw-tooth curve representing the exhaustion of accumulated strain caused by earthquakes. 3.2 Application of the method to the study region : 3.2.1. Temporal Variation: The epicentral distribution of the earthquake events considered is given in Figure. 2. The strain energy released in each of the six tectonic zone has been computed for each year by considering strain energy as the sum of the square root of energy of all the earthquakes that had occurred in each tectonic zone in the specified year [5,20]. Then, strain energy has been added up year by year to get the strain release characteristic curve. Hence the vertical line represents the release of earthquake energy E1/2 , which again represents the strain
  • 4. Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region www.iosrjournals.org 37 | Page factor in erg1/2 . Since S is proportional to E1/2 , the continuous lines represent the secular strain generation showing that strain accumulation is linear and may be represented as, ∑E1/2 = A + Bt------------------ (8) where A and B are constants and t is time in years. Figure. 2: Epicentral plot of the earthquake events of the study region 3.2.2. Spatial Variation: The energy of each earthquake has been determined using relation (6) and iso-strain release map has been prepared. For this, the whole study region is divided into small grids having dimension 10 by 10 . The sum total of the energy released by all the earthquakes those occurred in a particular grid are computed out and plotted at the centre of the grid. Then the isolines of energy have been drawn to prepare the iso-strain release map. 3.3. Effect of release of strain energy by a tectonic block on nearby blocks: Using equation (6) the total strain energy released by earthquakes in each year by each tectonic zone is determined and is represented together graphically. Next, correlation coefficeient of the total strain energy released is computed between the six tectonic zones. Also, one – way ANOVA technique is applied here by taking earthquakes of magnitude greater than 6.0 mb. The null hypothesis taken is that when strain energy is released by a tectonic block there is some effect on adjacent tectonic blocks. IV. Results and Observations 4.1. Temporal Variation of Strain Energy Released: Generally, it is assumed that the strain energy accumulation in a tectonic block is almost linear. But the strain energy release pattern is not linear because of the frictional force developed in the rock – fractures and the temporal variation pattern of strain energy release forms a saw – toothed curve, commonly known as Benioff Graph. It gives an idea about the strain energy accumulation in a tectonic block at a particular time and is considered as complementary to the study of the magnitude – frequency relationship which defines the mean recurrence rate of any particular magnitude earthquake in a tectonic block or region.
  • 5. Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region www.iosrjournals.org 38 | Page Moreover, it indicates the trend of activity with time and allows extrapolation for estimating strain energy accumulation in the block in near future. The study region is divided into six tectonic blocks on the basis of the concentration of earthquakes, convergence, alignment and direction of thrusting as well as structural pattern. Benioff graphs have been prepared for all the six blocks and for the region as a whole. Thus, altogether seven Benioff graphs are obtained which are shown from Figure 3 to Figure 9. The lower and the upper bound in the variation of strain energy represented by the Benioff graphs are also shown in the figures. The difference between this upper bound and the lower bound gives an idea about the strain energy bearing capacity of the respective block. The slope of the Benioff graphs gives the rate of strain energy accumulation. The rate of strain energy accumulation estimated from the graphs, approximate strain energy bearing capacity and the strain energy stored as off 31st July, 2012 in each block and in the region as a whole are represented in table 1. On the basis of strain energy accumulation as off 31st July, 2012 the magnitudes of the maximum possible earthquakes that may occur in the near future in different blocks and the region as a whole are computed and presented in the table. Figure 3: Surma Valley Figure 4: Arakan Yoma Figure 5: Shillong Plateau Figure 6: Brahmaputra Valley 1960 1970 1980 1990 2000 2010 2020 0 1000 2000 3000 4000 5000 6000 SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10 7 YEAR 1960 1970 1980 1990 2000 2010 2020 0 10000 20000 30000 40000 50000 SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10 7 YEAR 1960 1970 1980 1990 2000 2010 2020 0 1000 2000 3000 4000 5000 SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10 7 YEAR 1960 1970 1980 1990 2000 2010 2020 0 1000 2000 3000 4000 5000 SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10 7 YEAR
  • 6. Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region www.iosrjournals.org 39 | Page Figure 7: Eastern Himalayas Figure 8: Naga Hills Figure 9: Whole Study Region The observations made from the above Benioff Graphs for the six zones are:  From fig: 3, it is seen that in the Surma Valley there is a gradual accumulation of strain energy from 1964 till around 1988 when the energy was released in the form of an earthquake , and thereafter a quiescent period was indicated till 1997 when again energy was released.  From fig: 4, it is seen that most of the accumulated energy in the Arakan – Yoma region was probably released around 1988. The rest of the accumulated energy is released almost regularly.  Fig: 5 and Fig: 6 shows that in the Shillong Plateau region and Brahmaputra Valley there is a gradual accumulation of energy together with its release at regular intervals.  In the Eastern Himalayas, as seen from fig: 7 there was an accumulation of energy till 1970 when it was released. After that there is a period of low seismic activity with gradual accumulation of energy.  Strain energy release pattern of Naga hills as shown in fig: 8, depicts gradual accumulation of energy till it was released in 1970. Then, there was a quiescent period till 1988 when energy was released again. Thereafter, it is seen that small amount energy was again released in 2000.  The strain energy releases at a regular interval in the whole study region together with a gradual accumulation of energy as shown in fig: 9. 1960 1970 1980 1990 2000 2010 2020 0 2000 4000 6000 8000 10000 12000 SQUAREROOTOFCUMMULATIVESTRAINENERGY(ERGS)x10 7 YEAR 1960 1970 1980 1990 2000 2010 2020 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10 7 YEAR 1960 1970 1980 1990 2000 2010 2020 0 20000 40000 60000 80000 100000 120000 SQUAREROOTOFCUMULATIVESTRAINENERGY(ERGS)x10 7 YEAR
  • 7. Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region www.iosrjournals.org 40 | Page Table 1. Strain energy accumulation in the study region as off 2012 (31 – 07 – 2012 ) Region Rate of square root of strain energy accumulation (in ergs/year) x10 7 Estimated maximum strain bearing capacity (in ergs) x 10 20 Strain energy due for release as of 2012 (31st July) (in ergs) x 10 20 Size of the probable earthquake as of 31st July, 2012 (mb) Arakan - Yoma 8.8445 118.81 5.59 6.22 Naga Hills 7.97 102.73 88.34 6.72 Eastern Himalayas 1.6993 17.73 2.44 6.07 Brahmaputra Valley 1.0421 0.8172 0.1604 5.58 Shillong Plateau 1.0212 0.998 0.993 5.91 Surma Valley 1.2359 2.55 0.153 5.57 Whole Region 21.5383 359.32 54.63 6.64 From the Table 1. above it is seen that the strain energy bearing capacity is maximum in the Arakan – Yoma region and it is minimum in the Brahmaputra Valley which is in accordance to the seismic activity as observed in the epicentral plot of the study region (Fig. 2). Rate of strain accumulation is maximum in the Arakan – Yoma region and minimum in the Shillong Plateau. It is also seen that in the Shillong Plateau amount of strain energy due to release as on 31 – 07 – 2012 is comparable with the estimated strain bearing capacity of the rocks of the region. Hence the probability of occurrence of earthquake in that region in the near future is greater than the other regions. The study of strain energy bearing capacity of a region is very helpful in estimating the size of the future earthquakes that might occur in the region. These curves provide a reference and minimum strain energy level which gives an estimate about the amount of stored strain in the region and hence, the possible size of the earthquake that may occur if the entire stored strain would release at a time. From the table above, it is observed from the amount of strain energy accumulated in the study region as off 31st July, 2012, that there is a probability of occurrence of an earthquake of magnitude of 6.64 mb in the area. Also, it is seen that the size of most probable earthquake is maximum at Naga Hills. The above results show that the earthquake risk in the area is not so high. The size of the maximum magnitude earthquake that may occur in each of the six tectonic blocks as well as the region as a whole indicate that only moderate earthquakes are likely in the near future. 4.2. Spatial Variation of Strain Energy Released: Figure 10: Iso-strain energy (ergs) x 107 release map of the study region with grid {(1)0 x (1)0 }
  • 8. Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region www.iosrjournals.org 41 | Page Iso-strain release map of the study region have been prepared at an interval of {(1)0 x (1)0 } and is presented in Fig. 10. The map reveals that high strain energy is released at Central Burma Mollasse Basin along the Eastern Boundary thrust. This may be due to bending of the subducting Indian plate as well as external forces due to overriding Burmese plate in this zone. The seismic events of Indo – Burma region has deep focus due to subduction of the Indian Plate under the Burmese Plate.[21] It is also high at the Naga Hills tectonic block near the Lohit and Mishmi Thrust. Since these are made up of diorite and granodiorite complex with a frontal belt of high grade schists and migmatites, and inner belt of low grade schist with crystalline limestone and serpentinite lenses. The 1950 Assam Earthquake had its epicenter in the Po Chu fault which is at the NW extremity of Mismi Massif [8]. It is medium along the MCT and MBT. This may be the result of shallow seismic events due to collision tectonics between the Indian Plate and the Eurasian Plate [15,18,21,22]. The Shillong Plateau show medium release of strain energy. This is due to the occurrence of Upper Cretaceous carbonatite – ultramafic complex along a NE fracture zone in the east – central part of the plateau. The region between the volcanic line and Sagiang fault at the Indo – Burma boundary also show medium release of strain energy which is attributed to the presence of the 200 km wide and 1400 km long Palaeogene – Neogene Central Myanmar Sedimentary Basin. The strain energy released is low in the Brahmaputra Valley except near the Kopili fault where it is medium as a consequence of transverse tectonics that extend to the Bhutan Himalaya. In fact, at present this fault which seperates the Shillong Plateau and the Mikir Massif by strike slip movement has been identified as one of the most active fault of the Brahmaputra Valley [23,24]. The studies carried out by Nandy and Dasgupta[25] and again by Nandy[26] indicated future probability of occurrence of an seismic event of significant size in the region around the Kopili fault and the Shillong Plateau. But in the Surma Valley near the Open Tripura Frontal Fold it is low. Since there is a thick deposit of sediments and locking of the Indian plate below the basin.[8]. Iso – strain contour map also indicated crustal homogeneity of Brahmaputra valley and also the presence of Assam gap[2]. Thus, the strain energy release map reflects the areas of high and low seismic activity, which is very much applicable in the seismic risk analysis. 4.3 Effect of release of strain energy by a tectonic block on other nearby blocks: 4.3.1 From Graph: Cumulative strain energy (square root) released in each tectonic block is shown in fig. 11. On 29th July, 1970 an earthquake of magnitude 6.4 mb occurred with its epicenter at the Naga Hills tectonic block ( 26.020 N and 95.370 E ). From fig.11 it is observed that the occurrence of this earthquake is indicated by the release of strain energy. As this released energy propagates along the earth’s crust as waves, it triggers the release of energy in the nearby tectonic block also (Eastern Himalayas) as seen in fig. 11. Again on 6th August, 1988, an earthquake of magnitude 7.3Ms or 7.1mb occurred with its epicenter at the Indo – Myanmaar border i.e. in the Arakan – Yoma region (24.140 N and 95.120 E). From the Benioff curve below (fig. 11.) it is seen that this event is indicated by the release of strain energy in the Arakan – Yoma tectonic block triggering the release of energy in the Naga Hills. 1960 1970 1980 1990 2000 2010 2020 0 5000 10000 15000 20000 25000 30000 35000 40000 SQUAREROOTOFSTRAINENERGYRELEASEDINERGS(X10 7 ) YEARS Arakan - Yoma Naga Hills Eastern Himalayas Brahmaputra Valley Shillong Plateau Surma Valley Figure 11: Cumulative strain energy (square root) release curve of all the six tectonic blocks
  • 9. Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region www.iosrjournals.org 42 | Page This phenomenon may be attributed to the fact that the released strain energy dissipates as heat energy along the fault and as seismic vibration which causes the rocks to go back to their original undeformed shape. Due to this movement and also due to the propagation of seismic vibration as waves along the earth’s crust, stress builds up in the nearby tectonic blocks causing the release of strain energy in these blocks.[5] Thus it can be said that if strain energy released by a tectonic block is large it might effect the stress building process in the rocks of adjacent tectonic blocks. 4.3.2 By statistical method (ANOVA): ANOVA technique is applied to investigate any number of factors which are hypothesized or said to influence the dependent variable. Here we have applied one – way ANOVA technique to see the effect of strain energy released by a tectonic block (Arakan – Yoma block) on the other five blocks by taking only those earthquakes whose magnitude is greater than or equal to 6.0 mb. From the table 2. below, it is seen that the calculated value of F is less than the value of F obtained from table at 5% level of significance. Thus, this analysis supports the null hypothesis of dependence of strain energy released by a tectonic block on strain energy released by a nearby block provided the earthquake event is equal or greater than 6.0 mb. Thus, the strain energy released in a tectonic block due to the occurrence of an earthquake may effect the strain energy release pattern of the rocks of adjacent tectonic blocks. Table 2: ANOVA table 4.3.3. Determination of correlation co-efficient of the strain energy released between the tectonic blocks: From the table 3. below, it is observed that the value of correlation coefficient is positive in Naga Hills – Arakan Yoma, Naga Hills – Surma Valley, Naga Hills – Eastern Himalayas, Arakan Yoma – Surma Valley, Arakan Yoma – Brahmaputra Valley and Shillong Plateau – Brahmaputra Valley tectonic blocks. This value is negative between all the other tectonic blocks. The positive value implies that when strain energy is released by a tectonic block it is also released in the corresponding block while negative value indicates accumulation of energy in the other block. Table 3: Correlation coefficient between different tectonic blocks Block Eastern Himalayas Naga Hills Arakan Yoma Surma Valley Shillong Plateau Brahma. Valley Eastern Himalayas 1 -------- ------------- ----------- ----------- ----------- Naga Hills 0.690 1 -------------- ------------ ----------- ----------- Arakan Yoma -0.093 0.471 1 ------------ ----------- ---------- Surma Valley -0.049 0.183 0.282 1 ----------- ----------- Shillong Plateau -0.134 -0.172 -0.092 -0.079 1 ------------ Brahma. Valley -0.074 -0.200 0.031 -0.040 0.405 1 From the above values it is seen that the correlation coefficient is maximum between Naga Hills – Eastern Himalayas followed by Naga Hills – Arakan Yoma which is in accordance with fig.11. The values of correlation coefficient obtained thus indicate that if strain energy released by a tectonic block is significant then it may influence the accumulation and release of energy by the rocks of the nearby tectonic blocks. Source of variation (Sum of Squares) SS (degree of freedom) d.f. (Mean Square) MS F-ratio 5% F – limit (from table) Between Sample 67139064 5 13427813 2.679766 2.772853 Within Sample 90194664 18 5010815 Total 1.57 x 108 23
  • 10. Seismic Strain Energy Release Pattern in Northeast India and its Adjoining Region www.iosrjournals.org 43 | Page V. Conclusion It can be inferred from the study of strain release pattern of the six tectonic blocks of the study region that,  Eastern side of the region consisting of the Naga Hills and Arakan – Yoma block is seismically more active than the other regions.  The strain energy due to release as off 2012 (31st July) of the study region is 54.63 x 1020 ergs which indicates that there is a probability of occurrence of an earthquake of magnitude around 6.64 mb in the near future.  Again, it has been observed that the strain energy bearing capacity of the rocks of the Arakan – Yoma region is high as compared to other regions. Moreover, in the Shillong Plateau amount of strain energy due to release as on 31 – 07 – 2012 is comparable with the estimated strain bearing capacity of the rocks of the region. Hence the probability of occurrence of earthquake in that region in the near future is greater than the other regions.  It is also seen that there is some effect of release of energy by a tectonic block on nearby blocks when earthquakes of magnitude greater than 6.0mb occur.  From the iso-strain release map we get some idea about the crustal structure of the study region and also areas of different seismic activity could be identified. The present study has great significance as a number of devastating earthquakes have occurred in this region. Again, knowledge of the size of the most probable earthquake that might occur in the region will help the structural and architect engineers while designing buildings. Thus, a detailed analysis of strain energy release pattern of the region would be very useful in minimizing the loss of life and property due to a seismic event. References [1] H.C. Goswami, and S.K. Sarmah,, Probabilistic Earthquake Expectancy in the North-East Indian region. Bulletin of the Seismological Society of America, Vol. 72, 1982, 999 – 1009. [2] K.N. Khattri, Great Earthquake, Seismicity Gaps and Potential for Earthquake Disaster along Himalayan plate boundary. Tectonophysics. Vol. 138, 1987, 79 – 92. [3] H.N. Srivastava, Forecasting Earthquakes (National Book Trust, India, 1983). [4] H. Benioff, Seismic evidence for fault origin of oceanic depth. Bulletin of the Seismological Society of America, Vol. 60, 1949, 1837 – 1856. [5] H. Benioff, Global strain accumulation and release and reserved by great earthquakes, Bulletin of the Seismological Society of America, Vol. 56,1951, 331 – 338. [6] R.K.S. Chauhan, Regional strain energy release characteristics for Indian region. Bulletin of the Seismological Society of America, Vol. 56, 1966, 749 – 754. [7] H.C. Goswami, A Study of seismic risk in the North-East Indian region, doctoral thesis, Gauhati University, Guwahati,1984. [8] D.R. Nandy, Geodynamics of Northeastern India and the adjoining region ( ABC Publications, Calcutta, 2001) [9] P. Evans, The tectonic framework of Assam. Geological Society, India, Vol.5, 1964, 80-90. [10] D.R. Nandy, Geological set up of the eastern Himalaya and Patkoi-Naga-Arakan-Yoma (Indo-Burma) hill ranges in relation to the Indian plate movement. Himalayan Geol. Soc. IIA, Misc. Publ., Vol. 41, 1976, 205-213. [11] A.H.G. Mitchell, Phanerozoic plate boundaries in mainland SE Asia, The Himalayas and Tibet. Geol. Soc. London J.,Vol. 138, 1981, 109-122. [12] J.R. Curray, D. G. Moore, L. A. Lawver, F. J. Emmel, R. W. Raitt, M. Henry, and R.Kieckhefer , Tectonics of Andaman Sea and Burma. American Association Petro. Geolog. Memoir, Vol. 29, 1979, 189-198. [13] J.F. Dewey and J.M. Bird, Mountain belts and the new global tectonics. Jour. Of Geophys. Res., Vol. 75, 1970, 2625-2647. [14] J.R. Kayal, Seismicity of Northeast India and surroundings – development over the past 100 years, Jour. Of Geophysics, Vol. 19(1), 1998, 9-34. [15] P. Molnar and P. Tapponnier, Cenozoic tectonics of Asia: effects of a continental collision. Science, Vol. 189, 1975, 419-426. [16] P. Molnar, and P.Tapponnier, Relation of the tectonics of Eastern China to the India-Eurasia collision: application of slip-line field theory to large-scale control tectonics. Geology,Vol. 5, 1977, 212-216. [17] S.K. Sarmah, The probability of occurrence of a high magnitude earthquake in Northeast India. Journal Of Geophysics, Vol. 20(3), 1999, 129-135. [18] R.K. Verma, M. Mukhopadhyay, and M.S.Ahluwalia, Seismicity, gravity and tectonics of Northeast India and Northern Burma. Bull. Seism. Soc., Vol. 66, 1976, 1683-1694. [19] B. Guttenberg and C.F. Richter, Magnitude and energy of earthquake, Journal of Am. De.Geophysics, Vol. 9,1956,1-15. [20] A.R. Ritsma, A statistical study of the seismicity of the earth, Material and Geophysics Surv. Indonesia, 1954, 46 – 47. [21] S. Baruah, and D. Hazorika, A GIS based tectonic map of Northeastern India, Current Science, Vol. 95(25), 2008. [22] K.N. Khattri, and A.K. Tyagi, Seismicity patterns in the Himalayan plate boundary and identification of the areas of high seismic potential.Tectonophysics, Vol.96, 1993, 281-297. [23] J.R .Kayal, S.S. Arefiev, S. Baruah,D. Hazarika, N. Gogoi, A. Kumar,S.N. Chowdhury, and S. Kalita, Shillong Plateau earthquakes in Northeast India region: Complex tectonic model Current Science Vol. 91 (1), 2006, 109-114. [24] P.M. Bhattacharya, S. Mukhopadhyay,R.K. Majumder, and J.R. Kayal, 3-D Seismic Structure of Northeast India Region and Its Implication for Local and Regional Tectonics. Journal of Asian Earth Sciences, Vol. 33 No. 1-2, 2008, 25-41. [25] D.R. Nandy and S. Dasgupta, Application of remote sensing in regional geological studies – a case study in Northeastern part of India, Proceedings International Seminar On Photogrametry and remote sensing for developing countries, Vol.1, 1986, T.4-P/6.1 – T.4-P/6.4. [26] D.R. Nandy, Geodynamics of Northeastern India and the adjoining region, Geological Survey of India, Spl. Pub. Vol. 85, 2005, 49-59.