Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Public health
Public health
Wird geladen in …3
×

Hier ansehen

1 von 67 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Ähnlich wie Global Burden of Disease - Pakistan Presentation (20)

Anzeige

Weitere von Institute for Health Metrics and Evaluation - University of Washington (20)

Aktuellste (20)

Anzeige

Global Burden of Disease - Pakistan Presentation

  1. 1. The Global Burden of Diseases, Injuries, and Risk Factors Study<br />
  2. 2. Presentation Outline<br />Goal and key attributes<br />Project structure and partners<br />Mortality<br />Causes of Death<br />Systematic reviews<br />Analysis of disease-specific data for calculating YLD<br />Disability Weights measurement<br />Future work<br />2<br />
  3. 3. GBD Goal<br />To produce new, robust, and reliable estimates of burden for all major diseases, injuries, and risks that are widely disseminated, understood, and easily used by policymakers, researchers, funders, and practitioners.<br />3<br />
  4. 4. Key Attributes<br />Producing specific DALY, YLL, and YLD estimates for over 300+ diseases/injuries and 40+ risk factors by age and sex for 21 regions for the years 1990, 2005, and 2010.<br />Providing a consistent time trend (methods for current ‘00, ’02, ‘04 estimates are not comparable to ‘90).<br />Providing first comprehensive revision of Disability weights since 1996. Many Burden estimates done after the original study had used ad hoc DW based on Dutch study.<br />Providing improved analytical tools to facilitate Burden estimates and policy use.<br />4<br />
  5. 5. Presentation Outline<br />Goal and key attributes<br />Project structure and partners<br />Mortality<br />Causes of Death<br />Systematic reviews<br />Analysis of disease-specific data for calculating YLD<br />Disability Weights measurement<br />Future work<br />5<br />
  6. 6. Organizational Structure<br />Core Team<br />External Advisory Board<br />YLD Sub-Team<br />Rafael Lozano and Colin Mathers<br />CRA Sub-Team<br />Majid Ezzati<br />COD Sub-Team Rafael Lozano<br />Mortality Sub-Team<br />Chris Murray and Alan Lopez<br />DW Sub-Team<br />Josh Salomon <br />Cluster E<br />Noncommunicable Diseases<br />Catherine Michaud<br />Harvard University<br />Cluster D <br />Communicable Diseases<br />Neff Walker<br />Johns Hopkins University<br />Cluster B <br />Child/Maternal<br />Bob Black<br />Johns Hopkins University<br />Cluster A <br />CVD, COPD, Cancer<br />Majid Ezzati<br />Harvard University<br />Cluster C <br />Injuries and Mental Health<br />Theo Vos<br />University of Queensland<br />
  7. 7. Organizational structure<br />Vision, decision-making, and leadership are handled by the core team, a group of 12 key individuals from the collaborating institutions.<br />Specific analytical tasks are grouped into (1) Causes of Death, (2) Comparative Risk Assessment, (3) Disability Weights, and (4) Mortality Estimation. Each of these “subteams” are led by 1 or 2 members of the core team to guide each category’s specific scientific progress and analysis.<br />Management of diseases, injuries and risks are organized into clusters and are led by 1 member of the core team who oversees the cluster’s expert groups. <br />Expert groups are comprised of knowledgeable specialists of a disease, injury, or risk. <br />
  8. 8. 8<br />Collaborating Partners<br />
  9. 9. Expert Groups<br />44<br />Cluster A <br />CVD, COPD, Cancer<br />Majid Ezzati<br />Harvard University<br />Cluster B <br />Child/Maternal<br />Bob Black<br />Johns Hopkins University<br />Cancers<br />Cardiovascular Diseases<br />Chronic Respiratory Diseases<br />Climate Changes<br />Indoor Air Pollution<br />Metabolic Risks<br />Nutritional Risks<br />Outdoor Air Pollution<br />Physical Inactivity<br />Socioeconomic Factors<br />Tobacco<br />ARI Meningitis Sepsis<br />Child Nutrition<br />Congenital and Neonatal<br />Diarrhea<br />Malaria<br />Maternal Conditions<br />Selected Vaccine Preventable Diseases<br />Water, Sanitation, Hygiene<br />Hepatitis<br />HIV/AIDS<br />Parasitic &Vector Diseases<br />STIs<br />Tuberculosis<br />Unsafe Sex<br />Cluster D <br />Communicable Diseases<br />Neff Walker<br />Johns Hopkins University<br />Dental<br />Diabetes<br />Gastrointestinal<br />Genitourinary Diseases<br />Hearing Loss<br />Hemoglobinopathies<br />Skin Diseases<br />Vision Loss<br />Alcohol Use<br />Collective Violence<br />Illicit Drug Use<br />Intimate Partner and Sexual Violence<br />Lead Exposure<br />Mental Disorders<br />Musculoskeletal<br />Neurological Disorders<br />Occupational Risks<br />Other Injuries<br />Road Traffic Accidents<br />Cluster E<br />Noncommunicable Diseases<br />Catherine Michaud<br />Harvard University<br />Cluster C <br />Injuries and Mental Health<br />Theo Vos<br />University of Queensland<br />
  10. 10. 10<br />
  11. 11. 11<br />
  12. 12. Addictive substances <br />Tobacco use<br />Alcohol use<br />Illicit drug use <br />Environmental <br />Unsafe water, sanitation, and hygiene <br />Urban ambient air pollution <br />Household air pollution from solid fuel use <br />Lead exposure <br />Passive smoking / Environmental tobacco smoke<br />Food contamination<br />Road and vehicle safety <br />Violence related<br />Sexual violence<br />Intimate partner violence<br />Collective violence<br />Possession of firearms<br />Undernutrition (child and maternal)<br />Folic acid deficiency<br />Anaemia and/or iron deficiency<br />Small-for-gestational age<br />Growth retardation<br />Suboptimal breasfeeding<br />Vitamin A deficiency<br />Zinc deficiency<br />Reproductive and sexual <br />Unsafe sex <br />Unwanted pregnancies<br />Risks related to medical practice<br />Genetic <br />Systemic<br />Global climate change<br />Socioeconomic factors<br />Other selected risks to health <br />Osteoporosis<br />12<br />Risk Factors<br />Occupational<br /><ul><li>Risks for injuries
  13. 13. Carcinogens
  14. 14. Airborne particulates
  15. 15. Ergonomic stressors
  16. 16. Noise
  17. 17. Pesticides
  18. 18. Other</li></ul>Metabolic, nutritional and lifestyle<br /><ul><li>High blood pressure
  19. 19. High cholesterol
  20. 20. High blood glucose
  21. 21. Dietary fats
  22. 22. High BMI
  23. 23. Low intake of fruit and vegetable
  24. 24. Physical inactivity
  25. 25. Other nutritional </li></li></ul><li>21 GBD Regions<br />13<br />
  26. 26. Age Groups for Results<br /><1 month <br />1 – 11 months <br />1 – 4 years <br />5 – 9 years <br />10 – 14 years <br />15 – 19 years <br />20 – 24 years <br />25 – 34 years <br />35 – 44 years <br />45 – 54 years <br />55 – 64 years <br />65 – 74 years <br />75 – 84 years <br />85+ years<br />14<br />
  27. 27. Presentation Outline<br />Goal and key attributes<br />Project structure and partners<br />Mortality<br />Causes of Death<br />Systematic reviews<br />Analysis of disease-specific data for calculating YLD<br />Disability weights measurement<br />Future work<br />15<br />
  28. 28. Generating regional estimates for age and sex<br />All cause mortality based on demographic sources recording the event of death.<br />The sum of all cause specific deaths for any age-sex group must equal, and not exceed, the overall mortality envelope for that age-sex group. <br />16<br />Mortality<br />
  29. 29. Mortality Estimation<br />17<br />
  30. 30. Mortality estimation: Synthesis <br />Gaussian Process Regression:<br />Synthesizes discordant time series of mortality estimates into a best estimate of smooth trend <br /> Assigns probabilities to different functions according to how likely they are to be the true function<br /> Uses prior beliefs, the data and the uncertainty in the data to inform those probabilities<br />18<br />
  31. 31. Child Mortality in Nicaragua: Example of Using VR and Survey and Census Data<br />19<br />
  32. 32. 20<br />Child Death Numbers: East Sub-Saharan Africa<br />
  33. 33. 21<br />Child Death Numbers: Global<br />
  34. 34. GPR for Adult mortality: Nicaragua<br />22<br />
  35. 35. GPR for Adults: Zimbabwe<br />23<br />
  36. 36. Using 5q0 and 45q15 to a Complete Lifetable<br />WHO uses modified logitlifetable system (Murray et al 2003) to generate complete lifetables.<br />HIV mortality is modeled separately from demographic sources and added on after demographic estimation.<br />We wanted to improve the performance of model life table systems and avoid modeling strategies that are not empirically based. <br />Over 18 months, developed a semi-parametric approach to the modified logitlifetable system that improves performance and captures the empirical impact of HIV. <br />24<br />
  37. 37. Key Attributes of Mortmatch<br />Based on 5q0, 45q15 and HIV sero-prevalence searches database of (nearly 8000 lifetables) for nearest matches using Mahalanobis distance.<br />Matched lifetables used to establish standard life table.<br />Modified logit transformation including bend factors used to estimate full survivorship curve based on matched standard. <br />25<br />
  38. 38. Validation Results<br />26<br />
  39. 39. Presentation Outline<br />Goal and key attributes<br />Project structure and partners<br />Mortality<br />Causes of Death<br />Systematic reviews<br />Analysis of disease-specific data for calculating YLD<br />Disability Weights measurement<br />Future work<br />27<br />
  40. 40. Sources: Gathering COD Data<br />Almost all information related with causes of death is useful.<br />Types of sources<br />Verbal Autopsies<br />Household Surveys<br />Hospital Records<br />Sentinel Registration<br />Demographic Surveillance Systems<br />Sample Registration Systems<br />Vital Registration with Certification of Cause of Death<br />Data providers<br /><ul><li>WHO mortality database (Geneva)
  41. 41. PAHO, EMRO, WPRO mortality databases
  42. 42. National Ministries of Health
  43. 43. Networks: INDEPTH, Matlab, India, etc.
  44. 44. Researchers
  45. 45. Literature Review</li></li></ul><li>> 5,000 country-years observed<br />29<br /><ul><li>VR data don’t get more than 100 countries per year
  46. 46. VA and maternal deaths added important value</li></li></ul><li>Data for more of 180 countries and territories <br />
  47. 47. Almost 1 billion deaths from 1950 to 2008, only 34% of total expected<br />31<br /> %<br />Developed Countries 55<br />Eastern & Central Europe 18<br />Latin-America and Carb 16<br />Asia & Oceania 7.5 <br />Middle Eats & North Afr 1.9<br />S.S.A. 0.7 <br />
  48. 48. VA Literature Search Process<br />32<br />
  49. 49. VA Literature Screening Criteria<br />33<br />Four criteria:<br />Population based study<br />Using verbal autopsy method<br />Open to any age group <br />Open to any set of causes<br />
  50. 50. 34<br />
  51. 51. 1.3 million deaths from VA studies by GBD region and source<br />35<br />
  52. 52. 1.3 million deaths from VA studies <br />36<br />
  53. 53. 37<br />Cleaning: Preparing VR Data for Analysis<br />
  54. 54. 38<br />Name of List and Number of Causes<br />3<br />CodMod I<br /><ul><li> ICD 1,2,3,4,5,6,7,8,9,10
  55. 55. ICD 9 BTL, ICD 10 Tab A
  56. 56. China (ICD 9 and 10)
  57. 57. Russia (ICD 9 and 10)</li></ul>24<br />CodMod II<br />39<br />CodModB<br />317<br />(290)*<br />GBD 2005 Cause List (ICD 10 4 digit)<br />*Causes of death<br />
  58. 58. 39<br />CODMOD level B(39)<br />CODMOD level 2 (24)<br />Mapping GBD Cause List with ICD Revisions and Other Tabulated List<br />GBD 2005 Cause List (317 )<br />GBD 1990 Cause List (100)<br />BTL<br />10<br />Tab<br />1<br />2<br />3<br />4<br />5<br />Tab B<br />6,7<br />Tab A<br />8<br />9<br />VA<br />10<br />9 tab<br />ICD and other formats<br />2000<br />1900<br />
  59. 59. CODMOD II<br />Tuberculosis<br />A1<br /> HIV/AIDS<br />A2<br />STDs excluding HIV<br />A3<br />Intestinal infectious diseases<br />A4<br />CODMOD I<br /> Selected Vaccine Preventable Childhood Diseases<br />A5<br />3<br /> Malaria<br />A6<br /> Parasitic and vector diseases<br />A7<br />24<br />Meningitis and encephalitis and Hepatitis and Other infectious diseases<br />A8<br />CODMOD II<br />Respiratory infections<br />A9<br /> Maternal conditions<br />A10<br /> Perinatal and infant causes<br />A11<br /> Nutritional deficiencies<br />A12<br /> Small pox<br />A13<br /> Malignant neoplasm and B. Other neoplasm<br />B14<br /> Diabetes mellitus<br />B15<br />This level can be presented <br />with 24 causes and subgroups and 3 big groups<br /> Endocrine, nutritional, blood and immune disorders <br />B16<br />Mental and behavioral disorders--- Neurological conditions-- Sense organ diseases<br />B17<br /> Cardiovascular and circulatory diseases<br />B18<br />Respiratory diseases<br />B19<br /> Digestive diseases---Oral conditions<br />B20<br />Genitourinary diseases---Skin diseases----Musculoskeletal diseases<br />B21<br /> Congenital anomalies<br />B22<br />Unintentional injuries<br />C23<br /> Intentional injuries <br />C24<br />
  60. 60. 8.1 Meningitis and encephalitis<br />8.3 Other infectious diseases<br /> 14.1 Esophagus cancer<br />14.2 Stomach cancer<br />14.4 Larynx , Trachea, bronchus and lung cancers<br />14.5 Breast cancer<br />14.6 Cervix and Corpus uteri cancer<br />14.9 Other malignant and benign neoplasm<br />18.2 Ischaemic heart disease<br /> 18.4 Cerebrovascular disease<br />18.5 Other circulatory diseases<br />20.1 Cirrhosis of the liver<br />20.2 Other digestive diseases<br />23.1Transport Injures <br />23.3 Falls<br />23.5 Accidental drowning and submersion<br />23.6 Exposure to smoke, fire and flaes, contact with heat and hot substances<br />23.7 Accidental poisoning by and exposure to noxious substances (acute or chronic)<br />23.8 Accidental exposure to other and unspecified factors <br />24.1 Self-inflicted injuries<br />24.2 Interpersonal violence<br />24.3War and civil conflict and Legally sanctioned deaths<br />CODMOD B<br />3<br />CODMOD I<br />24<br />CODMOD II<br />39<br />CODMOD B<br />From the 24 causes we are dividing Malignant Neoplasm, CVD and Injuries<br />
  61. 61. 42<br />Evolution of Garbage Codes in GBD Studies<br />1990: ill defined; heart failure and atherosclerosis; cancer without defined site and injuries ill defined<br />2000: same codes of 1990 with better methods of redistribution <br />2005: Completely different approach, based on new concepts and methods<br />More garbage codes and more targets<br />Sequences for redistribution<br />Methods of redistribution<br />
  62. 62. Distribution of Garbage Codes by Type and Region<br /><ul><li> ~20% total deaths from VR are GCs
  63. 63. 10 causes accumulate 75%
  64. 64. Intermediate causes </li></ul>are the most important Garbage Codes<br />35.0<br />30.0<br />Specials<br />Immediate<br />Sequelae<br />25.0<br />Intermediate<br />I&D UNS<br />Cancer<br />20.0<br />% of GC<br />Ill Def<br />15.0<br />10.0<br />5.0<br />0.0<br />SSA<br />Asia<br />LA<br />Europe C&E<br />ALL<br />Europe W<br />Caribbean<br />N.America<br />Australasia<br />
  65. 65. Percent of deathswithgarbagecodesSelectCountries of theAmericas, circa 2005<br />
  66. 66. Causes of Death Modeling Strategy Challenges<br />Dependent variable: age-specific rates or age-specific cause-specific mortality fractions.<br />Model each cause as a function of critical covariates available for most countries/sites: GDP, education, tobacco consumption, HIV sero-prevalence, TFR, DTP coverage, SBA, water and sanitation, war, disasters ….<br />Covariates only explain 30-40% of the variance depending on cause.<br />Sparse data for some developing regions<br />Compositional bias, data in each time period reflects a changing set of countries/sites<br />Small numbers – VA studies and small countries have huge sampling and non-sampling variation<br />45<br />
  67. 67. Causes of Death Modeling Strategy – 3 Steps<br />Step 1 – run outlier resistant models using basic covariates including negative binomial regression, quantile (L1) regression.<br />Evaluate residuals – drop outliers using Box-plot methods, assess correlations over space and time in residuals using heatmaps.<br />Use local regression methods (two-dimensional Loess) to model residuals. Space dimension relatedness is based on the observed correlation structure in the heatmaps. <br />46<br />
  68. 68. 47<br />
  69. 69. 48<br />Using VR data for 2005<br />
  70. 70. 49<br />
  71. 71. 50<br />
  72. 72. Validation of Models<br />Many variants possible at each stage. How to choose most valid predictive models and how to pool results across a range of models. <br />Three tests of predictive validity: <br />Exclude 20% of country-years at random and predict for them out of sample<br />Exclude last 10 years of sequence for all countries and predict them out of sample<br />Exclude 20% of countries and predict them entirely out of sample. <br />51<br />
  73. 73. Presentation Outline<br />Goal and key attributes<br />Project structure and partners<br />Mortality<br />Causes of Death<br />Systematic reviews<br />Analysis of disease-specific data for calculating YLD<br />Disability weights measurement<br />Future work<br />52<br />
  74. 74. Systematic Reviews<br />Objective:<br />To evaluate and interpret allavailable research evidence relevant to a particular condition<br />To date we have: <br />Recruited over 800 experts worldwide<br />Worked with experts and Core team to revise the cause list<br />Begun processing epidemiological reviews from experts<br />Next steps:<br />Upcoming expert group meeting May 2010<br />Complete systematic epidemiological reviews<br />Peer review<br />53<br />
  75. 75. CardiomyopathyEpi Review Process<br />54<br />Inclusion criteria :<br />diagnostic methods<br />ICD coding<br />epidemiological factors,<br />population-based demographics<br />
  76. 76. CardiomyopathyEpi Review Data<br />55<br />
  77. 77. Presentation Outline<br />Goal and key attributes<br />Project structure and partners<br />Mortality<br />Causes of Death<br />Systematic reviews<br />Analysis of disease-specific data for calculating YLD<br />Disability weights measurement<br />Future work<br />56<br />
  78. 78. Analysis of Disease-Specific Data for YLD<br />YLD = Disability Weight x Incidence x Duration<br />The GBD links losses of health to disease and injury causes through the concepts of cases and sequelae.<br />For incident cases of a given disease or injury in the population, there will be a distribution of current and future health states in the population, and the GBD maps this distribution of health states to a small set of discrete entities for which epidemiological estimates and YLD calculations are made.<br />Case definitions are based upon expert group guidance<br />57<br />
  79. 79. 58<br />Cardiomyopathy Disease Model<br />
  80. 80. DisMod III uses a compartmental model of disease progression to infer consistent epidemiological parameters from sparse and noisy data.<br />Generic Model of Disease<br />59<br />DisMod III<br />States<br />S: healthy (susceptible)<br />C: diseased (condition of interest) <br />D: dead from the disease<br />M: dead from all other causes <br />Transition rates<br />i: incidence<br />r: remission<br />ƒ: case fatality<br />m: all other mortality<br />
  81. 81. 60<br />DisMod III Analysis: Cardiomyopathy<br />Cardiomyopathy for males in Asia Pacific High Income region in 2005<br />
  82. 82. DisMod III Analysis: Cardiomyopathy<br />61<br />Cardiomyopathy for males in Asia Pacific High Income region in 2005<br />
  83. 83. Cardiomyopathy Prevalence<br />62<br />
  84. 84. Presentation Outline<br />Goal and key attributes<br />Project structure and partners<br />Mortality<br />Causes of Death<br />Systematic reviews<br />Analysis of disease-specific data for calculating YLD<br />Disability Weights measurement<br />Future work<br />63<br />
  85. 85. Objectives:<br />Derive disability weights for ~250 sequelae, which capture the major health consequences of all of the causes in the GBD Study<br />Address criticisms of previous approaches:<br />Focus on valuations from community respondents in a “Disability Weights Measurement Survey”<br />Use of techniques that are well-matched to the intended measurement construct<br />Provide transparent, standardized and replicable approach that will easily accommodate additions or amendments <br />64<br />Disability Weights Measurement<br />
  86. 86. Disability Weights Measurement<br />Disability weights provide the bridge between mortality and non-fatal outcomes in disability adjusted life years (DALYs)<br />Disability weights quantify overall health levels associated with different states, on a continuum between perfect health (which has a value of 0) and death (which has a value of 1)<br />Construct reflects decrements from perfect health, distinct from broader notions of well-being or social value<br />Must be measured on meaningful cardinal scale<br />65<br />
  87. 87. Disability Weights Measurement<br />Survey components<br />Community surveys in 6 sites (Tanzania, Indonesia, Bangladesh, Peru, South Africa, United States), focusing on random paired comparison and time trade-off questions for 108 sequelae<br />Open access Web-based surveys including all sequelae, and paired comparison, time trade-off and population equivalence questions <br />Community surveys are using computer-assisted personal interview approach with laptops<br />66<br />Household interview in Pemba, TZ 10/23/2009<br />
  88. 88. Presentation Outline<br />Goal and key attributes<br />Project structure and partners<br />Mortality<br />Causes of Death<br />Systematic reviews<br />Analysis of disease-specific data for calculating YLD<br />Disability weights measurement<br />Future work<br />67<br />

Hinweis der Redaktion

  • DATA ARRANGED BY CHILD/ADULT
  • Need cleaner version, CMP?

×