SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Maximum Likelihood Estimation from Uncertain
Data in the Belief Function Framework
Abstract
We consider the problem of parameter estimation in statistical models in the case where data are
uncertain and represented as belief functions. The proposed method is based on the maximization of a
generalized likelihood criterion, which can be interpreted as a degree of agreement between the statistical model
and the uncertain observations. We propose a variant of the EM algorithm that iteratively maximizes this
criterion. As an illustration, the method is applied to uncertain data clustering using finite mixture models, in the
cases of categorical and continuous attributes.
EXISTING SYSTEM
The uncertain data mining, probability theory has often been adopted as a formal framework for
representing data uncertainty. Typically, an object is represented as a probability density function over the
attribute space, rather than as a single point as usually assumed when uncertainty is neglected. Mining
techniques that have been proposed for such data include clustering algorithms density estimation
techniquesthis recent body of literature, a lot of work has been devoted to the analysis of interval-valued or
fuzzy data, in which ill-known attributes are represented, respectively, by intervals and possibility
distributions.As examples of techniques developed for such data, we may mention principal component analysis
clustering linear regression and multidimensional scaling. Probability distributions, intervals, and possibility
distributions may be seen as three instances of a more general model, in which data uncertainty is expressed by
means of belief functions. The theory of belief functions, also known as Dempster-Shafer theory or Evidence
theory, was developed by Dempster and Shafer and was further elaborated by Smets .
GLOBALSOFT TECHNOLOGIES
IEEE PROJECTS & SOFTWARE DEVELOPMENTS
IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE
BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS
CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401
Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
Disadvantages
This rule was applied to regression problems with uncertain dependent variable. Methods for building
decision trees from partially supervised data were proposed.
The partially supervised learning problem based on mixture models and a variant of the EM algorithm
maximizing a generalized likelihood criterion. A similar method was used in for partially supervised
learning in hidden Markov models.
PROPOSED SYSTEM
The best solution according to the observed-data likelihood was retained. Each object was then assigned
to the class with the largest estimated posterior probability, and the obtained partition was compared to the true
partition using the adjusted Rand index. As we can see, the algorithm successfully exploits the additional
information about attribute uncertainty, which allows us to better recover the true partition of the data. Rand
index as a function of the mean error probability on class labels, for the E2M algorithm applied to data with
uncertain and noisy labels, as well as to unsupervised data. Here again, uncertainty on class labels appears to be
successfully exploited by the algorithm. Remarkably, the results with uncertain labels never get worse than
those obtained without label information, even for error probabilities close.the corroborate the above results
with real data, similar experiments were carried out with the well-known Iris data set.5 We recall that this data
set is composed of 150 4D attribute vectors partitioned in three classes, corresponding to three species of Iris.
Advantages
The best solution according to the observed-data likelihood was retained. Each object was then assigned
to the class with the largest estimated posterior probability, and the obtained partition was compared to
the true partition using the adjusted Rand index.
The additional information about attribute uncertainty, which allows us to better recover the true
partition of the data
This is achieved using the evidential EM algorithm, which is a simple extension of the classical EM
algorithm with proved convergence properties.
Module
1. Data Model
2. EM Algorithm
3. Clustering Data
4. Random Initial Conditions
5. Estimation Of Parameters
Module Description
Data Model
The data model and the generalized likelihood criterion will now first be described in the discrete
case. The interpretation of the criterion will then be discussed in and independence assumptions
allowing us to simplify its expression.
EM Algorithm
The EM algorithm is a broadly applicable mechanism for computing maximum likelihood
estimates (MLEs) from incomplete data, in situations where maximum likelihood estimation would be
straightforward if complete data were available.
Clustering Data
The application of the E2M algorithm to the clustering of uncertain categorical data based on a
latent class model. The notations and the model will first be described. The estimation algorithm for this
problem will then be given experimental results will be reported.
Random Initial Conditions
The best solution according to the observed-data likelihood was retained. Each object was then
assigned to the class with the largest estimated posterior probability, and the obtained partition was
compared to the true partition using the adjusted Rand index. We recall that this commonly used
clustering performance measure is a corrected-for-chance version of the Rand index, which equals 0 on
average for a random partition, and 1 when comparing two identical partitions.
Estimation Of Parameters
The estimation of parameters in such models, when uncertainty on attributes is represented by
belief functions with Gaussian contour functions, and partial information on class labels may also be
available in the form of arbitrary mass functions. As in the previous section the model will first be
introduced. The estimation algorithm will then be described and simulation results will be presented
Flow Chart
CONCLUSION
A method for estimating parameters in statistical models in the case of uncertain observations has been
introduced. The proposed formalism combines aleatory uncertainty captured by a parametric statistical model
with epistemic uncertainty induced by an imperfect observation process and represented by belief functions.
Our method then seeks the value of the unknown parameter that maximizes a generalized likelihood criterion,
Data Model
EM Algorithm
Clustering Data
Random Initial Conditions
Estimation Of Parameters
which can be interpreted as a degree of agreement between the parametric model and the uncertain data. This is
achieved using the evidential EM algorithm, which is a simple extension of the classical EM algorithm with
proved convergence properties. As an illustration, the method has been applied to clustering problems with
partial knowledge of class labels and attributes, based on latent class and Gaussian mixture models. In these
problems, our approach has been shown to successfully exploit the additional information about data
uncertainty, resulting in improved performances in the clustering task. More generally, the approach introduced
in this paper is applicable to any uncertain data mining problem in which a parametric statistical model can be
postulated and data uncertainty arises form an imperfect observation process. This includes a wide range of
problems such as classification, regression, feature extraction, and time series prediction.
REFERENCES
[1] C.C. Aggarwal and P.S. Yu, “A Survey of Uncertain Data Algorithms and Applications,” IEEE Trans.
Knowledge and Data Eng., vol. 21, no. 5, pp. 609-623, May 2009.
[2] C.C. Aggarwal, Managing and Mining Uncertain Data, series Advances in Data Base Systems, vol. 35.
Springer, 2009.
[3] R. Cheng, M. Chau, M. Garofalakis, and J.X. Yu, “Guest Editors’ Introduction: Special Section on Mining
Large Uncertain and Probabilistic Databases,” IEEE Trans. Knowledge and Data Eng., vol. 22, no. 9, pp. 1201-
1202, Sept. 2010.
[4] M.A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei, “Probabilistic Reverse Nearest Neighbor Queries on
Uncertain Data,” IEEE Trans. Knowledge and Data Eng., vol. 22, no. 4, pp. 550- 564, Apr. 2010.
[5] S. Tsang, B. Kao, K. Yip, W. Ho, and S. Lee, “Decision Trees for Uncertain Data,” IEEE Trans. Knowledge
and Data Eng., vol. 23, no. 1, pp. 64-78, Jan. 2011.
[6] H.-P. Kriegel and M. Pfeifle, “Density-Based Clustering of Uncertain Data,” Proc. 11th ACM SIGKDD
Int’l Conf. Knowledge Discovery in Data Mining, pp. 672-677, 2005,
[7] W.K. Ngai, B. Kao, C.K. Chui, R. Cheng, M. Chau, and K.Y. Yip, “Efficient Clustering of Uncertain Data,”
Proc. Sixth Int’l Conf. Data Mining (ICDM ’06), pp. 436-445, 2006.

Weitere ähnliche Inhalte

Mehr von IEEEGLOBALSOFTTECHNOLOGIES

DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Collaboration in multicloud computing...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Collaboration in multicloud computing...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Collaboration in multicloud computing...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Collaboration in multicloud computing...IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Cloud mov cloud based mobile social tv
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Cloud mov cloud based mobile social tvDOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Cloud mov cloud based mobile social tv
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Cloud mov cloud based mobile social tvIEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT An adaptive cloud downloading service
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT An adaptive cloud downloading serviceDOTNET 2013 IEEE CLOUDCOMPUTING PROJECT An adaptive cloud downloading service
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT An adaptive cloud downloading serviceIEEEGLOBALSOFTTECHNOLOGIES
 

Mehr von IEEEGLOBALSOFTTECHNOLOGIES (20)

DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Collaboration in multicloud computing...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Collaboration in multicloud computing...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Collaboration in multicloud computing...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Collaboration in multicloud computing...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Cloud mov cloud based mobile social tv
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Cloud mov cloud based mobile social tvDOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Cloud mov cloud based mobile social tv
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Cloud mov cloud based mobile social tv
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT An adaptive cloud downloading service
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT An adaptive cloud downloading serviceDOTNET 2013 IEEE CLOUDCOMPUTING PROJECT An adaptive cloud downloading service
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT An adaptive cloud downloading service
 

Kürzlich hochgeladen

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 

Kürzlich hochgeladen (20)

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 

JAVA 2013 IEEE DATAMINING PROJECT Maximum Likelihood Estimation from Uncertain Data in the Belief Function Framework

  • 1. Maximum Likelihood Estimation from Uncertain Data in the Belief Function Framework Abstract We consider the problem of parameter estimation in statistical models in the case where data are uncertain and represented as belief functions. The proposed method is based on the maximization of a generalized likelihood criterion, which can be interpreted as a degree of agreement between the statistical model and the uncertain observations. We propose a variant of the EM algorithm that iteratively maximizes this criterion. As an illustration, the method is applied to uncertain data clustering using finite mixture models, in the cases of categorical and continuous attributes. EXISTING SYSTEM The uncertain data mining, probability theory has often been adopted as a formal framework for representing data uncertainty. Typically, an object is represented as a probability density function over the attribute space, rather than as a single point as usually assumed when uncertainty is neglected. Mining techniques that have been proposed for such data include clustering algorithms density estimation techniquesthis recent body of literature, a lot of work has been devoted to the analysis of interval-valued or fuzzy data, in which ill-known attributes are represented, respectively, by intervals and possibility distributions.As examples of techniques developed for such data, we may mention principal component analysis clustering linear regression and multidimensional scaling. Probability distributions, intervals, and possibility distributions may be seen as three instances of a more general model, in which data uncertainty is expressed by means of belief functions. The theory of belief functions, also known as Dempster-Shafer theory or Evidence theory, was developed by Dempster and Shafer and was further elaborated by Smets . GLOBALSOFT TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
  • 2. Disadvantages This rule was applied to regression problems with uncertain dependent variable. Methods for building decision trees from partially supervised data were proposed. The partially supervised learning problem based on mixture models and a variant of the EM algorithm maximizing a generalized likelihood criterion. A similar method was used in for partially supervised learning in hidden Markov models. PROPOSED SYSTEM The best solution according to the observed-data likelihood was retained. Each object was then assigned to the class with the largest estimated posterior probability, and the obtained partition was compared to the true partition using the adjusted Rand index. As we can see, the algorithm successfully exploits the additional information about attribute uncertainty, which allows us to better recover the true partition of the data. Rand index as a function of the mean error probability on class labels, for the E2M algorithm applied to data with uncertain and noisy labels, as well as to unsupervised data. Here again, uncertainty on class labels appears to be successfully exploited by the algorithm. Remarkably, the results with uncertain labels never get worse than those obtained without label information, even for error probabilities close.the corroborate the above results with real data, similar experiments were carried out with the well-known Iris data set.5 We recall that this data set is composed of 150 4D attribute vectors partitioned in three classes, corresponding to three species of Iris. Advantages The best solution according to the observed-data likelihood was retained. Each object was then assigned to the class with the largest estimated posterior probability, and the obtained partition was compared to the true partition using the adjusted Rand index. The additional information about attribute uncertainty, which allows us to better recover the true partition of the data This is achieved using the evidential EM algorithm, which is a simple extension of the classical EM algorithm with proved convergence properties.
  • 3. Module 1. Data Model 2. EM Algorithm 3. Clustering Data 4. Random Initial Conditions 5. Estimation Of Parameters Module Description Data Model The data model and the generalized likelihood criterion will now first be described in the discrete case. The interpretation of the criterion will then be discussed in and independence assumptions allowing us to simplify its expression. EM Algorithm The EM algorithm is a broadly applicable mechanism for computing maximum likelihood estimates (MLEs) from incomplete data, in situations where maximum likelihood estimation would be straightforward if complete data were available. Clustering Data The application of the E2M algorithm to the clustering of uncertain categorical data based on a latent class model. The notations and the model will first be described. The estimation algorithm for this problem will then be given experimental results will be reported. Random Initial Conditions The best solution according to the observed-data likelihood was retained. Each object was then assigned to the class with the largest estimated posterior probability, and the obtained partition was compared to the true partition using the adjusted Rand index. We recall that this commonly used clustering performance measure is a corrected-for-chance version of the Rand index, which equals 0 on average for a random partition, and 1 when comparing two identical partitions. Estimation Of Parameters The estimation of parameters in such models, when uncertainty on attributes is represented by belief functions with Gaussian contour functions, and partial information on class labels may also be
  • 4. available in the form of arbitrary mass functions. As in the previous section the model will first be introduced. The estimation algorithm will then be described and simulation results will be presented Flow Chart CONCLUSION A method for estimating parameters in statistical models in the case of uncertain observations has been introduced. The proposed formalism combines aleatory uncertainty captured by a parametric statistical model with epistemic uncertainty induced by an imperfect observation process and represented by belief functions. Our method then seeks the value of the unknown parameter that maximizes a generalized likelihood criterion, Data Model EM Algorithm Clustering Data Random Initial Conditions Estimation Of Parameters
  • 5. which can be interpreted as a degree of agreement between the parametric model and the uncertain data. This is achieved using the evidential EM algorithm, which is a simple extension of the classical EM algorithm with proved convergence properties. As an illustration, the method has been applied to clustering problems with partial knowledge of class labels and attributes, based on latent class and Gaussian mixture models. In these problems, our approach has been shown to successfully exploit the additional information about data uncertainty, resulting in improved performances in the clustering task. More generally, the approach introduced in this paper is applicable to any uncertain data mining problem in which a parametric statistical model can be postulated and data uncertainty arises form an imperfect observation process. This includes a wide range of problems such as classification, regression, feature extraction, and time series prediction. REFERENCES [1] C.C. Aggarwal and P.S. Yu, “A Survey of Uncertain Data Algorithms and Applications,” IEEE Trans. Knowledge and Data Eng., vol. 21, no. 5, pp. 609-623, May 2009. [2] C.C. Aggarwal, Managing and Mining Uncertain Data, series Advances in Data Base Systems, vol. 35. Springer, 2009. [3] R. Cheng, M. Chau, M. Garofalakis, and J.X. Yu, “Guest Editors’ Introduction: Special Section on Mining Large Uncertain and Probabilistic Databases,” IEEE Trans. Knowledge and Data Eng., vol. 22, no. 9, pp. 1201- 1202, Sept. 2010. [4] M.A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei, “Probabilistic Reverse Nearest Neighbor Queries on Uncertain Data,” IEEE Trans. Knowledge and Data Eng., vol. 22, no. 4, pp. 550- 564, Apr. 2010. [5] S. Tsang, B. Kao, K. Yip, W. Ho, and S. Lee, “Decision Trees for Uncertain Data,” IEEE Trans. Knowledge and Data Eng., vol. 23, no. 1, pp. 64-78, Jan. 2011. [6] H.-P. Kriegel and M. Pfeifle, “Density-Based Clustering of Uncertain Data,” Proc. 11th ACM SIGKDD Int’l Conf. Knowledge Discovery in Data Mining, pp. 672-677, 2005, [7] W.K. Ngai, B. Kao, C.K. Chui, R. Cheng, M. Chau, and K.Y. Yip, “Efficient Clustering of Uncertain Data,” Proc. Sixth Int’l Conf. Data Mining (ICDM ’06), pp. 436-445, 2006.