SlideShare ist ein Scribd-Unternehmen logo
1 von 24
Modeling Dynamic Systems
• Basic Quantities From Earthquake Records
• Fourier Transform, Frequency Domain
• Single Degree of Freedom Systems (SDOF)
Elastic Response Spectra
• Multi-Degree of Freedom Systems, (MDOF)
Modal Analysis
• Dynamic Analysis by Modal Methods
• Method of Complex Response
Earthquake Records
Numerical Concept
Acceleration vs. Time
Acceleration vs. Time

4.0000E-01
3.0000E-01
2.0000E-01

Accel (g)

1.0000E-01
0.0000E+00
-1.0000E-01
-2.0000E-01
-3.0000E-01
-4.0000E-01
0.00

10.00

20.00

30.00

40.00

50.00

Time (sec)

60.00

70.00

80.00

90.00
Acceleration vs. Time, t=16.00 tot=16 to 20 sec
vs Time 20.00 seconds
Acceleration
4.0000E-01
3.0000E-01
2.0000E-01

Accel (g)

1.0000E-01
0.0000E+00
-1.0000E-01
-2.0000E-01
-3.0000E-01
-4.0000E-01
16.00

16.50

17.00

17.50

18.00
Time (sec)

18.50

19.00

19.50

20.00
Harmonic Motion
t = time

A = amplitude of wave
ω = frequency (radians / sec) SDOF Response
1.00E-02
8.00E-03
6.00E-03

X=A sin(ωt-φ)

Displ. (m)

4.00E-03
Amplitude

2.00E-03
0.00E+00

φ = phase lag (radians )
Mass = 10.132 kg
Damping = 0.00
Spring = 1.0 N/m
ωn=√k/m=0.314 r/s
Drive Freq = 0.0
Drive Force = 0.0 N
Initial Vel. = 0.0
m/s
Initial Disp. = 0.01 m

-2.00E-03
-4.00E-03
-6.00E-03
Period=1/Frequency

-8.00E-03
-1.00E-02
0.000

5.000

10.000

15.000

20.000
time (sec)

25.000

30.000

35.000

40.000
Fourier Transform
2π s
ωS =
N ∆t

N /2


(t ) = Re ∑ X s e iωS t
x
s =0

1 N −1  e −iωS k∆t

,
∑ xk
 N k =0
 = 
X S  N −1
−iω k∆t
2
k e S ,
x
N∑
 k =0

e

− iωS k∆t

N
s = 0,1, 2,...,
2

N
2


N 
for 1 ≤ s <
2 


for s = 0, s =

= cos(ωS k∆t ) − i sin(ωS k∆t )




Mag X S = ℜX + ℑX
2
S

2
S


 ℑX S
φ = tan 
 ℜX

S

−1





Fourier Transform; El Centro
Fourier Transform of El Centro Accleration Record

0.008
0.007
0.006

Magnitude

0.005
0.004
0.003
0.002
0.001
0
0

20

40

60
Circular Frequency, v

80

100

120
Earthquake Elastic Response Spectra
P0 sin(ωt )
x

xt

m
c

k/2

m

x
k/2

c

k/2

k/2

xg

(a)

m + cx + kx = P0 sin(ω t )
x 

m + mg + cx + kx = 0 or
x
x
ωn =

k
m

(b)

D = c / ccrit

c crit = km

m + cx + kx = − mg = Pearthquake (t )
x 
x

undamped systems; ωd =

k
(1 − D 2 ) damped systems
m
Duhamel's Integral
t

p(τ)

dx (t ) = e

−ξ (1) ( t −τ )

t

1
x(t ) =
mω D

 p (τ )dτ

sin ω D (t − τ )

 mω D


p(τ ) e −ξω (t −τ ) sin ω D (t − τ ) dτ
∫
0

x(t ) = A(t ) sin ω D t − B(t ) cos ω D t
t

t

1
eξωτ
1
eξωτ
A(t ) =
∫ p(τ ) eξωt cos ωD τ dτ B(t ) = mωD ∫ p(t ) eξωt sin ωD τ dτ
mωD 0
0
A
∆τ 1 A
 A

A(t ) =

∑ (t ) ∑ (t ) = ∑ (t − ∆τ ) + p(t − ∆τ ) cos ωD (t − ∆τ )
mωD ζ ζ
2
 2

exp(−ξω∆τ ) + p(t ) cos ωD t
Elastic Response Spectrum
7.00E-02

Displacement Response Spectrum
El Centro, 1940 E-W

6.00E-02

Displacement (m)

5.00E-02
D=0.0
4.00E-02

D=0.02
D=0.05

3.00E-02

2.00E-02

1.00E-02

0.00E+00
1.00E-01

1.00E+00

1.00E+01
Frequency (rad/sec)

1.00E+02
Multi-Degree of Freedom
x3

m3
c3

k3 /2

x2

k1/2

k3/2

c2

k2/2

m1
c1

k1/2

y3

y2

m + cx + kx = p(t)
x 

y4

y1

y5

θ1
(a)

k12  k1N   x1 
k 22  k 2 N   x2 
 
 
  
  
 
ki 2  kiN   xi 

kij = force corresponding to coordinate i
due to unit displacement of coordinate j
cij = force corresponding to coordinate i
due to unit velocity of coordinate j
mij = force corresponding to coordinate i
due to unit acceleration of coordinate j

m2

k2/2

x1

 f S 1   k11
 f  k
 S 2   21
 =
   
 f Si   ki1
  

θ2

θ3
(b)

θ4

θ5
Modal Analysis

m + kx = p(t)
x

mΦX + kΦX = p(t )

T
T
T

φ n mΦX + φ n kΦX = φ n p(t)
T
T
T

φ n mφ n X n + φ n kφ n X n = φ n p(t)


M n X n + K n X n = Pn (t )
Modal Damping


M n X n + C n X n + K n X n = Pn (t )
 + 2ξ ω X + K X = Pn (t )

Xn
n n
n
n
n
Mn
T
M n ≡ φ n mφ n

T
C n ≡ φ n cφ n

T
K n ≡ φ n kφ n

c = a 0 m + a1k
C nb = φ T c b φ n = ab φ T m[m −1 k ]b φ n
n
n

T
Pn (t ) ≡ φ n p(t )
FEM Frequency Domain


[ M ]{ u} + [ K ]{ u} = { p} e

iωt

{ u} = { U} e then
{[ K ] − ω 2 [ M ]}{ U} = {p}
i ωt
Finite Elements
u1

u7
G1,ρ1,ν1

u2

u8

[ K1 ] = fn(G1 , ρ1 ,ν 1 )
[ m1 ] = fn( ρ1 )
ui = ai x + bi y + c

 k1,1
k
 2,1


k
 7 ,1
k8,1


k1, 2
k 2, 2

k1, 7
k 2, 7

k7, 2
k8, 2

k7,7
k8, 7

k1,8 u1 
k 2,8 u2 
 
 
 
k7 ,8 u7 
 
k8,8 u8 
 

ε = constant
σ = constant

[ M ]{ u} + [ K ]{ u} = { p} eiωt
m1

m2







m3
m4


  u1   k1,1 k1, 2
 u   k

k
  2   2,1 2, 2
 
 u3  +  k3,1 k3, 2

  

k 4, 2
 u4  
m5  u5  
    

k1,3
k 2,3

k 2, 4

k 3, 3

k 3, 4

k 4,3

k 4, 4

k 5, 3

k 5, 4

  u1   p1 
   
 u2   p2 
   
k3,5  u3  =  p3 eiωt

k 4,5  u4   p4 
   
k5,5  u5   p5 
   


if { u} = { U} e iωt then { u} = −ω 2 { U} e iωt and

{[ K ] − ω [ M ]}{ U} = {p} given ω, {p}, solve for { U}
2

[ K ], { U} are complex − valued

(

G* = G 1 − 2 D 2 + 2iD 1 − D 2

)
Method of Complex Response
• Given earthquake acceleration vs. time, ü(t)
• FFT => ω1, ω 2 , ω 3...ωn ; {p}1 ,{p}2 ,{p}3,{p}n
N /2

• Recall that


(t ) = Re ∑ X s e iωS t
x
s =0

{ [ K ] − ω [ M ] } { U} = {p}
2

• Solve
• FFT-1 => ü (t)
212,428 nodes, 189,078 brick elements and 1500 shell elements
Circular boundary to reduce reflections
Finite Element Model of Three-Bent Bridge
Zoom 1

Zoom 2
002 ray modeling dynamic systems
002 ray modeling dynamic systems

Weitere ähnliche Inhalte

Was ist angesagt?

Fourier series example
Fourier series exampleFourier series example
Fourier series example
Abi finni
 

Was ist angesagt? (18)

Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
 
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian ProcessesAccelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
 
07 periodic functions and fourier series
07 periodic functions and fourier series07 periodic functions and fourier series
07 periodic functions and fourier series
 
EE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheetEE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheet
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
 
Chris Sherlock's slides
Chris Sherlock's slidesChris Sherlock's slides
Chris Sherlock's slides
 
Master method theorem
Master method theoremMaster method theorem
Master method theorem
 
Jere Koskela slides
Jere Koskela slidesJere Koskela slides
Jere Koskela slides
 
SPSF02 - Graphical Data Representation
SPSF02 - Graphical Data RepresentationSPSF02 - Graphical Data Representation
SPSF02 - Graphical Data Representation
 
Notes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.modelNotes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.model
 
SPSF03 - Numerical Integrations
SPSF03 - Numerical IntegrationsSPSF03 - Numerical Integrations
SPSF03 - Numerical Integrations
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
Ece formula sheet
Ece formula sheetEce formula sheet
Ece formula sheet
 
Recurrences
RecurrencesRecurrences
Recurrences
 

Ähnlich wie 002 ray modeling dynamic systems

University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
Gaurav Vasani
 
233_Sample-Chapter (1).pdf
233_Sample-Chapter (1).pdf233_Sample-Chapter (1).pdf
233_Sample-Chapter (1).pdf
ssuser4dafea
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shape
Sam Alalimi
 

Ähnlich wie 002 ray modeling dynamic systems (20)

Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manual
 
233_Sample-Chapter.pdf
233_Sample-Chapter.pdf233_Sample-Chapter.pdf
233_Sample-Chapter.pdf
 
233_Sample-Chapter (1).pdf
233_Sample-Chapter (1).pdf233_Sample-Chapter (1).pdf
233_Sample-Chapter (1).pdf
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shape
 
Ch15 transforms
Ch15 transformsCh15 transforms
Ch15 transforms
 
LINEAR SYSTEMS
LINEAR SYSTEMSLINEAR SYSTEMS
LINEAR SYSTEMS
 
A short remark on Feller’s square root condition.
A short remark on Feller’s square root condition.A short remark on Feller’s square root condition.
A short remark on Feller’s square root condition.
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
residue
residueresidue
residue
 
Lecture1
Lecture1Lecture1
Lecture1
 
Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05
 

Mehr von Institute of Technology Telkom

Mehr von Institute of Technology Telkom (20)

Econopysics
EconopysicsEconopysics
Econopysics
 
Science and religion 100622120615-phpapp01
Science and religion 100622120615-phpapp01Science and religion 100622120615-phpapp01
Science and religion 100622120615-phpapp01
 
Konvergensi sains dan_spiritualitas
Konvergensi sains dan_spiritualitasKonvergensi sains dan_spiritualitas
Konvergensi sains dan_spiritualitas
 
Matematika arah kiblat mikrajuddin abdullah 2017
Matematika arah kiblat   mikrajuddin abdullah 2017Matematika arah kiblat   mikrajuddin abdullah 2017
Matematika arah kiblat mikrajuddin abdullah 2017
 
Iau solar effects 2005
Iau solar effects 2005Iau solar effects 2005
Iau solar effects 2005
 
Hfmsilri2jun14
Hfmsilri2jun14Hfmsilri2jun14
Hfmsilri2jun14
 
Fisika komputasi
Fisika komputasiFisika komputasi
Fisika komputasi
 
Computer Aided Process Planning
Computer Aided Process PlanningComputer Aided Process Planning
Computer Aided Process Planning
 
Archimedes
ArchimedesArchimedes
Archimedes
 
Web and text
Web and textWeb and text
Web and text
 
Web data mining
Web data miningWeb data mining
Web data mining
 
Time series Forecasting using svm
Time series Forecasting using  svmTime series Forecasting using  svm
Time series Forecasting using svm
 
Timeseries forecasting
Timeseries forecastingTimeseries forecasting
Timeseries forecasting
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
World population 1950--2050
World population 1950--2050World population 1950--2050
World population 1950--2050
 
neural networks
 neural networks neural networks
neural networks
 
Artificial neural networks
Artificial neural networks Artificial neural networks
Artificial neural networks
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
System dynamics majors fair
System dynamics majors fairSystem dynamics majors fair
System dynamics majors fair
 
System dynamics math representation
System dynamics math representationSystem dynamics math representation
System dynamics math representation
 

Kürzlich hochgeladen

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Kürzlich hochgeladen (20)

PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 

002 ray modeling dynamic systems

  • 1. Modeling Dynamic Systems • Basic Quantities From Earthquake Records • Fourier Transform, Frequency Domain • Single Degree of Freedom Systems (SDOF) Elastic Response Spectra • Multi-Degree of Freedom Systems, (MDOF) Modal Analysis • Dynamic Analysis by Modal Methods • Method of Complex Response
  • 4. Acceleration vs. Time Acceleration vs. Time 4.0000E-01 3.0000E-01 2.0000E-01 Accel (g) 1.0000E-01 0.0000E+00 -1.0000E-01 -2.0000E-01 -3.0000E-01 -4.0000E-01 0.00 10.00 20.00 30.00 40.00 50.00 Time (sec) 60.00 70.00 80.00 90.00
  • 5. Acceleration vs. Time, t=16.00 tot=16 to 20 sec vs Time 20.00 seconds Acceleration 4.0000E-01 3.0000E-01 2.0000E-01 Accel (g) 1.0000E-01 0.0000E+00 -1.0000E-01 -2.0000E-01 -3.0000E-01 -4.0000E-01 16.00 16.50 17.00 17.50 18.00 Time (sec) 18.50 19.00 19.50 20.00
  • 6. Harmonic Motion t = time A = amplitude of wave ω = frequency (radians / sec) SDOF Response 1.00E-02 8.00E-03 6.00E-03 X=A sin(ωt-φ) Displ. (m) 4.00E-03 Amplitude 2.00E-03 0.00E+00 φ = phase lag (radians ) Mass = 10.132 kg Damping = 0.00 Spring = 1.0 N/m ωn=√k/m=0.314 r/s Drive Freq = 0.0 Drive Force = 0.0 N Initial Vel. = 0.0 m/s Initial Disp. = 0.01 m -2.00E-03 -4.00E-03 -6.00E-03 Period=1/Frequency -8.00E-03 -1.00E-02 0.000 5.000 10.000 15.000 20.000 time (sec) 25.000 30.000 35.000 40.000
  • 7. Fourier Transform 2π s ωS = N ∆t N /2  (t ) = Re ∑ X s e iωS t x s =0 1 N −1  e −iωS k∆t  , ∑ xk  N k =0  =  X S  N −1 −iω k∆t 2 k e S , x N∑  k =0 e − iωS k∆t N s = 0,1, 2,..., 2 N 2   N  for 1 ≤ s < 2   for s = 0, s = = cos(ωS k∆t ) − i sin(ωS k∆t )    Mag X S = ℜX + ℑX 2 S 2 S   ℑX S φ = tan   ℜX  S  −1    
  • 8. Fourier Transform; El Centro Fourier Transform of El Centro Accleration Record 0.008 0.007 0.006 Magnitude 0.005 0.004 0.003 0.002 0.001 0 0 20 40 60 Circular Frequency, v 80 100 120
  • 9. Earthquake Elastic Response Spectra P0 sin(ωt ) x xt m c k/2 m x k/2 c k/2 k/2 xg (a) m + cx + kx = P0 sin(ω t ) x   m + mg + cx + kx = 0 or x x ωn = k m (b) D = c / ccrit c crit = km m + cx + kx = − mg = Pearthquake (t ) x  x undamped systems; ωd = k (1 − D 2 ) damped systems m
  • 10. Duhamel's Integral t p(τ) dx (t ) = e −ξ (1) ( t −τ ) t 1 x(t ) = mω D  p (τ )dτ  sin ω D (t − τ )   mω D  p(τ ) e −ξω (t −τ ) sin ω D (t − τ ) dτ ∫ 0 x(t ) = A(t ) sin ω D t − B(t ) cos ω D t t t 1 eξωτ 1 eξωτ A(t ) = ∫ p(τ ) eξωt cos ωD τ dτ B(t ) = mωD ∫ p(t ) eξωt sin ωD τ dτ mωD 0 0 A ∆τ 1 A  A  A(t ) =  ∑ (t ) ∑ (t ) = ∑ (t − ∆τ ) + p(t − ∆τ ) cos ωD (t − ∆τ ) mωD ζ ζ 2  2  exp(−ξω∆τ ) + p(t ) cos ωD t
  • 11. Elastic Response Spectrum 7.00E-02 Displacement Response Spectrum El Centro, 1940 E-W 6.00E-02 Displacement (m) 5.00E-02 D=0.0 4.00E-02 D=0.02 D=0.05 3.00E-02 2.00E-02 1.00E-02 0.00E+00 1.00E-01 1.00E+00 1.00E+01 Frequency (rad/sec) 1.00E+02
  • 12. Multi-Degree of Freedom x3 m3 c3 k3 /2 x2 k1/2 k3/2 c2 k2/2 m1 c1 k1/2 y3 y2 m + cx + kx = p(t) x  y4 y1 y5 θ1 (a) k12  k1N   x1  k 22  k 2 N   x2              ki 2  kiN   xi  kij = force corresponding to coordinate i due to unit displacement of coordinate j cij = force corresponding to coordinate i due to unit velocity of coordinate j mij = force corresponding to coordinate i due to unit acceleration of coordinate j m2 k2/2 x1  f S 1   k11  f  k  S 2   21  =      f Si   ki1    θ2 θ3 (b) θ4 θ5
  • 13. Modal Analysis m + kx = p(t) x  mΦX + kΦX = p(t ) T T T  φ n mΦX + φ n kΦX = φ n p(t) T T T  φ n mφ n X n + φ n kφ n X n = φ n p(t)  M n X n + K n X n = Pn (t )
  • 14. Modal Damping   M n X n + C n X n + K n X n = Pn (t )  + 2ξ ω X + K X = Pn (t )  Xn n n n n n Mn T M n ≡ φ n mφ n T C n ≡ φ n cφ n T K n ≡ φ n kφ n c = a 0 m + a1k C nb = φ T c b φ n = ab φ T m[m −1 k ]b φ n n n T Pn (t ) ≡ φ n p(t )
  • 15. FEM Frequency Domain  [ M ]{ u} + [ K ]{ u} = { p} e iωt { u} = { U} e then {[ K ] − ω 2 [ M ]}{ U} = {p} i ωt
  • 16. Finite Elements u1 u7 G1,ρ1,ν1 u2 u8 [ K1 ] = fn(G1 , ρ1 ,ν 1 ) [ m1 ] = fn( ρ1 ) ui = ai x + bi y + c  k1,1 k  2,1   k  7 ,1 k8,1  k1, 2 k 2, 2 k1, 7 k 2, 7 k7, 2 k8, 2 k7,7 k8, 7 k1,8 u1  k 2,8 u2        k7 ,8 u7    k8,8 u8    ε = constant σ = constant
  • 17.  [ M ]{ u} + [ K ]{ u} = { p} eiωt m1  m2       m3 m4    u1   k1,1 k1, 2  u   k  k   2   2,1 2, 2    u3  +  k3,1 k3, 2      k 4, 2  u4   m5  u5        k1,3 k 2,3 k 2, 4 k 3, 3 k 3, 4 k 4,3 k 4, 4 k 5, 3 k 5, 4   u1   p1       u2   p2      k3,5  u3  =  p3 eiωt  k 4,5  u4   p4      k5,5  u5   p5       if { u} = { U} e iωt then { u} = −ω 2 { U} e iωt and {[ K ] − ω [ M ]}{ U} = {p} given ω, {p}, solve for { U} 2 [ K ], { U} are complex − valued ( G* = G 1 − 2 D 2 + 2iD 1 − D 2 )
  • 18. Method of Complex Response • Given earthquake acceleration vs. time, ü(t) • FFT => ω1, ω 2 , ω 3...ωn ; {p}1 ,{p}2 ,{p}3,{p}n N /2 • Recall that  (t ) = Re ∑ X s e iωS t x s =0 { [ K ] − ω [ M ] } { U} = {p} 2 • Solve • FFT-1 => ü (t)
  • 19. 212,428 nodes, 189,078 brick elements and 1500 shell elements Circular boundary to reduce reflections
  • 20.
  • 21. Finite Element Model of Three-Bent Bridge