SlideShare ist ein Scribd-Unternehmen logo
1 von 35
Downloaden Sie, um offline zu lesen
PV finding with CNNs
LHCb Computing Workshop 2018
Rui Fang Henry Schreiner Mike Sokoloff
September 26, 2018
The University of Cincinnati
Objectives Introduction
Physics
• Iterative tracking and vertexing may allow
high efficiency, high speed, highly parallel
algorithms:
Use proto-tracks to find primary vertex
(PV) candidates
Use PV candidates to augment more
complete tracking
Find more PVs plus secondary vertices
• PVs available quickly
Machine learning
• Sparse 3D data (41M pixels) → rich 1D
dataset
• 1D convolutional neural net
• Great opportunities to visualize learning
process
Computation
• Highly parallelizable
• Well suited to GPUs
1/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Tracking in the LHCb Upgrade Introduction
The changes
• 30 MHz software trigger
• 7.6 PVs per event (Poisson distribution)
The problem
• Much higher pileup
• Very little time to do the tracking
• Current algorithms too slow
We need to rethink our algorithms from the ground up...
2/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
A Hybrid ML Approach Introduction
Prototracking → Kernel generation → CNN to find PVs → Informed tracking
Prototracking
• Ultra-simple/fast
• Triplets only
• Used for kernel only
Vertexing
• High efficiency
• Low false positive rate
• Useful for other reasons
Tracking
• Faster (effect TBD)
• Uses search windows
• Higher efficiency
Machine learning features (so far)
• Prototracking converts sparse 3D dataset to feature-rich 1D dataset
• Easy and effective visualization due to 1D nature
• Can see results with simple unoptimized 2-layer CNN + 1-layer linear
What follows is a proof of principle implementation for finding PVs.
3/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Vertices and Tracks Introduction
Vertices
• Events contain ≈ 7 Primary Vertices
(PVs)
A PV should contain 5+ long tracks
• Multiple Secondary Vertices (SVs) per
event as well
A SV should contain 2+ tracks
Beams
PV
Track
SV
• We are developing a way to find PVs and SVs using hit triplets
• This will enable an iterative tracking algorithm
4/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Kernel Generation Design
Hits
• Hits lie on the 26 planes
• Tracks come from PVs and SVs
• For simplicity, only 3 tracks shown
• Hits are sorted in r (distance from LHC beam)
z axis (along the beam)
x PV
5/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Kernel Generation Design
Grid
• Make a 3D grid of voxels (2D shown)
• Note: only z will be fully calculated and stored
z axis (along the beam)
x PV
5/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Kernel Generation Design
Prototrack
• Start with maximum r
• Find triplet with χ2
< 10
• Mark “used” all other hits within χ2
< 9
• Note: triplet is stored
Kernel
• Fill in each voxel center with gaussian PDF
• PDF is combined for each prototrack
z axis (along the beam)
x PV
5/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Kernel Generation Design
Prototrack
• Start with maximum r
• Find triplet with χ2
< 10
• Mark “used” all other hits within χ2
< 9
• Note: triplet is stored
Kernel
• Fill in each voxel center with gaussian PDF
• PDF is combined for each prototrack
z axis (along the beam)
x PV
5/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Kernel Generation Design
Prototrack
• Start with maximum r
• Find triplet with χ2
< 10
• Mark “used” all other hits within χ2
< 9
• Note: triplet is stored
Kernel
• Fill in each voxel center with gaussian PDF
• PDF is combined for each prototrack
z axis (along the beam)
x PV
5/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Kernel Generation Design
Kernel
• Highest PDF density at vertices
• Stores z histogram with maximum PDF values
Details
• x-y grid initially very coarse
• Search performed on maximum x-y grid cell
using stored triplets to recalculate PDF
z axis (along the beam)
x PV
5/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Example of z KDE histogram Design
100 50 0 50 100 150 200 250 300
z values [mm]
0
500
1000
1500
2000
DensityofKernel
Kernel
LHCb PVs
Other PVs
LHCb SVs
Other SVs
Human learning
• Peaks generally correspond to PVs and SVs
Challenges
• Vertex may be offset from peak
• Vertices interact
6/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Target distribution Design
Build target distribution
• real PV position as the mean of Gaussian
distribution
• σ(standard deviation) is 100 µm
• calculate the cdf of each bin around of the
mean, within ± 3 bins (± 300 µm )
7/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Neural network architecture with two convolutional layers Design
• Activation function for hidden layers: Leaky ReLu
• Activation function for output layer: Sigmoid
8/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Activation function Design
Activation function for hidden layers Activation function for output layer
9/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Cost Function Design
Approach
• Cost function should be similar to
Cross-Entropy for y → 0, y → 1;
cost = − y ln ˆy + (1 − y) ln(1 − ˆy)
• Should be symmetric with respect to
r = (ˆy/y) & 1/r
Sum Over Bins
ri ≡ (ˆyi + )/(yi + ) (1)
zi ≡
2 ri
ri + 1/ri
(2)
our cost =
bins
− ln zi (3)
10/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Cost, efficiency, and false positive rate: 2 convolutionial layers Results
11/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Cost, efficiency, and false positive rate: 3 convolutionial layers Results
12/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Compare Predictions with Targets (3 convolutional layers) Results
86.00 87.00 88.00 89.00 90.00
z values [mm]
0
50
100
150
200
250
300
350
400
KernelDensity
True: 88.062 mm
Event 0: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
99.00 100.00 101.00 102.00 103.00
z values [mm]
0
500
1000
1500
KernelDensity
True: 100.825 mm
Pred: 100.726 mm
: 99 µm
Event 0: PV found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
135.00 136.00 137.00 138.00 139.00
z values [mm]
0
200
400
600
800
1000
1200
1400
1600
KernelDensity
True: 136.602 mm
Pred: 136.601 mm
: 2 µm
Event 0: PV found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
182.00 183.00 184.00 185.00 186.00
z values [mm]
0
200
400
600
800
1000
1200
KernelDensity
True: 183.668 mm
Pred: 183.734 mm
: 66 µm
Event 0: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
13/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Compare Predictions with Targets (3 convolutional layers) Results
60.00 61.00 62.00 63.00 64.00
z values [mm]
0
100
200
300
400
500
600
KernelDensity
Pred: 61.784 mm
Event 2: False positive
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
89.00 90.00 91.00 92.00 93.00
z values [mm]
0
200
400
600
800
1000
KernelDensity
True: 91.279 mm
Pred: 91.244 mm
: 35 µm
Event 2: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
109.00 110.00 111.00 112.00 113.00
z values [mm]
0
50
100
150
200
KernelDensity
True: 110.675 mm
Event 2: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
127.00 128.00 129.00 130.00 131.00
z values [mm]
0
500
1000
1500
2000
KernelDensity
True: 128.742 mm
Pred: 128.720 mm
: 22 µm
Event 2: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
14/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Efficiencies and False Positive Rates Results
parameter 2 CVN Layers 3 CVN Layers 4 CVN Layers
(Efficiency) = TP
TP+FN
≈ 58% ≈ 70% ≈ 75%
False Positive rate = FP
number of events
≈ 0.07 ≈ 0.08 ≈ 0.13
Found Not found
Real PV True positive False negative
Not a real PV False positive True negative
True Positive
• search ±5 bins (±500µm) around a real PV
• at least 3 (4) bins with predicted probability > 1% and integrated probability > 20%.
False Positive
• at least 3 (4) bins with individual probabilities > 1% and integrated probability > 20%.
• no real PV within ±5 bins (±500µm) of that cluster.
15/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Future Plans Future Plans
Some Ideas
• Model PV resolution as a function of the number of tracks; right now, the target function
is always generated assuming σz = 100 µm;
• Extract σz from predicted signals;
• Extend algorithm to find PV (x, y, z) target functions, not just PV z target functions.
• Mask PVs with < 5 long tracks (not labeled as PVs now)
• Ask the algorithm (very nicely) to find Secondary Vertices as well; it should probably use
both the original KDE histogram and the learned PV histogram as inputs. It may be
possible to re-use some of the features generated by the convolutional layers.
• Integrate KDE plus PV-finding code into an iterative tracking and vertexing algorithm;
well-defined vertex positions may be able to serve as anchors for good tracks, restricting
the roads to be searched.
• Optimize NN architecture to (i) improve learning, (ii) improve learning speed,
(iii) minimize inference costs (cycles and memory). Increase training sample.
16/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Compare Predictions with Targets (3 convolutional layers) Backup
31.00 32.00 33.00 34.00 35.00
z values [mm]
0
200
400
600
800
KernelDensity
True: 32.975 mm
Pred: 32.766 mm
: 209 µm
Event 1: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
92.00 93.00 94.00 95.00 96.00
z values [mm]
0
50
100
150
200
250
300
350
400
KernelDensity
True: 93.727 mm
Event 1: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
107.00 108.00 109.00 110.00 111.00 112.00
z values [mm]
0
100
200
300
400
500
KernelDensity
True: 109.659 mm
Pred: 109.530 mm
: 129 µm
Event 1: PV found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
116.00 117.00 118.00 119.00 120.00
z values [mm]
0
200
400
600
800
1000
KernelDensity
True: 118.176 mm
Pred: 118.224 mm
: 48 µm
Event 1: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Probability
Target
Predicted
17/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
Compare Predictions with Targets (3 convolutional layers) Backup
138.00 139.00 140.00 141.00 142.00
z values [mm]
0
500
1000
1500
KernelDensity
True: 139.889 mm
Pred: 139.861 mm
: 28 µm
Event 1: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Probability
Target
Predicted
152.00 153.00 154.00 155.00 156.00
z values [mm]
0
500
1000
1500
2000
KernelDensity
True: 153.906 mm
Pred: 153.864 mm
: 42 µm
Event 1: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
194.00 195.00 196.00 197.00 198.00
z values [mm]
0
50
100
150
200
250
KernelDensity
True: 195.838 mm
Event 1: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
222.00 223.00 224.00 225.00 226.00
z values [mm]
0
50
100
150
200
250
300
350
400
KernelDensity
True: 224.386 mm
Pred: 224.583 mm
: 197 µm
Event 1: PV found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
18/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
More Predictions with Targets (3 CVN layers) Backup
159.00 160.00 161.00 162.00 163.00
z values [mm]
0
20
40
60
80
100
120
KernelDensity
True: 160.920 mm
Event 2: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
65.00 66.00 67.00 68.00 69.00
z values [mm]
0
500
1000
1500
2000
KernelDensity
True: 66.923 mm
Pred: 66.964 mm
: 42 µm
Event 3: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
66.00 67.00 68.00 69.00 70.00
z values [mm]
0
500
1000
1500
2000
KernelDensity
True: 67.930 mm
Event 3: PV not found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
108.00 109.00 110.00 111.00 112.00
z values [mm]
0
200
400
600
800
1000
1200
KernelDensity
True: 110.449 mm
Pred: 110.413 mm
: 36 µm
Event 3: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
19/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
More Predictions with Targets (3 CVN layers) Backup
120.00 121.00 122.00 123.00 124.00
z values [mm]
0
100
200
300
400
500
600
700
KernelDensity
True: 122.303 mm
Pred: 122.261 mm
: 42 µm
Event 3: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
208.00 209.00 210.00 211.00 212.00
z values [mm]
0
50
100
150
200
250
300
KernelDensity
True: 210.210 mm
Pred: 210.417 mm
: 207 µm
Event 3: PV found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
239.00 240.00 241.00 242.00 243.00
z values [mm]
0
10
20
30
40
50
60
70
KernelDensity
True: 240.865 mm
Event 3: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
17.00 18.00 19.00 20.00 21.00
z values [mm]
0
50
100
150
KernelDensity
True: 19.440 mm
Event 4: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
20/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
More Predictions with Targets (3 CVN layers) Backup
71.00 72.00 73.00 74.00 75.00
z values [mm]
0
500
1000
1500
2000
KernelDensity
True: 72.816 mm
Pred: 72.764 mm
: 52 µm
Event 4: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
92.00 93.00 94.00 95.00 96.00
z values [mm]
0
100
200
300
400
KernelDensity
True: 93.940 mm
Pred: 93.959 mm
: 19 µm
Event 4: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
117.00 118.00 119.00 120.00 121.00
z values [mm]
0
200
400
600
800
KernelDensity
True: 119.325 mm
Pred: 119.513 mm
: 188 µm
Event 4: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
145.00 146.00 147.00 148.00 149.00
z values [mm]
0
50
100
150
200
250
300
350
400
KernelDensity
True: 146.840 mm
Pred: 146.923 mm
: 84 µm
Event 4: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
Probability
Target
Predicted
21/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
More Predictions with Targets (3 CVN layers) Backup
195.00 196.00 197.00 198.00 199.00
z values [mm]
0
50
100
150
200
250
300
350
400
KernelDensity
True: 197.279 mm
Pred: 197.330 mm
: 51 µm
Event 4: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
60.00 61.00 62.00 63.00 64.00
z values [mm]
0
100
200
300
400
500
600
700
800
KernelDensity
True: 62.436 mm
Pred: 62.428 mm
: 8 µm
Event 5: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
72.00 73.00 74.00 75.00 76.00
z values [mm]
0
500
1000
1500
2000
2500
KernelDensity
True: 73.592 mm
Pred: 73.594 mm
: 2 µm
Event 5: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
98.00 99.00 100.00 101.00 102.00
z values [mm]
0
500
1000
1500
2000
2500
KernelDensity
True: 100.143 mm
Pred: 100.129 mm
: 14 µm
Event 5: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
22/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
More Predictions with Targets (3 CVN layers) Backup
113.00 114.00 115.00 116.00 117.00
z values [mm]
0
200
400
600
800
1000
1200
KernelDensity
True: 114.670 mm
Pred: 114.756 mm
: 86 µm
Event 5: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
131.00 132.00 133.00 134.00 135.00
z values [mm]
0
50
100
150
200
250
KernelDensity
True: 132.683 mm
Pred: 132.622 mm
: 61 µm
Event 5: PV found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
156.00 157.00 158.00 159.00 160.00
z values [mm]
0
500
1000
1500
KernelDensity
True: 158.211 mm
Pred: 158.333 mm
: 121 µm
Event 5: PV found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
158.00 159.00 160.00 161.00 162.00
z values [mm]
0
500
1000
1500
KernelDensity
True: 159.703 mm
Event 5: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
23/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
More Predictions with Targets (3 CVN layers) Backup
176.00 177.00 178.00 179.00 180.00
z values [mm]
0
200
400
600
800
1000
1200
KernelDensity
True: 177.635 mm
Pred: 177.621 mm
: 14 µm
Event 5: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
10.00 11.00 12.00 13.00 14.00
z values [mm]
0
50
100
150
200
250
300
350
KernelDensity
True: 11.973 mm
Event 6: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
50.00 51.00 52.00 53.00 54.00 55.00
z values [mm]
0
500
1000
1500
2000
KernelDensity
True: 52.597 mm
Pred: 52.550 mm
: 47 µm
Event 6: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Probability
Target
Predicted
56.00 57.00 58.00 59.00 60.00 61.00
z values [mm]
0
100
200
300
400
500
600
700
KernelDensity
True: 58.490 mm
Pred: 58.494 mm
: 4 µm
Event 6: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
24/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
More Predictions with Targets (3 CVN layers) Backup
141.00 142.00 143.00 144.00 145.00
z values [mm]
0
500
1000
1500
2000
KernelDensity
True: 143.421 mm
Pred: 143.445 mm
: 24 µm
Event 6: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
147.00 148.00 149.00 150.00 151.00
z values [mm]
0
200
400
600
800
1000
1200
KernelDensity
True: 148.586 mm
Pred: 148.622 mm
: 36 µm
Event 6: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
229.00 230.00 231.00 232.00 233.00
z values [mm]
0
100
200
300
400
500
KernelDensity
True: 230.789 mm
Pred: 230.886 mm
: 97 µm
Event 6: PV found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
61.00 62.00 63.00 64.00 65.00
z values [mm]
0
50
100
150
200
KernelDensity
True: 62.706 mm
Event 7: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
25/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
More Predictions with Targets (3 CVN layers) Backup
101.00 102.00 103.00 104.00 105.00 106.00
z values [mm]
0
100
200
300
400
KernelDensity
True: 103.480 mm
Event 7: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
105.00 106.00 107.00 108.00 109.00
z values [mm]
0
200
400
600
800
1000
KernelDensity
True: 106.733 mm
Pred: 106.813 mm
: 80 µm
Event 7: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
165.00 166.00 167.00 168.00 169.00
z values [mm]
0
200
400
600
800
1000
KernelDensity
True: 167.395 mm
Pred: 167.434 mm
: 40 µm
Event 7: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
18.00 19.00 20.00 21.00 22.00
z values [mm]
0
500
1000
1500
2000
KernelDensity
True: 19.824 mm
Pred: 19.877 mm
: 53 µm
Event 8: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
26/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
More Predictions with Targets (3 CVN layers) Backup
113.00 114.00 115.00 116.00 117.00
z values [mm]
0
100
200
300
400
500
KernelDensity
True: 114.807 mm
Event 8: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
155.00 156.00 157.00 158.00 159.00
z values [mm]
0
200
400
600
800
1000
KernelDensity
True: 157.448 mm
Pred: 157.432 mm
: 16 µm
Event 8: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
161.00 162.00 163.00 164.00 165.00
z values [mm]
0
100
200
300
400
500
600
KernelDensity
True: 162.676 mm
Event 8: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
162.00 163.00 164.00 165.00 166.00
z values [mm]
0
100
200
300
400
500
600
KernelDensity
True: 163.772 mm
Event 8: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
27/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
More Predictions with Targets (3 CVN layers) Backup
228.00 229.00 230.00 231.00 232.00
z values [mm]
0
50
100
150
200
KernelDensity
True: 230.200 mm
Event 8: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
1.00 2.00 3.00 4.00 5.00
z values [mm]
0
500
1000
1500
2000
2500
3000
KernelDensity
True: 3.065 mm
Pred: 3.068 mm
: 3 µm
Event 9: PV found
Kernel Density
0.0
0.2
0.4
0.6
0.8
1.0
Probability
Target
Predicted
64.00 65.00 66.00 67.00 68.00
z values [mm]
0
50
100
150
200
250
300
350
KernelDensity
True: 65.737 mm
Event 9: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
153.00 154.00 155.00 156.00 157.00
z values [mm]
0
50
100
150
200
250
KernelDensity
True: 155.047 mm
Event 9: PV not found
Kernel Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Probability
Target
Predicted
28/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018
The VELO Backup
Tracks
• Originate from vertices (not shown)
• Hits originate from tracks
• We only know the true track in simulation
• Nearly straight, but tracks may scatter in material
The VELO
• A set of 26 planes that detect tracks
• Tracks should hit one or more pixels per plane
• Sparse 3D dataset (41M pixels)
29/16Fang, Schreiner, Sokoloff
PV finding with CNNs: LHCb Computing Workshop 2018
September 26, 2018

Weitere ähnliche Inhalte

Was ist angesagt?

Automatic Features Generation And Model Training On Spark: A Bayesian Approach
Automatic Features Generation And Model Training On Spark: A Bayesian ApproachAutomatic Features Generation And Model Training On Spark: A Bayesian Approach
Automatic Features Generation And Model Training On Spark: A Bayesian ApproachSpark Summit
 
Using Pleiades Very High Resolution Images for planning activities in feasib...
Using Pleiades  Very High Resolution Images for planning activities in feasib...Using Pleiades  Very High Resolution Images for planning activities in feasib...
Using Pleiades Very High Resolution Images for planning activities in feasib...Argongra Gis
 
Efficient Data Stream Classification via Probabilistic Adaptive Windows
Efficient Data Stream Classification via Probabilistic Adaptive WindowsEfficient Data Stream Classification via Probabilistic Adaptive Windows
Efficient Data Stream Classification via Probabilistic Adaptive WindowsAlbert Bifet
 
Real-Time Visual Simulation of Smoke
Real-Time Visual Simulation of SmokeReal-Time Visual Simulation of Smoke
Real-Time Visual Simulation of SmokeMuhammad Karim
 
Neighbourhood Preserving Quantisation for LSH SIGIR Poster
Neighbourhood Preserving Quantisation for LSH SIGIR PosterNeighbourhood Preserving Quantisation for LSH SIGIR Poster
Neighbourhood Preserving Quantisation for LSH SIGIR PosterSean Moran
 
Super COMPUTING Journal
Super COMPUTING JournalSuper COMPUTING Journal
Super COMPUTING JournalPandey_G
 
Fast Perceptron Decision Tree Learning from Evolving Data Streams
Fast Perceptron Decision Tree Learning from Evolving Data StreamsFast Perceptron Decision Tree Learning from Evolving Data Streams
Fast Perceptron Decision Tree Learning from Evolving Data StreamsAlbert Bifet
 
Graph500 and Green Graph500 benchmarks on SGI UV2000 @ SGI UG SC14
Graph500 and Green Graph500 benchmarks on SGI UV2000 @ SGI UG SC14Graph500 and Green Graph500 benchmarks on SGI UV2000 @ SGI UG SC14
Graph500 and Green Graph500 benchmarks on SGI UV2000 @ SGI UG SC14Yuichiro Yasui
 
NUMA-aware Scalable Graph Traversal on SGI UV Systems
NUMA-aware Scalable Graph Traversal on SGI UV SystemsNUMA-aware Scalable Graph Traversal on SGI UV Systems
NUMA-aware Scalable Graph Traversal on SGI UV SystemsYuichiro Yasui
 
FDTD Analysis of the Complex Current Distribution on a circular disk exposed ...
FDTD Analysis of the Complex Current Distribution on a circular disk exposed ...FDTD Analysis of the Complex Current Distribution on a circular disk exposed ...
FDTD Analysis of the Complex Current Distribution on a circular disk exposed ...kagikenco
 
Using Very High Resolution Satellite Images for Planning Activities in Mining
Using Very High Resolution Satellite Images for Planning Activities in MiningUsing Very High Resolution Satellite Images for Planning Activities in Mining
Using Very High Resolution Satellite Images for Planning Activities in MiningArgongra Gis
 
HACKSing heterogeneity in cell motility
HACKSing heterogeneity in cell motilityHACKSing heterogeneity in cell motility
HACKSing heterogeneity in cell motilityHee June Choi
 
ES_SAA_OG_PF_ECCTD_Pos
ES_SAA_OG_PF_ECCTD_PosES_SAA_OG_PF_ECCTD_Pos
ES_SAA_OG_PF_ECCTD_PosSyed Asad Alam
 
Сегментация объектов на спутниковых снимках (Kaggle DSTL) / Артур Кузин (Avito)
Сегментация объектов на спутниковых снимках (Kaggle DSTL) / Артур Кузин (Avito)Сегментация объектов на спутниковых снимках (Kaggle DSTL) / Артур Кузин (Avito)
Сегментация объектов на спутниковых снимках (Kaggle DSTL) / Артур Кузин (Avito)Ontico
 
STRIP: stream learning of influence probabilities.
STRIP: stream learning of influence probabilities.STRIP: stream learning of influence probabilities.
STRIP: stream learning of influence probabilities.Albert Bifet
 

Was ist angesagt? (20)

Automatic Features Generation And Model Training On Spark: A Bayesian Approach
Automatic Features Generation And Model Training On Spark: A Bayesian ApproachAutomatic Features Generation And Model Training On Spark: A Bayesian Approach
Automatic Features Generation And Model Training On Spark: A Bayesian Approach
 
Using Pleiades Very High Resolution Images for planning activities in feasib...
Using Pleiades  Very High Resolution Images for planning activities in feasib...Using Pleiades  Very High Resolution Images for planning activities in feasib...
Using Pleiades Very High Resolution Images for planning activities in feasib...
 
Efficient Data Stream Classification via Probabilistic Adaptive Windows
Efficient Data Stream Classification via Probabilistic Adaptive WindowsEfficient Data Stream Classification via Probabilistic Adaptive Windows
Efficient Data Stream Classification via Probabilistic Adaptive Windows
 
Real-Time Visual Simulation of Smoke
Real-Time Visual Simulation of SmokeReal-Time Visual Simulation of Smoke
Real-Time Visual Simulation of Smoke
 
Neighbourhood Preserving Quantisation for LSH SIGIR Poster
Neighbourhood Preserving Quantisation for LSH SIGIR PosterNeighbourhood Preserving Quantisation for LSH SIGIR Poster
Neighbourhood Preserving Quantisation for LSH SIGIR Poster
 
Dongliang_Slides
Dongliang_SlidesDongliang_Slides
Dongliang_Slides
 
Super COMPUTING Journal
Super COMPUTING JournalSuper COMPUTING Journal
Super COMPUTING Journal
 
Fast Perceptron Decision Tree Learning from Evolving Data Streams
Fast Perceptron Decision Tree Learning from Evolving Data StreamsFast Perceptron Decision Tree Learning from Evolving Data Streams
Fast Perceptron Decision Tree Learning from Evolving Data Streams
 
Graph500 and Green Graph500 benchmarks on SGI UV2000 @ SGI UG SC14
Graph500 and Green Graph500 benchmarks on SGI UV2000 @ SGI UG SC14Graph500 and Green Graph500 benchmarks on SGI UV2000 @ SGI UG SC14
Graph500 and Green Graph500 benchmarks on SGI UV2000 @ SGI UG SC14
 
NUMA-aware Scalable Graph Traversal on SGI UV Systems
NUMA-aware Scalable Graph Traversal on SGI UV SystemsNUMA-aware Scalable Graph Traversal on SGI UV Systems
NUMA-aware Scalable Graph Traversal on SGI UV Systems
 
Processing Large ToF-SIMS Datasets
Processing Large ToF-SIMS DatasetsProcessing Large ToF-SIMS Datasets
Processing Large ToF-SIMS Datasets
 
GoogLeNet Insights
GoogLeNet InsightsGoogLeNet Insights
GoogLeNet Insights
 
P1150740001
P1150740001P1150740001
P1150740001
 
FDTD Analysis of the Complex Current Distribution on a circular disk exposed ...
FDTD Analysis of the Complex Current Distribution on a circular disk exposed ...FDTD Analysis of the Complex Current Distribution on a circular disk exposed ...
FDTD Analysis of the Complex Current Distribution on a circular disk exposed ...
 
Using Very High Resolution Satellite Images for Planning Activities in Mining
Using Very High Resolution Satellite Images for Planning Activities in MiningUsing Very High Resolution Satellite Images for Planning Activities in Mining
Using Very High Resolution Satellite Images for Planning Activities in Mining
 
HACKSing heterogeneity in cell motility
HACKSing heterogeneity in cell motilityHACKSing heterogeneity in cell motility
HACKSing heterogeneity in cell motility
 
ES_SAA_OG_PF_ECCTD_Pos
ES_SAA_OG_PF_ECCTD_PosES_SAA_OG_PF_ECCTD_Pos
ES_SAA_OG_PF_ECCTD_Pos
 
Сегментация объектов на спутниковых снимках (Kaggle DSTL) / Артур Кузин (Avito)
Сегментация объектов на спутниковых снимках (Kaggle DSTL) / Артур Кузин (Avito)Сегментация объектов на спутниковых снимках (Kaggle DSTL) / Артур Кузин (Avito)
Сегментация объектов на спутниковых снимках (Kaggle DSTL) / Артур Кузин (Avito)
 
An Overview of HDF-EOS (Part 1)
An Overview of HDF-EOS (Part 1)An Overview of HDF-EOS (Part 1)
An Overview of HDF-EOS (Part 1)
 
STRIP: stream learning of influence probabilities.
STRIP: stream learning of influence probabilities.STRIP: stream learning of influence probabilities.
STRIP: stream learning of influence probabilities.
 

Ähnlich wie LHCb Computing Workshop 2018: PV finding with CNNs

150807 Fast R-CNN
150807 Fast R-CNN150807 Fast R-CNN
150807 Fast R-CNNJunho Cho
 
Combining remote sensing earth observations and in situ networks: detection o...
Combining remote sensing earth observations and in situ networks: detection o...Combining remote sensing earth observations and in situ networks: detection o...
Combining remote sensing earth observations and in situ networks: detection o...Integrated Carbon Observation System (ICOS)
 
ieee nss mic 2016 poster N30-21
ieee nss mic 2016 poster N30-21ieee nss mic 2016 poster N30-21
ieee nss mic 2016 poster N30-21Dae Woon Kim
 
Implementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsImplementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsLuis Úbeda Medina
 
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用NVIDIA Taiwan
 
Scratch to Supercomputers: Bottoms-up Build of Large-scale Computational Lens...
Scratch to Supercomputers: Bottoms-up Build of Large-scale Computational Lens...Scratch to Supercomputers: Bottoms-up Build of Large-scale Computational Lens...
Scratch to Supercomputers: Bottoms-up Build of Large-scale Computational Lens...inside-BigData.com
 
NSC #2 - D1 05 - Renaud Lifchitz - Quantum computing in practice
NSC #2 - D1 05 - Renaud Lifchitz - Quantum computing in practiceNSC #2 - D1 05 - Renaud Lifchitz - Quantum computing in practice
NSC #2 - D1 05 - Renaud Lifchitz - Quantum computing in practiceNoSuchCon
 
Regression and Classification: An Artificial Neural Network Approach
Regression and Classification: An Artificial Neural Network ApproachRegression and Classification: An Artificial Neural Network Approach
Regression and Classification: An Artificial Neural Network ApproachKhulna University
 
The Search for Gravitational Waves
The Search for Gravitational WavesThe Search for Gravitational Waves
The Search for Gravitational Wavesinside-BigData.com
 
Computing Just What You Need: Online Data Analysis and Reduction at Extreme ...
Computing Just What You Need: Online Data Analysis and Reduction  at Extreme ...Computing Just What You Need: Online Data Analysis and Reduction  at Extreme ...
Computing Just What You Need: Online Data Analysis and Reduction at Extreme ...Ian Foster
 
ensembles_emptytemplate_v2
ensembles_emptytemplate_v2ensembles_emptytemplate_v2
ensembles_emptytemplate_v2Shrayes Ramesh
 
Anchor free object detection by deep learning
Anchor free object detection by deep learningAnchor free object detection by deep learning
Anchor free object detection by deep learningYu Huang
 
Performance Optimization of CGYRO for Multiscale Turbulence Simulations
Performance Optimization of CGYRO for Multiscale Turbulence SimulationsPerformance Optimization of CGYRO for Multiscale Turbulence Simulations
Performance Optimization of CGYRO for Multiscale Turbulence SimulationsIgor Sfiligoi
 
Clustering techniques
Clustering techniquesClustering techniques
Clustering techniquestalktoharry
 
Inside LoLA - Experiences from building a state space tool for place transiti...
Inside LoLA - Experiences from building a state space tool for place transiti...Inside LoLA - Experiences from building a state space tool for place transiti...
Inside LoLA - Experiences from building a state space tool for place transiti...Universität Rostock
 
7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.pptGustavoGuilln4
 

Ähnlich wie LHCb Computing Workshop 2018: PV finding with CNNs (20)

150807 Fast R-CNN
150807 Fast R-CNN150807 Fast R-CNN
150807 Fast R-CNN
 
Combining remote sensing earth observations and in situ networks: detection o...
Combining remote sensing earth observations and in situ networks: detection o...Combining remote sensing earth observations and in situ networks: detection o...
Combining remote sensing earth observations and in situ networks: detection o...
 
ieee nss mic 2016 poster N30-21
ieee nss mic 2016 poster N30-21ieee nss mic 2016 poster N30-21
ieee nss mic 2016 poster N30-21
 
Implementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsImplementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitations
 
Clustering.pptx
Clustering.pptxClustering.pptx
Clustering.pptx
 
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
 
Scratch to Supercomputers: Bottoms-up Build of Large-scale Computational Lens...
Scratch to Supercomputers: Bottoms-up Build of Large-scale Computational Lens...Scratch to Supercomputers: Bottoms-up Build of Large-scale Computational Lens...
Scratch to Supercomputers: Bottoms-up Build of Large-scale Computational Lens...
 
NSC #2 - D1 05 - Renaud Lifchitz - Quantum computing in practice
NSC #2 - D1 05 - Renaud Lifchitz - Quantum computing in practiceNSC #2 - D1 05 - Renaud Lifchitz - Quantum computing in practice
NSC #2 - D1 05 - Renaud Lifchitz - Quantum computing in practice
 
Regression and Classification: An Artificial Neural Network Approach
Regression and Classification: An Artificial Neural Network ApproachRegression and Classification: An Artificial Neural Network Approach
Regression and Classification: An Artificial Neural Network Approach
 
The Search for Gravitational Waves
The Search for Gravitational WavesThe Search for Gravitational Waves
The Search for Gravitational Waves
 
9553477.ppt
9553477.ppt9553477.ppt
9553477.ppt
 
Computing Just What You Need: Online Data Analysis and Reduction at Extreme ...
Computing Just What You Need: Online Data Analysis and Reduction  at Extreme ...Computing Just What You Need: Online Data Analysis and Reduction  at Extreme ...
Computing Just What You Need: Online Data Analysis and Reduction at Extreme ...
 
ensembles_emptytemplate_v2
ensembles_emptytemplate_v2ensembles_emptytemplate_v2
ensembles_emptytemplate_v2
 
Anchor free object detection by deep learning
Anchor free object detection by deep learningAnchor free object detection by deep learning
Anchor free object detection by deep learning
 
Performance Optimization of CGYRO for Multiscale Turbulence Simulations
Performance Optimization of CGYRO for Multiscale Turbulence SimulationsPerformance Optimization of CGYRO for Multiscale Turbulence Simulations
Performance Optimization of CGYRO for Multiscale Turbulence Simulations
 
Object Detection - Míriam Bellver - UPC Barcelona 2018
Object Detection - Míriam Bellver - UPC Barcelona 2018Object Detection - Míriam Bellver - UPC Barcelona 2018
Object Detection - Míriam Bellver - UPC Barcelona 2018
 
Clustering techniques
Clustering techniquesClustering techniques
Clustering techniques
 
Inside LoLA - Experiences from building a state space tool for place transiti...
Inside LoLA - Experiences from building a state space tool for place transiti...Inside LoLA - Experiences from building a state space tool for place transiti...
Inside LoLA - Experiences from building a state space tool for place transiti...
 
7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt
 
HS Demo
HS DemoHS Demo
HS Demo
 

Mehr von Henry Schreiner

Software Quality Assurance Tooling - Wintersession 2024
Software Quality Assurance Tooling - Wintersession 2024Software Quality Assurance Tooling - Wintersession 2024
Software Quality Assurance Tooling - Wintersession 2024Henry Schreiner
 
Princeton RSE Peer network first meeting
Princeton RSE Peer network first meetingPrinceton RSE Peer network first meeting
Princeton RSE Peer network first meetingHenry Schreiner
 
Software Quality Assurance Tooling 2023
Software Quality Assurance Tooling 2023Software Quality Assurance Tooling 2023
Software Quality Assurance Tooling 2023Henry Schreiner
 
Princeton Wintersession: Software Quality Assurance Tooling
Princeton Wintersession: Software Quality Assurance ToolingPrinceton Wintersession: Software Quality Assurance Tooling
Princeton Wintersession: Software Quality Assurance ToolingHenry Schreiner
 
What's new in Python 3.11
What's new in Python 3.11What's new in Python 3.11
What's new in Python 3.11Henry Schreiner
 
Everything you didn't know you needed
Everything you didn't know you neededEverything you didn't know you needed
Everything you didn't know you neededHenry Schreiner
 
SciPy22 - Building binary extensions with pybind11, scikit build, and cibuild...
SciPy22 - Building binary extensions with pybind11, scikit build, and cibuild...SciPy22 - Building binary extensions with pybind11, scikit build, and cibuild...
SciPy22 - Building binary extensions with pybind11, scikit build, and cibuild...Henry Schreiner
 
PyCon 2022 -Scikit-HEP Developer Pages: Guidelines for modern packaging
PyCon 2022 -Scikit-HEP Developer Pages: Guidelines for modern packagingPyCon 2022 -Scikit-HEP Developer Pages: Guidelines for modern packaging
PyCon 2022 -Scikit-HEP Developer Pages: Guidelines for modern packagingHenry Schreiner
 
PyCon2022 - Building Python Extensions
PyCon2022 - Building Python ExtensionsPyCon2022 - Building Python Extensions
PyCon2022 - Building Python ExtensionsHenry Schreiner
 
boost-histogram / Hist: PyHEP Topical meeting
boost-histogram / Hist: PyHEP Topical meetingboost-histogram / Hist: PyHEP Topical meeting
boost-histogram / Hist: PyHEP Topical meetingHenry Schreiner
 
Digital RSE: automated code quality checks - RSE group meeting
Digital RSE: automated code quality checks - RSE group meetingDigital RSE: automated code quality checks - RSE group meeting
Digital RSE: automated code quality checks - RSE group meetingHenry Schreiner
 
RDM 2020: Python, Numpy, and Pandas
RDM 2020: Python, Numpy, and PandasRDM 2020: Python, Numpy, and Pandas
RDM 2020: Python, Numpy, and PandasHenry Schreiner
 
HOW 2019: A complete reproducible ROOT environment in under 5 minutes
HOW 2019: A complete reproducible ROOT environment in under 5 minutesHOW 2019: A complete reproducible ROOT environment in under 5 minutes
HOW 2019: A complete reproducible ROOT environment in under 5 minutesHenry Schreiner
 
2019 IRIS-HEP AS workshop: Boost-histogram and hist
2019 IRIS-HEP AS workshop: Boost-histogram and hist2019 IRIS-HEP AS workshop: Boost-histogram and hist
2019 IRIS-HEP AS workshop: Boost-histogram and histHenry Schreiner
 
IRIS-HEP: Boost-histogram and Hist
IRIS-HEP: Boost-histogram and HistIRIS-HEP: Boost-histogram and Hist
IRIS-HEP: Boost-histogram and HistHenry Schreiner
 
2019 IRIS-HEP AS workshop: Particles and decays
2019 IRIS-HEP AS workshop: Particles and decays2019 IRIS-HEP AS workshop: Particles and decays
2019 IRIS-HEP AS workshop: Particles and decaysHenry Schreiner
 
IRIS-HEP Retreat: Boost-Histogram Roadmap
IRIS-HEP Retreat: Boost-Histogram RoadmapIRIS-HEP Retreat: Boost-Histogram Roadmap
IRIS-HEP Retreat: Boost-Histogram RoadmapHenry Schreiner
 

Mehr von Henry Schreiner (20)

Software Quality Assurance Tooling - Wintersession 2024
Software Quality Assurance Tooling - Wintersession 2024Software Quality Assurance Tooling - Wintersession 2024
Software Quality Assurance Tooling - Wintersession 2024
 
Princeton RSE Peer network first meeting
Princeton RSE Peer network first meetingPrinceton RSE Peer network first meeting
Princeton RSE Peer network first meeting
 
Software Quality Assurance Tooling 2023
Software Quality Assurance Tooling 2023Software Quality Assurance Tooling 2023
Software Quality Assurance Tooling 2023
 
Princeton Wintersession: Software Quality Assurance Tooling
Princeton Wintersession: Software Quality Assurance ToolingPrinceton Wintersession: Software Quality Assurance Tooling
Princeton Wintersession: Software Quality Assurance Tooling
 
What's new in Python 3.11
What's new in Python 3.11What's new in Python 3.11
What's new in Python 3.11
 
Everything you didn't know you needed
Everything you didn't know you neededEverything you didn't know you needed
Everything you didn't know you needed
 
SciPy22 - Building binary extensions with pybind11, scikit build, and cibuild...
SciPy22 - Building binary extensions with pybind11, scikit build, and cibuild...SciPy22 - Building binary extensions with pybind11, scikit build, and cibuild...
SciPy22 - Building binary extensions with pybind11, scikit build, and cibuild...
 
SciPy 2022 Scikit-HEP
SciPy 2022 Scikit-HEPSciPy 2022 Scikit-HEP
SciPy 2022 Scikit-HEP
 
PyCon 2022 -Scikit-HEP Developer Pages: Guidelines for modern packaging
PyCon 2022 -Scikit-HEP Developer Pages: Guidelines for modern packagingPyCon 2022 -Scikit-HEP Developer Pages: Guidelines for modern packaging
PyCon 2022 -Scikit-HEP Developer Pages: Guidelines for modern packaging
 
PyCon2022 - Building Python Extensions
PyCon2022 - Building Python ExtensionsPyCon2022 - Building Python Extensions
PyCon2022 - Building Python Extensions
 
boost-histogram / Hist: PyHEP Topical meeting
boost-histogram / Hist: PyHEP Topical meetingboost-histogram / Hist: PyHEP Topical meeting
boost-histogram / Hist: PyHEP Topical meeting
 
Digital RSE: automated code quality checks - RSE group meeting
Digital RSE: automated code quality checks - RSE group meetingDigital RSE: automated code quality checks - RSE group meeting
Digital RSE: automated code quality checks - RSE group meeting
 
CMake best practices
CMake best practicesCMake best practices
CMake best practices
 
Pybind11 - SciPy 2021
Pybind11 - SciPy 2021Pybind11 - SciPy 2021
Pybind11 - SciPy 2021
 
RDM 2020: Python, Numpy, and Pandas
RDM 2020: Python, Numpy, and PandasRDM 2020: Python, Numpy, and Pandas
RDM 2020: Python, Numpy, and Pandas
 
HOW 2019: A complete reproducible ROOT environment in under 5 minutes
HOW 2019: A complete reproducible ROOT environment in under 5 minutesHOW 2019: A complete reproducible ROOT environment in under 5 minutes
HOW 2019: A complete reproducible ROOT environment in under 5 minutes
 
2019 IRIS-HEP AS workshop: Boost-histogram and hist
2019 IRIS-HEP AS workshop: Boost-histogram and hist2019 IRIS-HEP AS workshop: Boost-histogram and hist
2019 IRIS-HEP AS workshop: Boost-histogram and hist
 
IRIS-HEP: Boost-histogram and Hist
IRIS-HEP: Boost-histogram and HistIRIS-HEP: Boost-histogram and Hist
IRIS-HEP: Boost-histogram and Hist
 
2019 IRIS-HEP AS workshop: Particles and decays
2019 IRIS-HEP AS workshop: Particles and decays2019 IRIS-HEP AS workshop: Particles and decays
2019 IRIS-HEP AS workshop: Particles and decays
 
IRIS-HEP Retreat: Boost-Histogram Roadmap
IRIS-HEP Retreat: Boost-Histogram RoadmapIRIS-HEP Retreat: Boost-Histogram Roadmap
IRIS-HEP Retreat: Boost-Histogram Roadmap
 

Kürzlich hochgeladen

SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICEayushi9330
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Mohammad Khajehpour
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Servicemonikaservice1
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Joonhun Lee
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Servicenishacall1
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONSTS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONrouseeyyy
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformationAreesha Ahmad
 

Kürzlich hochgeladen (20)

SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONSTS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 

LHCb Computing Workshop 2018: PV finding with CNNs

  • 1. PV finding with CNNs LHCb Computing Workshop 2018 Rui Fang Henry Schreiner Mike Sokoloff September 26, 2018 The University of Cincinnati
  • 2. Objectives Introduction Physics • Iterative tracking and vertexing may allow high efficiency, high speed, highly parallel algorithms: Use proto-tracks to find primary vertex (PV) candidates Use PV candidates to augment more complete tracking Find more PVs plus secondary vertices • PVs available quickly Machine learning • Sparse 3D data (41M pixels) → rich 1D dataset • 1D convolutional neural net • Great opportunities to visualize learning process Computation • Highly parallelizable • Well suited to GPUs 1/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 3. Tracking in the LHCb Upgrade Introduction The changes • 30 MHz software trigger • 7.6 PVs per event (Poisson distribution) The problem • Much higher pileup • Very little time to do the tracking • Current algorithms too slow We need to rethink our algorithms from the ground up... 2/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 4. A Hybrid ML Approach Introduction Prototracking → Kernel generation → CNN to find PVs → Informed tracking Prototracking • Ultra-simple/fast • Triplets only • Used for kernel only Vertexing • High efficiency • Low false positive rate • Useful for other reasons Tracking • Faster (effect TBD) • Uses search windows • Higher efficiency Machine learning features (so far) • Prototracking converts sparse 3D dataset to feature-rich 1D dataset • Easy and effective visualization due to 1D nature • Can see results with simple unoptimized 2-layer CNN + 1-layer linear What follows is a proof of principle implementation for finding PVs. 3/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 5. Vertices and Tracks Introduction Vertices • Events contain ≈ 7 Primary Vertices (PVs) A PV should contain 5+ long tracks • Multiple Secondary Vertices (SVs) per event as well A SV should contain 2+ tracks Beams PV Track SV • We are developing a way to find PVs and SVs using hit triplets • This will enable an iterative tracking algorithm 4/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 6. Kernel Generation Design Hits • Hits lie on the 26 planes • Tracks come from PVs and SVs • For simplicity, only 3 tracks shown • Hits are sorted in r (distance from LHC beam) z axis (along the beam) x PV 5/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 7. Kernel Generation Design Grid • Make a 3D grid of voxels (2D shown) • Note: only z will be fully calculated and stored z axis (along the beam) x PV 5/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 8. Kernel Generation Design Prototrack • Start with maximum r • Find triplet with χ2 < 10 • Mark “used” all other hits within χ2 < 9 • Note: triplet is stored Kernel • Fill in each voxel center with gaussian PDF • PDF is combined for each prototrack z axis (along the beam) x PV 5/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 9. Kernel Generation Design Prototrack • Start with maximum r • Find triplet with χ2 < 10 • Mark “used” all other hits within χ2 < 9 • Note: triplet is stored Kernel • Fill in each voxel center with gaussian PDF • PDF is combined for each prototrack z axis (along the beam) x PV 5/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 10. Kernel Generation Design Prototrack • Start with maximum r • Find triplet with χ2 < 10 • Mark “used” all other hits within χ2 < 9 • Note: triplet is stored Kernel • Fill in each voxel center with gaussian PDF • PDF is combined for each prototrack z axis (along the beam) x PV 5/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 11. Kernel Generation Design Kernel • Highest PDF density at vertices • Stores z histogram with maximum PDF values Details • x-y grid initially very coarse • Search performed on maximum x-y grid cell using stored triplets to recalculate PDF z axis (along the beam) x PV 5/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 12. Example of z KDE histogram Design 100 50 0 50 100 150 200 250 300 z values [mm] 0 500 1000 1500 2000 DensityofKernel Kernel LHCb PVs Other PVs LHCb SVs Other SVs Human learning • Peaks generally correspond to PVs and SVs Challenges • Vertex may be offset from peak • Vertices interact 6/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 13. Target distribution Design Build target distribution • real PV position as the mean of Gaussian distribution • σ(standard deviation) is 100 µm • calculate the cdf of each bin around of the mean, within ± 3 bins (± 300 µm ) 7/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 14. Neural network architecture with two convolutional layers Design • Activation function for hidden layers: Leaky ReLu • Activation function for output layer: Sigmoid 8/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 15. Activation function Design Activation function for hidden layers Activation function for output layer 9/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 16. Cost Function Design Approach • Cost function should be similar to Cross-Entropy for y → 0, y → 1; cost = − y ln ˆy + (1 − y) ln(1 − ˆy) • Should be symmetric with respect to r = (ˆy/y) & 1/r Sum Over Bins ri ≡ (ˆyi + )/(yi + ) (1) zi ≡ 2 ri ri + 1/ri (2) our cost = bins − ln zi (3) 10/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 17. Cost, efficiency, and false positive rate: 2 convolutionial layers Results 11/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 18. Cost, efficiency, and false positive rate: 3 convolutionial layers Results 12/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 19. Compare Predictions with Targets (3 convolutional layers) Results 86.00 87.00 88.00 89.00 90.00 z values [mm] 0 50 100 150 200 250 300 350 400 KernelDensity True: 88.062 mm Event 0: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 99.00 100.00 101.00 102.00 103.00 z values [mm] 0 500 1000 1500 KernelDensity True: 100.825 mm Pred: 100.726 mm : 99 µm Event 0: PV found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 135.00 136.00 137.00 138.00 139.00 z values [mm] 0 200 400 600 800 1000 1200 1400 1600 KernelDensity True: 136.602 mm Pred: 136.601 mm : 2 µm Event 0: PV found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 182.00 183.00 184.00 185.00 186.00 z values [mm] 0 200 400 600 800 1000 1200 KernelDensity True: 183.668 mm Pred: 183.734 mm : 66 µm Event 0: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 13/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 20. Compare Predictions with Targets (3 convolutional layers) Results 60.00 61.00 62.00 63.00 64.00 z values [mm] 0 100 200 300 400 500 600 KernelDensity Pred: 61.784 mm Event 2: False positive Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 89.00 90.00 91.00 92.00 93.00 z values [mm] 0 200 400 600 800 1000 KernelDensity True: 91.279 mm Pred: 91.244 mm : 35 µm Event 2: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 109.00 110.00 111.00 112.00 113.00 z values [mm] 0 50 100 150 200 KernelDensity True: 110.675 mm Event 2: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 127.00 128.00 129.00 130.00 131.00 z values [mm] 0 500 1000 1500 2000 KernelDensity True: 128.742 mm Pred: 128.720 mm : 22 µm Event 2: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 14/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 21. Efficiencies and False Positive Rates Results parameter 2 CVN Layers 3 CVN Layers 4 CVN Layers (Efficiency) = TP TP+FN ≈ 58% ≈ 70% ≈ 75% False Positive rate = FP number of events ≈ 0.07 ≈ 0.08 ≈ 0.13 Found Not found Real PV True positive False negative Not a real PV False positive True negative True Positive • search ±5 bins (±500µm) around a real PV • at least 3 (4) bins with predicted probability > 1% and integrated probability > 20%. False Positive • at least 3 (4) bins with individual probabilities > 1% and integrated probability > 20%. • no real PV within ±5 bins (±500µm) of that cluster. 15/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 22. Future Plans Future Plans Some Ideas • Model PV resolution as a function of the number of tracks; right now, the target function is always generated assuming σz = 100 µm; • Extract σz from predicted signals; • Extend algorithm to find PV (x, y, z) target functions, not just PV z target functions. • Mask PVs with < 5 long tracks (not labeled as PVs now) • Ask the algorithm (very nicely) to find Secondary Vertices as well; it should probably use both the original KDE histogram and the learned PV histogram as inputs. It may be possible to re-use some of the features generated by the convolutional layers. • Integrate KDE plus PV-finding code into an iterative tracking and vertexing algorithm; well-defined vertex positions may be able to serve as anchors for good tracks, restricting the roads to be searched. • Optimize NN architecture to (i) improve learning, (ii) improve learning speed, (iii) minimize inference costs (cycles and memory). Increase training sample. 16/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 23. Compare Predictions with Targets (3 convolutional layers) Backup 31.00 32.00 33.00 34.00 35.00 z values [mm] 0 200 400 600 800 KernelDensity True: 32.975 mm Pred: 32.766 mm : 209 µm Event 1: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 92.00 93.00 94.00 95.00 96.00 z values [mm] 0 50 100 150 200 250 300 350 400 KernelDensity True: 93.727 mm Event 1: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 107.00 108.00 109.00 110.00 111.00 112.00 z values [mm] 0 100 200 300 400 500 KernelDensity True: 109.659 mm Pred: 109.530 mm : 129 µm Event 1: PV found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 116.00 117.00 118.00 119.00 120.00 z values [mm] 0 200 400 600 800 1000 KernelDensity True: 118.176 mm Pred: 118.224 mm : 48 µm Event 1: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Probability Target Predicted 17/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 24. Compare Predictions with Targets (3 convolutional layers) Backup 138.00 139.00 140.00 141.00 142.00 z values [mm] 0 500 1000 1500 KernelDensity True: 139.889 mm Pred: 139.861 mm : 28 µm Event 1: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Probability Target Predicted 152.00 153.00 154.00 155.00 156.00 z values [mm] 0 500 1000 1500 2000 KernelDensity True: 153.906 mm Pred: 153.864 mm : 42 µm Event 1: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 194.00 195.00 196.00 197.00 198.00 z values [mm] 0 50 100 150 200 250 KernelDensity True: 195.838 mm Event 1: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 222.00 223.00 224.00 225.00 226.00 z values [mm] 0 50 100 150 200 250 300 350 400 KernelDensity True: 224.386 mm Pred: 224.583 mm : 197 µm Event 1: PV found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 18/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 25. More Predictions with Targets (3 CVN layers) Backup 159.00 160.00 161.00 162.00 163.00 z values [mm] 0 20 40 60 80 100 120 KernelDensity True: 160.920 mm Event 2: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 65.00 66.00 67.00 68.00 69.00 z values [mm] 0 500 1000 1500 2000 KernelDensity True: 66.923 mm Pred: 66.964 mm : 42 µm Event 3: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 66.00 67.00 68.00 69.00 70.00 z values [mm] 0 500 1000 1500 2000 KernelDensity True: 67.930 mm Event 3: PV not found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 108.00 109.00 110.00 111.00 112.00 z values [mm] 0 200 400 600 800 1000 1200 KernelDensity True: 110.449 mm Pred: 110.413 mm : 36 µm Event 3: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 19/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 26. More Predictions with Targets (3 CVN layers) Backup 120.00 121.00 122.00 123.00 124.00 z values [mm] 0 100 200 300 400 500 600 700 KernelDensity True: 122.303 mm Pred: 122.261 mm : 42 µm Event 3: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 208.00 209.00 210.00 211.00 212.00 z values [mm] 0 50 100 150 200 250 300 KernelDensity True: 210.210 mm Pred: 210.417 mm : 207 µm Event 3: PV found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 239.00 240.00 241.00 242.00 243.00 z values [mm] 0 10 20 30 40 50 60 70 KernelDensity True: 240.865 mm Event 3: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 17.00 18.00 19.00 20.00 21.00 z values [mm] 0 50 100 150 KernelDensity True: 19.440 mm Event 4: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 20/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 27. More Predictions with Targets (3 CVN layers) Backup 71.00 72.00 73.00 74.00 75.00 z values [mm] 0 500 1000 1500 2000 KernelDensity True: 72.816 mm Pred: 72.764 mm : 52 µm Event 4: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 92.00 93.00 94.00 95.00 96.00 z values [mm] 0 100 200 300 400 KernelDensity True: 93.940 mm Pred: 93.959 mm : 19 µm Event 4: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 117.00 118.00 119.00 120.00 121.00 z values [mm] 0 200 400 600 800 KernelDensity True: 119.325 mm Pred: 119.513 mm : 188 µm Event 4: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 145.00 146.00 147.00 148.00 149.00 z values [mm] 0 50 100 150 200 250 300 350 400 KernelDensity True: 146.840 mm Pred: 146.923 mm : 84 µm Event 4: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 Probability Target Predicted 21/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 28. More Predictions with Targets (3 CVN layers) Backup 195.00 196.00 197.00 198.00 199.00 z values [mm] 0 50 100 150 200 250 300 350 400 KernelDensity True: 197.279 mm Pred: 197.330 mm : 51 µm Event 4: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 60.00 61.00 62.00 63.00 64.00 z values [mm] 0 100 200 300 400 500 600 700 800 KernelDensity True: 62.436 mm Pred: 62.428 mm : 8 µm Event 5: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 72.00 73.00 74.00 75.00 76.00 z values [mm] 0 500 1000 1500 2000 2500 KernelDensity True: 73.592 mm Pred: 73.594 mm : 2 µm Event 5: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 98.00 99.00 100.00 101.00 102.00 z values [mm] 0 500 1000 1500 2000 2500 KernelDensity True: 100.143 mm Pred: 100.129 mm : 14 µm Event 5: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 22/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 29. More Predictions with Targets (3 CVN layers) Backup 113.00 114.00 115.00 116.00 117.00 z values [mm] 0 200 400 600 800 1000 1200 KernelDensity True: 114.670 mm Pred: 114.756 mm : 86 µm Event 5: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 131.00 132.00 133.00 134.00 135.00 z values [mm] 0 50 100 150 200 250 KernelDensity True: 132.683 mm Pred: 132.622 mm : 61 µm Event 5: PV found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 156.00 157.00 158.00 159.00 160.00 z values [mm] 0 500 1000 1500 KernelDensity True: 158.211 mm Pred: 158.333 mm : 121 µm Event 5: PV found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 158.00 159.00 160.00 161.00 162.00 z values [mm] 0 500 1000 1500 KernelDensity True: 159.703 mm Event 5: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 23/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 30. More Predictions with Targets (3 CVN layers) Backup 176.00 177.00 178.00 179.00 180.00 z values [mm] 0 200 400 600 800 1000 1200 KernelDensity True: 177.635 mm Pred: 177.621 mm : 14 µm Event 5: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 10.00 11.00 12.00 13.00 14.00 z values [mm] 0 50 100 150 200 250 300 350 KernelDensity True: 11.973 mm Event 6: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 50.00 51.00 52.00 53.00 54.00 55.00 z values [mm] 0 500 1000 1500 2000 KernelDensity True: 52.597 mm Pred: 52.550 mm : 47 µm Event 6: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Probability Target Predicted 56.00 57.00 58.00 59.00 60.00 61.00 z values [mm] 0 100 200 300 400 500 600 700 KernelDensity True: 58.490 mm Pred: 58.494 mm : 4 µm Event 6: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 24/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 31. More Predictions with Targets (3 CVN layers) Backup 141.00 142.00 143.00 144.00 145.00 z values [mm] 0 500 1000 1500 2000 KernelDensity True: 143.421 mm Pred: 143.445 mm : 24 µm Event 6: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 147.00 148.00 149.00 150.00 151.00 z values [mm] 0 200 400 600 800 1000 1200 KernelDensity True: 148.586 mm Pred: 148.622 mm : 36 µm Event 6: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 229.00 230.00 231.00 232.00 233.00 z values [mm] 0 100 200 300 400 500 KernelDensity True: 230.789 mm Pred: 230.886 mm : 97 µm Event 6: PV found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 61.00 62.00 63.00 64.00 65.00 z values [mm] 0 50 100 150 200 KernelDensity True: 62.706 mm Event 7: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 25/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 32. More Predictions with Targets (3 CVN layers) Backup 101.00 102.00 103.00 104.00 105.00 106.00 z values [mm] 0 100 200 300 400 KernelDensity True: 103.480 mm Event 7: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 105.00 106.00 107.00 108.00 109.00 z values [mm] 0 200 400 600 800 1000 KernelDensity True: 106.733 mm Pred: 106.813 mm : 80 µm Event 7: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 165.00 166.00 167.00 168.00 169.00 z values [mm] 0 200 400 600 800 1000 KernelDensity True: 167.395 mm Pred: 167.434 mm : 40 µm Event 7: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 18.00 19.00 20.00 21.00 22.00 z values [mm] 0 500 1000 1500 2000 KernelDensity True: 19.824 mm Pred: 19.877 mm : 53 µm Event 8: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 26/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 33. More Predictions with Targets (3 CVN layers) Backup 113.00 114.00 115.00 116.00 117.00 z values [mm] 0 100 200 300 400 500 KernelDensity True: 114.807 mm Event 8: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 155.00 156.00 157.00 158.00 159.00 z values [mm] 0 200 400 600 800 1000 KernelDensity True: 157.448 mm Pred: 157.432 mm : 16 µm Event 8: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 161.00 162.00 163.00 164.00 165.00 z values [mm] 0 100 200 300 400 500 600 KernelDensity True: 162.676 mm Event 8: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 162.00 163.00 164.00 165.00 166.00 z values [mm] 0 100 200 300 400 500 600 KernelDensity True: 163.772 mm Event 8: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 27/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 34. More Predictions with Targets (3 CVN layers) Backup 228.00 229.00 230.00 231.00 232.00 z values [mm] 0 50 100 150 200 KernelDensity True: 230.200 mm Event 8: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 1.00 2.00 3.00 4.00 5.00 z values [mm] 0 500 1000 1500 2000 2500 3000 KernelDensity True: 3.065 mm Pred: 3.068 mm : 3 µm Event 9: PV found Kernel Density 0.0 0.2 0.4 0.6 0.8 1.0 Probability Target Predicted 64.00 65.00 66.00 67.00 68.00 z values [mm] 0 50 100 150 200 250 300 350 KernelDensity True: 65.737 mm Event 9: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 153.00 154.00 155.00 156.00 157.00 z values [mm] 0 50 100 150 200 250 KernelDensity True: 155.047 mm Event 9: PV not found Kernel Density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Probability Target Predicted 28/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018
  • 35. The VELO Backup Tracks • Originate from vertices (not shown) • Hits originate from tracks • We only know the true track in simulation • Nearly straight, but tracks may scatter in material The VELO • A set of 26 planes that detect tracks • Tracks should hit one or more pixels per plane • Sparse 3D dataset (41M pixels) 29/16Fang, Schreiner, Sokoloff PV finding with CNNs: LHCb Computing Workshop 2018 September 26, 2018