SlideShare ist ein Scribd-Unternehmen logo
1 von 29
Downloaden Sie, um offline zu lesen
CurrentCatalsis
 
 
  
55  ‹ %HQWKDP 6FLHQFH 3XEOLVKHUV
+DULSUDVDG 1DUDDQDQ
 %DODVXEUDPDQLDQ 9LVZDQDWKDQ
DQG 6XJXQD HVRGKDUDQ
1
National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai, 60036, India and 2
School of
Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
$EVWUDFW Background 7KH FRQYHUVLRQ RI FDUERQ GLR[LGH LQWR ZRUWKZKLOH FKHPL
FDOV WKURXJK SKRWRFDWDOVLV KDV EHHQ D PDWWHU RI DWWUDFWLRQ IRU WKH ODVW IRXU GHFDGHV
DPRQJ WKH VFLHQWLILF FRPPXQLW +RZHYHU WKH FRQYHUVLRQ UDWH KDV QRW HW EHHQ
DFKLHYHG WR WKH GHVLUHG HIILFLHQF GXH WR WKH LQHYLWDEOH EDUULHUV DVVRFLDWHG ZLWK WKH
SURFHVV PDNLQJ LW DV D +RO *UDLO 7KLV SUHVHQWDWLRQ GHDOV ZLWK WKH LGHQWLILFDWLRQ DQG
FULWLFDO HYDOXDWLRQ RI WKH KXUGOHV WKDW SXOOV EDFN WKH SKRWRFDWDOWLF SURFHVVHV RQ
WUDFN DQG WKH UHFHQW DGYDQFHV LQ WKH VFLHQWLILF ILHOG WKDW SHUWDLQ WR WKH SKRWRFDWDOWLF
FRQYHUVLRQ RI FDUERQ GLR[LGH LQ WKH QHDU IXWXUH
Methods :H H[SORUHG WKH FRQWHQW RI PRUH WKDQ  RULJLQDO UHVHDUFK DUWLFOHV WKDW DUH
UHOHYDQW WR WKH GHVLUHG WRSLF DQG H[WUDFWHG WKH FXUUHQW NQRZOHGJH RQ WKH VR FDOOHG SKRWR
FDWDOWLF UHGXFWLRQ RI FDUERQ GLR[LGH :H KDYH DSSURDFKHG DOO WKH DUWLFOHV LQ D SHUVSHFWLYH ZD UDWKHU WKDQ D
ZRUG WR ZRUG UHFHQW DGYDQFHV LQ WKH ILHOG DQG IRXQG RXW WKH PDMRU OLPLWDWLRQV WKDW KDYH WR EH UHFWLILHG
Results 7KH LVVXHV UHODWHG WR WKH VWDWHRIWKHDUW RI FDUERQ GLR[LGH UHGXFWLRQ DUH GHVFULEHG LQ VHSDUDWH
VHFWLRQV LQ GHWDLO 0HFKDQLVWLF DVSHFWV VKRXOG WR EH UHYLVLWHG ZLWK WKH KHOS RI DGYDQFHG LQVWUXPHQWDWLRQ
IDFLOLWLHV 0DMRU SUREOHP DVVRFLDWHG LV ILQGLQJ WKH DSSURSULDWH PDWHULDO KHQFH HIILFLHQW PDWHULDO VKRXOG
EH HQJLQHHUHG WR RYHUFRPH WKH KLJK HQHUJ EDUULHU DVVRFLDWHG ZLWK WKH UHGXFWLRQ SURFHVV 3URGXFW DQDO
VLV DV ZHOO DV HIILFLHQF GHWHUPLQDWLRQ DUH KLJKO VXVFHSWLEOH WR HUURUV ,W LV YHU GLIILFXOW WR FRPSDUH WKH
ZRUN SURGXFHG E DQ WZR ODEV EHWZHHQ HDFK RWKHU
Conclusion 7KHUH DUH VR PDQ KXUGOHV DVVRFLDWHG LQYDULDEO ZLWK WKH SKRWRFDWDOWLF FDUERQ GLR[LGH UH
GXFWLRQ SURFHVV ZKLFK PXVW EH UHFWLILHG LQ RUGHU WR FUHDWH DQ HQHUJ VXVWDLQDEOH VRFLHW XVLQJ GLUHFW
VXQOLJKW DV D SULPDU HQHUJ VRXUFH MXVW DV SODQWV GR ,W FRXOG KDSSHQ RQO E WKH FROODERUDWLYH UHVHDUFK
HIIRUW IURP YDULRXV JURXSV LUUHVSHFWLYH RI WKH LPSOLFLW ELDV DPRQJ WKH VFLHQWLILF FRPPXQLW
$ 5 7 ,  / ( + , 6 7 2 5 
5HFHLYHG -DQXDU  
5HYLVHG $SULO  
$FFHSWHG $SULO  
DOI:
10.2174/22115447056661604271138
28
.HZRUGV DUERQ 'LR[LGH 5HGXFWLRQ 3KRWRFDWDOVLV 6HPLFRQGXFWRU $UWLILFLDO 3KRWRVQWKHVLV 6RODU
(QHUJ ,VVXHV
 ,1752'87,21
,W¶V DOPRVW D FHQWXU DIWHU WKH SXEOLFDWLRQ RI WKH
PLQG EORZLQJ DUWLFOH ³7KH SKRWRFKHPLVWU RI WKH
IXWXUH´ E WKH SLRQHHU FKHPLVW *LDFRPR LDPL
FLDQ ZKR FKDOOHQJHG WKH VFLHQWLVWV RI WKDW GHFDGH
WR LPDJLQH D FKHPLFDO LQGXVWU SURGXFLQJ FKHPL
FDOV LQ VXFK D ZD WKDW SODQWV GR XVLQJ VRODU HQHU
J WKH SULPDU HQHUJ VRXUFH @ 'XULQJ WKH
3DVW  HDUV VHYHUDO VFLHQWLVWV @ KDYH PDGH
D VLJQLILFDQW FRQWULEXWLRQ WRZDUGV WKH VWRUDJH RI
VRODU HQHUJ LQWR FKHPLFDO ERQGV 7KH HIIRUWV KDYH
QRW HW DFKLHYHG LDPLFLDQ¶V YLVLRQ

$GGUHVV FRUUHVSRQGHQFH WR WKLV DXWKRU DW WKH 1DWLRQDO HQWUH IRU
DWDOVLV 5HVHDUFK ,QGLDQ ,QVWLWXWH RI 7HFKQRORJ 0DGUDV KHQ
QDL ,QGLD (PDLO EYQDWKDQ#LLWPDFLQ
7KH SODQHW HDUWK UHFHLYHV Ε  [ 
-K RI HQ
HUJ IURP WKH VXQ ZKLOH WKH UHTXLUHPHQW RI HQHUJ
IRU WKH HDUWK LV DURXQG  [ 
-K DQG LW VKRZV
WKDW LI RQH FDQ KDUQHVV FRPSOHWHO WKH VRODU HQHUJ
IRU RQH KRXU LW ZLOO EH VXIILFLHQW WR VDWLVI WKH HQ
HUJ QHHG RI WKH ZRUOG IRU PRUH WKDQ D HDU @
7KHUH DUH PDQ ZDV WR KDUQHVV WKH VRODU HQHU
J DQG FRQYHUW LW LQWR XVHIXO HOHFWULFDO HQHUJ 2QH
RI WKHP LV WR VWRUH VRODU HQHUJ LQ FKHPLFDO ERQGV
WKDW LV WKH FRQYHUVLRQ RI FDUERQ GLR[LGH DQG ZDWHU
LQWR YDOXH DGGHG FKHPLFDOV DQG IXHOV 7KH UHGXF
WLRQ RI FDUERQ GLR[LGH ZLWK ZDWHU WR JLYH PHWKDQRO
LV D WKHUPRGQDPLF XSKLOO SURFHVV ZLWK WKH IUHH
HQHUJ FKDQJH RI  N-PRO DQG WKDW RI ZDWHU
UHGXFWLRQ WR LHOG KGURJHQ DQG R[JHQ DOVR DVVR
FLDWHG ZLWK D IUHH HQHUJ FKDQJH RI  N-PRO
3KRWRFDWDOWLF 5HGXFWLRQ RI DUERQ 'LR[LGH ,VVXHV DQG 3URVSHFWV
5(9,(: $57,/(
Send Orders for Reprints to reprints@benthamscience.ae
Current Catalysis,  5, 

ISSN: 2211-5447
eISSN: 2211-5455
Volume 5, Number 2
SCIENCE
BENTHAM
80 Current Catalysis, 2016, Vol. 5, No. 2 Narayanan et al.
[17]. This implies that greater effort will be needed
to overcome the energy barrier for converting car-
bon dioxide than the water splitting. In spite of this
unfavourable condition, enormous efforts have
been expanded around the globe to convert carbon
dioxide into chemical and value added fuels. It has
received considerable attention in recent times due
to its similarity to photosynthesis. There are vari-
ous other routes available for carbon dioxide con-
version with specific advantages and disad-
vantages over photo-catalytic route.
The photocatalytic conversion rate so far report-
ed is up to few tens of micromoles per gram per
hour, which is far from the levels required for the
industrialization of the process. One of the primary
reasons is that the carbon dioxide in its ground state
is a linear molecule which is stable and the activa-
tion of this linear molecule for chemical conversion
requires high overpotential. The first electron trans-
fer to the carbon dioxide to produce carbon dioxide
anions radical which needs high reduction potential
up to -1.9 V vs Normal Hydrogen Electrode (NHE).
The conduction band bottom of currently known
photocatalysts is more positive than the first electron
reduction potential. So, urgent need is a photocata-
lyst with conduction band edge more negative po-
tential with necessary band gap for visible light ab-
sorption. The visible light absorption of the photo-
catalyst can be achieved by means of sensitization
and band gap engineering, etc. But these possibili-
ties have not provided any desired results. Since the
photocatalytic process is a multielectron transfer
process, the reaction rate depends upon each of the
electron transfer steps, namely photon absorption,
charge separation, surface reaction, electron-hole
recombination, transfer of electron to the adsorbed
substrate and desorption of the substrates and each
of them must be sequentially taking place for the
formation of multielectron reaction products like
methanol, ethanol, formaldehyde. To the best of the
author’s knowledge, no photocatalyst reported so far
does both activation and visible light absorption in
an appropriate way. At least one wants to achieve a
10% quantum efficiency or comparable to photo-
synthetic rate, then only the dream can be realized.
Another hurdle associated with the efficiency is
the measures like Quantum Efficiency, Turnover
Rate, Turnover Number, Turnover Frequency,
which reflects reactivity of the system, used for
comparison and appropriate selection of materials
in photocatalysis. These measures are based on
either in terms of catalyst systems or in terms of
illumination employed. In a reaction like photoca-
talysis, the illumination based measures is not di-
rectly reflecting the activity of the catalyst since
the activity not only depends upon the illumination
but also on many other factors.
The illuminated beam itself undergoes multiple
events like scattering, reflection, etc., hence the cal-
culation of the exact number of photons absorbed by
the photocatalyst is difficult. Hence, one wants to
develop a new efficiency scale for representing the
activity of the photocatalyst and it must be based on
photocatalyst as well as the illumination and inde-
pendent of these individual parameters. The new
scale must be based on the number of successful
photons absorbed by the photocatalyst, which only
truly gives the quantum efficiency.
The reaction rate can be increased by catalyst
modification or by adding sacrificial reagent to the
system. In the case of CO2 reduction, none of the
above methods has not been yielding the desired
result. The role of sacrificial reagent on the PCR
of carbon dioxide is limited for a few hours and it
also absorbs the light from the illumination source.
The degradation of sacrificial reagent may affect
the reaction mechanism of carbon dioxide reduc-
tion itself because the proposed mechanism for
carbon dioxide reduction involves radical species.
If nanoarchitecture will be a solution, the large
scale production of catalyst with well-defined size,
shape, surface, porosity, defects, and assemblies
are the challenges. The doping and aliovalent sub-
stitution of nanomaterials may lead to photochem-
ical deactivation of the catalyst.
Major limitation associated with carbon dioxide
reduction is the accuracy of the analytical meas-
urements employed. The photocatalytic process is
a multielectron transfer process, hence the reaction
leads to the formation of a variety of products like
carbon monoxide, methane, higher hydrocarbons,
alcohol, aldehydes, carboxylic acid etc., with some
intermediates. The identification and quantifica-
tion of the products are needed for the best selec-
tion of photocatalyst, comparison and elucidation
of reaction mechanisms. Currently there is no
standard analysis method that has been developed
for product analysis of carbon dioxide reduction.
Hence the results of these measurements also in-
clude the products derived from the carbon con-
tamination invariably present in the reaction sys-
Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis,  Vol. 5, No. 2 
WHP ,VRWRSH ODEHOOLQJ LV WKH VROXWLRQ EXW WKHUH LV
DOVR D FKDQFH RI FRQWDPLQDWLRQ
XUUHQW GHYHORSPHQWV LQ FDUERQ GLR[LGH UHGXF
WLRQ UHVHDUFK LV QRW HQRXJK IRU WKH UHDO LPSOHPHQ
WDWLRQ RI WKH SURFHVV 7KH PD[LPXP LHOG KDV EHHQ
UHDFKHG XS WR VRPH PLFURPROHV /HW¶V ORRN DW WKH
SUHVHQW VFHQDULR ZLWK WKH FXUUHQW SDFH  [ 
NJ RI 7L2 ZRXOG EH UHTXLUHG IRU WKH SURGXFWLRQ RI
PHWKDQRO IURP FDUERQ GLR[LGH DQG ZDWHU DVVXP
LQJ D FDWDOVW DFWLYLW RI —PROSURGXFW JFDW

K
DQG
SURGXFWLRQ UDWH NJ V
@
7KH PDLQ REMHFWLYH RI WKLV ZULWH XS LV WR DQD
O]H WKH LVVXHV DVVRFLDWHG ZLWK WKH VWDWHRIWKHDUW
SKRWRFDWDOWLF UHGXFWLRQ RI FDUERQ GLR[LGH LQWR
FKHPLFDOV DQG IXHOV
 $7,9$7,21 2) $5%21 ',2;,'(
7+( +2/ *5$,/
DUERQ 'LR[LGH WKH KLJKHVW R[LGDWLRQ SURGXFW
RI FDUERQ LV D VWDEOH ǻ*
 N-PRO
OLQHDU
QRQSRODU PROHFXOH ZLWK í2 ERQG OHQJWK RI
$࢓
DQG ERQG VWUHQJWK '  N-PRO (YHQ
WKRXJK LW LV D QRQSRODU PROHFXOH 2 FRQWDLQV SR
ODU ERQGV GXH WR WKH HOHFWURQHJDWLYLW GLIIHUHQFH
EHWZHHQ FDUERQ DQG R[JHQ 7KH PROHFXODU SURS
HUWLHV RI 2 DUH DVVHPEOHG DW 7DEOH 
%HFDXVH RI WKH VWUXFWXUH WKH PROHFXOH LV VXV
FHSWLEOH WR ERWK QXFOHRSKLOLF DQG HOHFWURSKLOLF DW
WDFN WKURXJK FDUERQ DQG R[JHQ FHQWHUV UHVSHF
WLYHO 7KH ILUVW LRQL]DWLRQ SRWHQWLDO RI FDUERQ GL
R[LGH  H9
LV KLJKHU FRPSDUHG WR WKDW RI ZDWHU
DQG DPPRQLD
@ 7KLV LQGLFDWHV WKH
QRWLFHDEOH HOHFWURSKLOLFLW RI WKH FHQWUDO FDUERQ
DWRP
)URP WKH SHUVSHFWLYH RI 0ROHFXODU 2UELWDO 7KH
RU WKH HQHUJ RI WKH ORZHVW XQRFFXSLHG DQWLERQG
LQJ RUELWDO /802
KDV EHHQ HVWLPDWHG DW  H9
LQGLFDWHV WKH KLJK HOHFWURQ DIILQLW ZLWK UHVSHFW WR
WKH FHQWUDO FDUERQ DWRP KHQFH LW LV VXVFHSWLEOH WR
DWWDFN E QXFOHRSKLOH DQG WR WKH UHGXFWLRQ ZKLOH
WKDW RI KLJKHVW RFFXSLHG PROHFXODU RUELWDO +2
02
LV VXVFHSWLEOH WR DWWDFN E HOHFWURSKLOH GXH WR
LWV KLJK ORFDOL]HG HOHFWURQ GHQVLW DV R[JHQ LQ
SODQH ORQH SDLUV ,W DOVR LQWHUDFWV ZHDNO ZLWK /HZ
LV DQG %URQVWHG DFLGV  D@
DUERQ GLR[LGH FRQVLVWV RI WZR GHJHQHUDWH
+202 DQG /802 OHYHOV 7KH GHJHQHUDWHG IURQ
WLHU RUELWDOV RI 2 VKRZ VLPLODULW ZLWK WKH G
7DEOH  3URSHUWLHV RI DUERQ 'LR[LGH 0ROHFXOH 5HSURGXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ $PHULFDQ KHPLFDO 6RFLHW
Current Catalysis, , Vol. 5, No. 2 Narayanan et al.
RUELWDOV DQG IRUELWDOV RI WUDQVLWLRQ PHWDOV DQG ODQ
WKDQLGHV UHVSHFWLYHO 7KH PROHFXOH KDV IRXU HOHF
WURQV ZLWK WKH VDPH HQHUJ LQ WKH +202 ZKLFK
DUH UHDG WR EH UHOHDVHG ,W KDV DOVR IRXU XQRFFX
SLHG VWDWHV WR ZKLFK IRXU HOHFWURQV FDQ WUDQVIHU
)LJ
7KH GHJHQHUDF ZLOO EUHDN LI RQH RI IRXU
HOHFWURQV DUH WUDQVIHUUHG RU UHOHDVHG @ 6LPXOWD
QHRXV DGGLWLRQ RU WUDQVIHU RI HOHFWURQV GRHV QRW
RFFXU LQ WKH FDVH RI FDUERQ GLR[LGH KHQFH WKH DF
WLYDWLRQ LV D +RO *UDLO
)LJ
)URQWLHU PROHFXODU RUELWDOV IRU JURXQG VWDWH
2 7KH XQLW RI RUELWDO HQHUJ LV H9 LQ YDFXXP LQ
ZDWHU 30
5HSURGXFHG ZLWK SHUPLVVLRQ IURP 5HI
@ ‹ $PHULFDQ KHPLFDO 6RFLHW
$FWLYDWLRQ RI WKH PROHFXOH RU VXEVWUDWH LV WR LQ
FUHDVH WKH GHJUHH RI UHDFWLYLW LQ WKH PROHFXOH E
PHDQV VXUIDFH UHDFWLRQV DQG LW LV D NH VWHS LQ DQ
FDWDOWLF UHDFWLRQ 7KH RYHUDOO UDWH RI WKH FDWDOWLF
UHDFWLRQ GHSHQGV RQ WKH DFWLYDWLRQ RI WKH VXEVWUDWH
RU PROHFXOH ,Q PDQ FDWDOWLF UHDFWLRQV DFWLYD
WLRQ RI WKH VXEVWUDWH LV WKH UDWH OLPLWLQJ VWHS 7KH
PDLQ VWHSV RI FDUERQ GLR[LGH DFWLYDWLRQ DUH L
EHQGLQJ RI 22 ERQG LL
HORQJDWLRQ RI WZR RU RQH
RI WKH 2 ERQG LQ 2 LLL
SRODUL]DWLRQ RI WKH
2 PROHFXOH 7KHVH WKUHH DUH QRW VHSDUDWH SDWK
ZDV WKH WDNH SODFH VLPXOWDQHRXVO 7KH VFKH
PDWLF UHSUHVHQWDWLRQ LV JLYHQ LQ )LJ
)LJ
DUERQ 'LR[LGH $FWLYDWLRQ 7SHV 5HSUR
GXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ $PHULFDQ
KHPLFDO 6RFLHW
6LQFH LW LV D VWDEOH PROHFXOH RQH ZDQWV WR VXS
SO DGGLWLRQDO HQHUJ WR FRQYHUW WKH OLQHDU VWUXF
WXUH WR EHQW IRUP LH 2 WR 2
í‡
 %HFDXVH RI
WKH KLJK /802 OHYHO RI FDUERQ GLR[LGH WKH WUDQV
IHU RI RQH HOHFWURQ WR IUHH 2 LV WKHUPRGQDPL
FDOO XQIDYRXUDEOH UHTXLUHV D YHU QHJDWLYH UHGR[
SRWHQWLDO XS WR WKH RUGHU RI 9 YV 1RUPDO +
GURJHQ (OHFWURGH 1+(
,Q SKRWRFDWDOWLF URXWH
QR VHPLFRQGXFWRU SRVVHVVHV WKH FRQGXFWLRQ EDQG
SRWHQWLDO UHTXLUHG IRU 2 DFWLYDWLRQ WKHUH LV D
QHHG WR VXSSO DGGLWLRQDO RYHUYROWDJH ZKLFK ZLOO
OHDG WR DQRWKHU HQHUJ GLOHPPD
2QH RI WKH SURPLQHQW ZDV WR UHGXFH WKH EDUUL
HUV LV WR DGVRUE WKH VXEVWUDWH RQ WKH FDWDOVW VXU
IDFH 7KH DGVRUSWLYH LQWHUDFWLRQ EHWZHHQ FDWDOVW
VXUIDFH DQG 2 PROHFXOH FKDQJH WKH PROHFXODU
VWUXFWXUH IURP OLQHDU WR EHQW 7KH EHQGLQJ RI WKH
FDUERQ GLR[LGH GHSHQGV RQ WKH QDWXUH RI FDWDOVW
VXUIDFH DUERQ GLR[LGH DGVRUEV RQ D PHWDO VXUIDFH
E QLQH GLIIHUHQW ZDV E@ 7KH LQWHUDFWLRQ RI
2 ZLWK WKH PHWDO VXUIDFH LV EHRQG WKH VFRSH RI
WKLV GRFXPHQW 2 LQWHUDFWV ZLWK VHPLFRQGXFWRU
VXUIDFH LQ GLIIHUHQW ZDV DV VKRZQ LQ )LJ
)LJ
3RVVLEOH ZDV RI DGVRUSWLRQ RI 2 RQ VHPL
FRQGXFWRU VXUIDFHV 5HSURGXFHG ZLWK SHUPLVVLRQ IURP
5HI @ ‹ :,/(9+ 9HUODJ *PE+ R
.*D$ :HLQKHLP
2 LQWHUDFWV ZLWK VHPLFRQGXFWRU VXUIDFH HLWKHU
ZLWK R[JHQ RU WKURXJK FDUERQ 7KH SKRWRHOHFWURQ
SURGXFHG RQ WKH FDWDOVW VXUIDFH DGG WR WKH /802
OHYHO RI WKH FKHPLFDOO VWDEOH FDUERQ GLR[LGH OHDG
LQJ WR WKH IRUPDWLRQ RI 2
í‡
 7KH ILUVW HOHFWURQ
WUDQVIHU FKDQJHV WKH JHRPHWU RI 2 IURP OLQHDU
WR EHQW VKDSH 2
í‡
 7KH VWUXFWXUDO DUUDQJHPHQW RI
OLQHDU 2 WR EHQW VKDSH LQYROYHV WKH FKDQJH LQ
KEULGL]DWLRQ IURP sp WR sp2
DW FDUERQ FKDUDFWHU
L]HG E KLJK RYHUSRWHQWLDO VLJQLILQJ D VXEVWDQWLDO
NLQHWLF EDUULHU WR WKH UHDFWLRQ 2QFH IRUPHG WKH
EHQW 2
í‡
XQGHUJR WZR HOHFWURQ UHGXFWLRQ UDWKHU
WKDQ RQH 7KH 2
í‡
DQLRQ UDGLFDO IRUPDWLRQ KDV D
VLJQLILFDQW UROH LQ WKH UHGXFWLRQ RI FDUERQ GLR[LGH
7KH IRUPDWLRQ RI 2
í‡
DORQH GRHV QRW OHDG WR 2
UHGXFWLRQ 7KH GHFUHDVH LQ WKH 22 ERQG DQJOH
YLD VXUIDFH LQWHUDFWLRQV IDFLOLWDWHV WKH FKDUJH WUDQV
IHU WR 2 E ORZHULQJ LWV /802 7KHRUHWLFDO
LUMO
+0.74(+0.88)
HOMO
-10.34(-10.25)
HOMO-1
-14.27 (-14.14)
LUMO
+0.74(+0.88)
HOMO
-10.34(-10.25)
HOMO-1
-14.27 (-14.14)
HOMO-2
-14.36 (-14.33)
CO Activation2
Bending(i)
Elongation(ii)
Polarization, electron transfer to and/or from(iii)
O
O C
CO
C O
O
O
O OC
d d d-- +
O
O
C
b
a
a b
O O
Oa
C C
b
ba a b
O
O O O O
C
C
O O O MMMMMMM
Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis,  Vol. 5, No. 2 
VWXGLHV SURYLGH D FOHDU SLFWXUH RI HQHUJ OHYHO YDU
LDWLRQ RI PROHFXODU RUELWDOV DV D IXQFWLRQ RI 22
DQJOH FDOOHG :DOVK GLDJUDP 7KH YDULDWLRQ LQ WKH
HQHUJ RI /802 ZLWK UHVSHFW WR 22 ERQG DQJOH
LV VKRZQ LQ )LJ
)LJ
9DULDWLRQ RI WKH HQHUJ RI /802 ZUW WKH
ERQG DQJOH RI JDVHRXV 2 5HSURGXFHG ZLWK SHUPLV
VLRQ IURP 5HI @ DQG @ ‹ $PHULFDQ KHPL
FDO 6RFLHW DQG ‹ 5RDO 6RFLHW RI KHPLVWU
7KH PRVW VWDEOH VWDWH LV WKH OLQHDU FDUERQ GLR[
LGH ZLWK R
ERQG DQJOH 7KH HQHUJ RI IURQWLHU
RUELWDO FKDQJHV ZLWK WKH GHFUHDVH LQ WKH ERQG DQ
JOH $QLRQLF 2
í‡
UDGLFDO VKRZV D EHQW JHRPHWU
ZLWK D ERQG DQJOH R
ZKLOH WKDW RI QHXUDO DQG
FDWLRQLF PROHFXOH SRVVHVV OLQHDU JHRPHWU 7KH
GHFUHDVH LQ WKH ERQG DQJOH FDQ EH FKDUDFWHUL]HG E
PHDQV RI ,5 VSHFWURVFRS
,W KDV EHHQ DOUHDG HVWDEOLVKHG WKDW UXWLOH
FUVWDO IDFH LV DFWLYH IRU SKRWRFDWDOWLF UHGXFWLRQ
RI 2 ZKLOH WKH FUVWDO ODWWLFH
ZDV IRXQG WR
EH LQDFWLYH WRZDUGV WKH UHDFWLRQ @ 7KH LQWHUDF
WLRQ EHWZHHQ 7L2 DQG 2 KDV EHHQ VWXGLHG XVLQJ
D ZLGH YDULHW RI VSHFWURVFRSLF WHFKQLTXHV DQG
TXDQWXP PHFKDQLFDO PRGHOOLQJ )RU FRQYHQLHQFH
DOO PHFKDQLVPV UHODWHG WR VHPLFRQGXFWRUV H[
SUHVVHG LQ WHUPV RI 7L2 DV D UHSUHVHQWDWLYH 7KH
FDUERQ GLR[LGH FDQ DWWDFK WR WKH 7L2 VXUIDFH HL
WKHU WKURXJK R[JHQ RU E FDUERQ DWRP ,W LV VXJ
JHVWHG WKDW DWWDFKPHQW WKURXJK WZR R[JHQ DWRPV
LV PRUH VWDEOH GXH WR WKH ELGHQWDWH QDWXUH RI 2
OLJDQG 7KH 7L
IRUPHG DW WKH VXUIDFH UHGXFHV WKH
2 WR FRUUHVSRQGLQJ UDGLFDO 7KH R[JHQ YDFDQ
FLHV FDQ DOVR UHGXFH 2 WR 2 DQG RQH RI WKH R[
JHQ DWRPV LQ WKH FDUERQ GLR[LGH KHDOV WKH YDFDQ
F $GVRUEHG KGURJHQ DWRPV RQ WKH VXUIDFH RI
7L2 UHGXFHV WKH ERXQG 2
í‡
 )LJ
VKRZV WKH
DFWLYDWLRQ RI FDUERQ GLR[LGH RQ WLWDQLXP GLR[LGH
VXUIDFHV
)LJ
D
%HQGLQJ DQG FRQFXUUHQW WKH IRUPDWLRQ RI
2
í‡
RI 2 RQ 7L2 VXUIDFHV E

Weitere ähnliche Inhalte

Was ist angesagt?

Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...
Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...
Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...Pawan Kumar
 
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Pawan Kumar
 
Water-splitting photoelectrodes consisting of heterojunctions of carbon nitri...
Water-splitting photoelectrodes consisting of heterojunctions of carbon nitri...Water-splitting photoelectrodes consisting of heterojunctions of carbon nitri...
Water-splitting photoelectrodes consisting of heterojunctions of carbon nitri...Pawan Kumar
 
Kinetics and feasibility studies of thiol oxidation using magnetically separa...
Kinetics and feasibility studies of thiol oxidation using magnetically separa...Kinetics and feasibility studies of thiol oxidation using magnetically separa...
Kinetics and feasibility studies of thiol oxidation using magnetically separa...Pawan Kumar
 
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...Pawan Kumar
 
Photocatalytic reduction of CO2
Photocatalytic reduction of CO2Photocatalytic reduction of CO2
Photocatalytic reduction of CO2APRATIM KHANDELWAL
 
2021 influence of basic carbon additives on the electrochemical performance ...
2021   influence of basic carbon additives on the electrochemical performance ...2021   influence of basic carbon additives on the electrochemical performance ...
2021 influence of basic carbon additives on the electrochemical performance ...Ary Assuncao
 
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016Rahul Ghuge
 
Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunli...
Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunli...Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunli...
Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunli...Pawan Kumar
 
Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGOnanocom...
Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGOnanocom...Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGOnanocom...
Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGOnanocom...Pawan Kumar
 
Sunlight-driven water-splitting using two dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two dimensional carbon based semiconduc...Sunlight-driven water-splitting using two dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two dimensional carbon based semiconduc...Pawan Kumar
 
Pawan Homogeneous catalyst for CO2 reduction
Pawan Homogeneous catalyst for CO2 reductionPawan Homogeneous catalyst for CO2 reduction
Pawan Homogeneous catalyst for CO2 reductionPawan Kumar
 

Was ist angesagt? (20)

Metal free activation of co2
Metal free activation of co2Metal free activation of co2
Metal free activation of co2
 
Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...
Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...
Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...
 
CO2 Presentation
CO2 PresentationCO2 Presentation
CO2 Presentation
 
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
 
66
6666
66
 
silver
silversilver
silver
 
Water-splitting photoelectrodes consisting of heterojunctions of carbon nitri...
Water-splitting photoelectrodes consisting of heterojunctions of carbon nitri...Water-splitting photoelectrodes consisting of heterojunctions of carbon nitri...
Water-splitting photoelectrodes consisting of heterojunctions of carbon nitri...
 
Kinetics and feasibility studies of thiol oxidation using magnetically separa...
Kinetics and feasibility studies of thiol oxidation using magnetically separa...Kinetics and feasibility studies of thiol oxidation using magnetically separa...
Kinetics and feasibility studies of thiol oxidation using magnetically separa...
 
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
 
Photocatalytic reduction of CO2
Photocatalytic reduction of CO2Photocatalytic reduction of CO2
Photocatalytic reduction of CO2
 
Hydrogen production research in Mexico: A review
Hydrogen production research in Mexico: A reviewHydrogen production research in Mexico: A review
Hydrogen production research in Mexico: A review
 
2021 influence of basic carbon additives on the electrochemical performance ...
2021   influence of basic carbon additives on the electrochemical performance ...2021   influence of basic carbon additives on the electrochemical performance ...
2021 influence of basic carbon additives on the electrochemical performance ...
 
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
 
Aminihorri2018
Aminihorri2018Aminihorri2018
Aminihorri2018
 
Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunli...
Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunli...Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunli...
Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunli...
 
review
reviewreview
review
 
CO2 to Chemicals : An Overview
CO2 to Chemicals : An Overview CO2 to Chemicals : An Overview
CO2 to Chemicals : An Overview
 
Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGOnanocom...
Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGOnanocom...Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGOnanocom...
Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGOnanocom...
 
Sunlight-driven water-splitting using two dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two dimensional carbon based semiconduc...Sunlight-driven water-splitting using two dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two dimensional carbon based semiconduc...
 
Pawan Homogeneous catalyst for CO2 reduction
Pawan Homogeneous catalyst for CO2 reductionPawan Homogeneous catalyst for CO2 reduction
Pawan Homogeneous catalyst for CO2 reduction
 

Ähnlich wie Photocatalytic reduction of carbon dioxide issues and prospects bentham science (2016)

262 1103-1-pb
262 1103-1-pb262 1103-1-pb
262 1103-1-pbNgoc Dep
 
formula handbook
formula handbookformula handbook
formula handbookViscodec
 
Supercritical water oxidation for the treatment of various organic wastes: A ...
Supercritical water oxidation for the treatment of various organic wastes: A ...Supercritical water oxidation for the treatment of various organic wastes: A ...
Supercritical water oxidation for the treatment of various organic wastes: A ...AI Publications
 
Apuntes de Instalaciones Electricas de BT.pdf
Apuntes de Instalaciones Electricas de BT.pdfApuntes de Instalaciones Electricas de BT.pdf
Apuntes de Instalaciones Electricas de BT.pdfOscarPardoPardo
 
An insight into spray pulsed reactor through mathematical modeling of catalyt...
An insight into spray pulsed reactor through mathematical modeling of catalyt...An insight into spray pulsed reactor through mathematical modeling of catalyt...
An insight into spray pulsed reactor through mathematical modeling of catalyt...Siluvai Antony Praveen
 
Brosur Thunder Scientific | Model 2500 | Humidity Generator
Brosur Thunder Scientific | Model 2500 | Humidity GeneratorBrosur Thunder Scientific | Model 2500 | Humidity Generator
Brosur Thunder Scientific | Model 2500 | Humidity GeneratorPT. Siwali Swantika
 
Production of Bio-diesel (Butyl Oleate) by Reactive Distillation Technique
Production of Bio-diesel (Butyl Oleate) by Reactive Distillation TechniqueProduction of Bio-diesel (Butyl Oleate) by Reactive Distillation Technique
Production of Bio-diesel (Butyl Oleate) by Reactive Distillation TechniqueIRJET Journal
 
Nano-fiber Diameters as Liquid Concentration Sensors
Nano-fiber Diameters as Liquid Concentration SensorsNano-fiber Diameters as Liquid Concentration Sensors
Nano-fiber Diameters as Liquid Concentration SensorsRadhi Chyad
 
Catalysis in hydtotreating and hydrocracking
Catalysis in hydtotreating and hydrocrackingCatalysis in hydtotreating and hydrocracking
Catalysis in hydtotreating and hydrocrackingKaneti Pramod
 
Dukane 8928, 8929,8930 user manual
Dukane 8928, 8929,8930 user manualDukane 8928, 8929,8930 user manual
Dukane 8928, 8929,8930 user manualSchoolVision Inc.
 
User guide for dukane 9000 series projectors
User guide for dukane 9000 series projectorsUser guide for dukane 9000 series projectors
User guide for dukane 9000 series projectorsDukaneAVMarketing
 
Chris Longhurst at BayCHI: Unintended Consequences of Healthcare IT
Chris Longhurst at BayCHI: Unintended Consequences of Healthcare ITChris Longhurst at BayCHI: Unintended Consequences of Healthcare IT
Chris Longhurst at BayCHI: Unintended Consequences of Healthcare ITBayCHI
 
Supercritical Fluid Technology and its Applications slides.pptx
Supercritical Fluid Technology and its Applications slides.pptxSupercritical Fluid Technology and its Applications slides.pptx
Supercritical Fluid Technology and its Applications slides.pptxAditiBala4
 
A dual mechanism of the drag reduction by rigid polymers and cationic surfact...
A dual mechanism of the drag reduction by rigid polymers and cationic surfact...A dual mechanism of the drag reduction by rigid polymers and cationic surfact...
A dual mechanism of the drag reduction by rigid polymers and cationic surfact...eSAT Journals
 
Teaching of social science
Teaching  of social scienceTeaching  of social science
Teaching of social scienceAncySherin1
 
Electro-Fenton Oxidation of Simulated Pharmaceutical Waste: Optimization usin...
Electro-Fenton Oxidation of Simulated Pharmaceutical Waste: Optimization usin...Electro-Fenton Oxidation of Simulated Pharmaceutical Waste: Optimization usin...
Electro-Fenton Oxidation of Simulated Pharmaceutical Waste: Optimization usin...abdul raufshah
 

Ähnlich wie Photocatalytic reduction of carbon dioxide issues and prospects bentham science (2016) (20)

262 1103-1-pb
262 1103-1-pb262 1103-1-pb
262 1103-1-pb
 
formula handbook
formula handbookformula handbook
formula handbook
 
Supercritical water oxidation for the treatment of various organic wastes: A ...
Supercritical water oxidation for the treatment of various organic wastes: A ...Supercritical water oxidation for the treatment of various organic wastes: A ...
Supercritical water oxidation for the treatment of various organic wastes: A ...
 
Apuntes de Instalaciones Electricas de BT.pdf
Apuntes de Instalaciones Electricas de BT.pdfApuntes de Instalaciones Electricas de BT.pdf
Apuntes de Instalaciones Electricas de BT.pdf
 
Choi2016
Choi2016Choi2016
Choi2016
 
An insight into spray pulsed reactor through mathematical modeling of catalyt...
An insight into spray pulsed reactor through mathematical modeling of catalyt...An insight into spray pulsed reactor through mathematical modeling of catalyt...
An insight into spray pulsed reactor through mathematical modeling of catalyt...
 
Brosur Thunder Scientific | Model 2500 | Humidity Generator
Brosur Thunder Scientific | Model 2500 | Humidity GeneratorBrosur Thunder Scientific | Model 2500 | Humidity Generator
Brosur Thunder Scientific | Model 2500 | Humidity Generator
 
Production of Bio-diesel (Butyl Oleate) by Reactive Distillation Technique
Production of Bio-diesel (Butyl Oleate) by Reactive Distillation TechniqueProduction of Bio-diesel (Butyl Oleate) by Reactive Distillation Technique
Production of Bio-diesel (Butyl Oleate) by Reactive Distillation Technique
 
Nano-fiber Diameters as Liquid Concentration Sensors
Nano-fiber Diameters as Liquid Concentration SensorsNano-fiber Diameters as Liquid Concentration Sensors
Nano-fiber Diameters as Liquid Concentration Sensors
 
Catalysis in hydtotreating and hydrocracking
Catalysis in hydtotreating and hydrocrackingCatalysis in hydtotreating and hydrocracking
Catalysis in hydtotreating and hydrocracking
 
Dukane 8928, 8929,8930 user manual
Dukane 8928, 8929,8930 user manualDukane 8928, 8929,8930 user manual
Dukane 8928, 8929,8930 user manual
 
User guide for dukane 9000 series projectors
User guide for dukane 9000 series projectorsUser guide for dukane 9000 series projectors
User guide for dukane 9000 series projectors
 
9007 wu l-usermanual
9007 wu l-usermanual9007 wu l-usermanual
9007 wu l-usermanual
 
Teaching of science
Teaching of scienceTeaching of science
Teaching of science
 
Reactive distillation
Reactive distillationReactive distillation
Reactive distillation
 
Chris Longhurst at BayCHI: Unintended Consequences of Healthcare IT
Chris Longhurst at BayCHI: Unintended Consequences of Healthcare ITChris Longhurst at BayCHI: Unintended Consequences of Healthcare IT
Chris Longhurst at BayCHI: Unintended Consequences of Healthcare IT
 
Supercritical Fluid Technology and its Applications slides.pptx
Supercritical Fluid Technology and its Applications slides.pptxSupercritical Fluid Technology and its Applications slides.pptx
Supercritical Fluid Technology and its Applications slides.pptx
 
A dual mechanism of the drag reduction by rigid polymers and cationic surfact...
A dual mechanism of the drag reduction by rigid polymers and cationic surfact...A dual mechanism of the drag reduction by rigid polymers and cationic surfact...
A dual mechanism of the drag reduction by rigid polymers and cationic surfact...
 
Teaching of social science
Teaching  of social scienceTeaching  of social science
Teaching of social science
 
Electro-Fenton Oxidation of Simulated Pharmaceutical Waste: Optimization usin...
Electro-Fenton Oxidation of Simulated Pharmaceutical Waste: Optimization usin...Electro-Fenton Oxidation of Simulated Pharmaceutical Waste: Optimization usin...
Electro-Fenton Oxidation of Simulated Pharmaceutical Waste: Optimization usin...
 

Kürzlich hochgeladen

Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 

Kürzlich hochgeladen (20)

Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 

Photocatalytic reduction of carbon dioxide issues and prospects bentham science (2016)

  • 1. CurrentCatalsis 55 ‹ %HQWKDP 6FLHQFH 3XEOLVKHUV +DULSUDVDG 1DUDDQDQ %DODVXEUDPDQLDQ 9LVZDQDWKDQ DQG 6XJXQD HVRGKDUDQ 1 National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai, 60036, India and 2 School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, 682022, India $EVWUDFW Background 7KH FRQYHUVLRQ RI FDUERQ GLR[LGH LQWR ZRUWKZKLOH FKHPL FDOV WKURXJK SKRWRFDWDOVLV KDV EHHQ D PDWWHU RI DWWUDFWLRQ IRU WKH ODVW IRXU GHFDGHV DPRQJ WKH VFLHQWLILF FRPPXQLW +RZHYHU WKH FRQYHUVLRQ UDWH KDV QRW HW EHHQ DFKLHYHG WR WKH GHVLUHG HIILFLHQF GXH WR WKH LQHYLWDEOH EDUULHUV DVVRFLDWHG ZLWK WKH SURFHVV PDNLQJ LW DV D +RO *UDLO 7KLV SUHVHQWDWLRQ GHDOV ZLWK WKH LGHQWLILFDWLRQ DQG FULWLFDO HYDOXDWLRQ RI WKH KXUGOHV WKDW SXOOV EDFN WKH SKRWRFDWDOWLF SURFHVVHV RQ WUDFN DQG WKH UHFHQW DGYDQFHV LQ WKH VFLHQWLILF ILHOG WKDW SHUWDLQ WR WKH SKRWRFDWDOWLF FRQYHUVLRQ RI FDUERQ GLR[LGH LQ WKH QHDU IXWXUH Methods :H H[SORUHG WKH FRQWHQW RI PRUH WKDQ RULJLQDO UHVHDUFK DUWLFOHV WKDW DUH UHOHYDQW WR WKH GHVLUHG WRSLF DQG H[WUDFWHG WKH FXUUHQW NQRZOHGJH RQ WKH VR FDOOHG SKRWR FDWDOWLF UHGXFWLRQ RI FDUERQ GLR[LGH :H KDYH DSSURDFKHG DOO WKH DUWLFOHV LQ D SHUVSHFWLYH ZD UDWKHU WKDQ D ZRUG WR ZRUG UHFHQW DGYDQFHV LQ WKH ILHOG DQG IRXQG RXW WKH PDMRU OLPLWDWLRQV WKDW KDYH WR EH UHFWLILHG Results 7KH LVVXHV UHODWHG WR WKH VWDWHRIWKHDUW RI FDUERQ GLR[LGH UHGXFWLRQ DUH GHVFULEHG LQ VHSDUDWH VHFWLRQV LQ GHWDLO 0HFKDQLVWLF DVSHFWV VKRXOG WR EH UHYLVLWHG ZLWK WKH KHOS RI DGYDQFHG LQVWUXPHQWDWLRQ IDFLOLWLHV 0DMRU SUREOHP DVVRFLDWHG LV ILQGLQJ WKH DSSURSULDWH PDWHULDO KHQFH HIILFLHQW PDWHULDO VKRXOG EH HQJLQHHUHG WR RYHUFRPH WKH KLJK HQHUJ EDUULHU DVVRFLDWHG ZLWK WKH UHGXFWLRQ SURFHVV 3URGXFW DQDO VLV DV ZHOO DV HIILFLHQF GHWHUPLQDWLRQ DUH KLJKO VXVFHSWLEOH WR HUURUV ,W LV YHU GLIILFXOW WR FRPSDUH WKH ZRUN SURGXFHG E DQ WZR ODEV EHWZHHQ HDFK RWKHU Conclusion 7KHUH DUH VR PDQ KXUGOHV DVVRFLDWHG LQYDULDEO ZLWK WKH SKRWRFDWDOWLF FDUERQ GLR[LGH UH GXFWLRQ SURFHVV ZKLFK PXVW EH UHFWLILHG LQ RUGHU WR FUHDWH DQ HQHUJ VXVWDLQDEOH VRFLHW XVLQJ GLUHFW VXQOLJKW DV D SULPDU HQHUJ VRXUFH MXVW DV SODQWV GR ,W FRXOG KDSSHQ RQO E WKH FROODERUDWLYH UHVHDUFK HIIRUW IURP YDULRXV JURXSV LUUHVSHFWLYH RI WKH LPSOLFLW ELDV DPRQJ WKH VFLHQWLILF FRPPXQLW $ 5 7 , / ( + , 6 7 2 5 5HFHLYHG -DQXDU 5HYLVHG $SULO $FFHSWHG $SULO DOI: 10.2174/22115447056661604271138 28 .HZRUGV DUERQ 'LR[LGH 5HGXFWLRQ 3KRWRFDWDOVLV 6HPLFRQGXFWRU $UWLILFLDO 3KRWRVQWKHVLV 6RODU (QHUJ ,VVXHV ,1752'87,21 ,W¶V DOPRVW D FHQWXU DIWHU WKH SXEOLFDWLRQ RI WKH PLQG EORZLQJ DUWLFOH ³7KH SKRWRFKHPLVWU RI WKH IXWXUH´ E WKH SLRQHHU FKHPLVW *LDFRPR LDPL FLDQ ZKR FKDOOHQJHG WKH VFLHQWLVWV RI WKDW GHFDGH WR LPDJLQH D FKHPLFDO LQGXVWU SURGXFLQJ FKHPL FDOV LQ VXFK D ZD WKDW SODQWV GR XVLQJ VRODU HQHU J WKH SULPDU HQHUJ VRXUFH @ 'XULQJ WKH 3DVW HDUV VHYHUDO VFLHQWLVWV @ KDYH PDGH D VLJQLILFDQW FRQWULEXWLRQ WRZDUGV WKH VWRUDJH RI VRODU HQHUJ LQWR FKHPLFDO ERQGV 7KH HIIRUWV KDYH QRW HW DFKLHYHG LDPLFLDQ¶V YLVLRQ $GGUHVV FRUUHVSRQGHQFH WR WKLV DXWKRU DW WKH 1DWLRQDO HQWUH IRU DWDOVLV 5HVHDUFK ,QGLDQ ,QVWLWXWH RI 7HFKQRORJ 0DGUDV KHQ QDL ,QGLD (PDLO EYQDWKDQ#LLWPDFLQ 7KH SODQHW HDUWK UHFHLYHV Ε [ -K RI HQ HUJ IURP WKH VXQ ZKLOH WKH UHTXLUHPHQW RI HQHUJ IRU WKH HDUWK LV DURXQG [ -K DQG LW VKRZV WKDW LI RQH FDQ KDUQHVV FRPSOHWHO WKH VRODU HQHUJ IRU RQH KRXU LW ZLOO EH VXIILFLHQW WR VDWLVI WKH HQ HUJ QHHG RI WKH ZRUOG IRU PRUH WKDQ D HDU @ 7KHUH DUH PDQ ZDV WR KDUQHVV WKH VRODU HQHU J DQG FRQYHUW LW LQWR XVHIXO HOHFWULFDO HQHUJ 2QH RI WKHP LV WR VWRUH VRODU HQHUJ LQ FKHPLFDO ERQGV WKDW LV WKH FRQYHUVLRQ RI FDUERQ GLR[LGH DQG ZDWHU LQWR YDOXH DGGHG FKHPLFDOV DQG IXHOV 7KH UHGXF WLRQ RI FDUERQ GLR[LGH ZLWK ZDWHU WR JLYH PHWKDQRO LV D WKHUPRGQDPLF XSKLOO SURFHVV ZLWK WKH IUHH HQHUJ FKDQJH RI N-PRO DQG WKDW RI ZDWHU UHGXFWLRQ WR LHOG KGURJHQ DQG R[JHQ DOVR DVVR FLDWHG ZLWK D IUHH HQHUJ FKDQJH RI N-PRO 3KRWRFDWDOWLF 5HGXFWLRQ RI DUERQ 'LR[LGH ,VVXHV DQG 3URVSHFWV 5(9,(: $57,/( Send Orders for Reprints to reprints@benthamscience.ae Current Catalysis, 5, ISSN: 2211-5447 eISSN: 2211-5455 Volume 5, Number 2 SCIENCE BENTHAM
  • 2. 80 Current Catalysis, 2016, Vol. 5, No. 2 Narayanan et al. [17]. This implies that greater effort will be needed to overcome the energy barrier for converting car- bon dioxide than the water splitting. In spite of this unfavourable condition, enormous efforts have been expanded around the globe to convert carbon dioxide into chemical and value added fuels. It has received considerable attention in recent times due to its similarity to photosynthesis. There are vari- ous other routes available for carbon dioxide con- version with specific advantages and disad- vantages over photo-catalytic route. The photocatalytic conversion rate so far report- ed is up to few tens of micromoles per gram per hour, which is far from the levels required for the industrialization of the process. One of the primary reasons is that the carbon dioxide in its ground state is a linear molecule which is stable and the activa- tion of this linear molecule for chemical conversion requires high overpotential. The first electron trans- fer to the carbon dioxide to produce carbon dioxide anions radical which needs high reduction potential up to -1.9 V vs Normal Hydrogen Electrode (NHE). The conduction band bottom of currently known photocatalysts is more positive than the first electron reduction potential. So, urgent need is a photocata- lyst with conduction band edge more negative po- tential with necessary band gap for visible light ab- sorption. The visible light absorption of the photo- catalyst can be achieved by means of sensitization and band gap engineering, etc. But these possibili- ties have not provided any desired results. Since the photocatalytic process is a multielectron transfer process, the reaction rate depends upon each of the electron transfer steps, namely photon absorption, charge separation, surface reaction, electron-hole recombination, transfer of electron to the adsorbed substrate and desorption of the substrates and each of them must be sequentially taking place for the formation of multielectron reaction products like methanol, ethanol, formaldehyde. To the best of the author’s knowledge, no photocatalyst reported so far does both activation and visible light absorption in an appropriate way. At least one wants to achieve a 10% quantum efficiency or comparable to photo- synthetic rate, then only the dream can be realized. Another hurdle associated with the efficiency is the measures like Quantum Efficiency, Turnover Rate, Turnover Number, Turnover Frequency, which reflects reactivity of the system, used for comparison and appropriate selection of materials in photocatalysis. These measures are based on either in terms of catalyst systems or in terms of illumination employed. In a reaction like photoca- talysis, the illumination based measures is not di- rectly reflecting the activity of the catalyst since the activity not only depends upon the illumination but also on many other factors. The illuminated beam itself undergoes multiple events like scattering, reflection, etc., hence the cal- culation of the exact number of photons absorbed by the photocatalyst is difficult. Hence, one wants to develop a new efficiency scale for representing the activity of the photocatalyst and it must be based on photocatalyst as well as the illumination and inde- pendent of these individual parameters. The new scale must be based on the number of successful photons absorbed by the photocatalyst, which only truly gives the quantum efficiency. The reaction rate can be increased by catalyst modification or by adding sacrificial reagent to the system. In the case of CO2 reduction, none of the above methods has not been yielding the desired result. The role of sacrificial reagent on the PCR of carbon dioxide is limited for a few hours and it also absorbs the light from the illumination source. The degradation of sacrificial reagent may affect the reaction mechanism of carbon dioxide reduc- tion itself because the proposed mechanism for carbon dioxide reduction involves radical species. If nanoarchitecture will be a solution, the large scale production of catalyst with well-defined size, shape, surface, porosity, defects, and assemblies are the challenges. The doping and aliovalent sub- stitution of nanomaterials may lead to photochem- ical deactivation of the catalyst. Major limitation associated with carbon dioxide reduction is the accuracy of the analytical meas- urements employed. The photocatalytic process is a multielectron transfer process, hence the reaction leads to the formation of a variety of products like carbon monoxide, methane, higher hydrocarbons, alcohol, aldehydes, carboxylic acid etc., with some intermediates. The identification and quantifica- tion of the products are needed for the best selec- tion of photocatalyst, comparison and elucidation of reaction mechanisms. Currently there is no standard analysis method that has been developed for product analysis of carbon dioxide reduction. Hence the results of these measurements also in- clude the products derived from the carbon con- tamination invariably present in the reaction sys-
  • 3. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, Vol. 5, No. 2 WHP ,VRWRSH ODEHOOLQJ LV WKH VROXWLRQ EXW WKHUH LV DOVR D FKDQFH RI FRQWDPLQDWLRQ XUUHQW GHYHORSPHQWV LQ FDUERQ GLR[LGH UHGXF WLRQ UHVHDUFK LV QRW HQRXJK IRU WKH UHDO LPSOHPHQ WDWLRQ RI WKH SURFHVV 7KH PD[LPXP LHOG KDV EHHQ UHDFKHG XS WR VRPH PLFURPROHV /HW¶V ORRN DW WKH SUHVHQW VFHQDULR ZLWK WKH FXUUHQW SDFH [ NJ RI 7L2 ZRXOG EH UHTXLUHG IRU WKH SURGXFWLRQ RI PHWKDQRO IURP FDUERQ GLR[LGH DQG ZDWHU DVVXP LQJ D FDWDOVW DFWLYLW RI —PROSURGXFW JFDW K DQG SURGXFWLRQ UDWH NJ V @ 7KH PDLQ REMHFWLYH RI WKLV ZULWH XS LV WR DQD O]H WKH LVVXHV DVVRFLDWHG ZLWK WKH VWDWHRIWKHDUW SKRWRFDWDOWLF UHGXFWLRQ RI FDUERQ GLR[LGH LQWR FKHPLFDOV DQG IXHOV $7,9$7,21 2) $5%21 ',2;,'( 7+( +2/ *5$,/ DUERQ 'LR[LGH WKH KLJKHVW R[LGDWLRQ SURGXFW RI FDUERQ LV D VWDEOH ǻ* N-PRO
  • 4. OLQHDU QRQSRODU PROHFXOH ZLWK í2 ERQG OHQJWK RI $࢓ DQG ERQG VWUHQJWK ' N-PRO (YHQ WKRXJK LW LV D QRQSRODU PROHFXOH 2 FRQWDLQV SR ODU ERQGV GXH WR WKH HOHFWURQHJDWLYLW GLIIHUHQFH EHWZHHQ FDUERQ DQG R[JHQ 7KH PROHFXODU SURS HUWLHV RI 2 DUH DVVHPEOHG DW 7DEOH %HFDXVH RI WKH VWUXFWXUH WKH PROHFXOH LV VXV FHSWLEOH WR ERWK QXFOHRSKLOLF DQG HOHFWURSKLOLF DW WDFN WKURXJK FDUERQ DQG R[JHQ FHQWHUV UHVSHF WLYHO 7KH ILUVW LRQL]DWLRQ SRWHQWLDO RI FDUERQ GL R[LGH H9
  • 5. LV KLJKHU FRPSDUHG WR WKDW RI ZDWHU
  • 7. @ 7KLV LQGLFDWHV WKH QRWLFHDEOH HOHFWURSKLOLFLW RI WKH FHQWUDO FDUERQ DWRP )URP WKH SHUVSHFWLYH RI 0ROHFXODU 2UELWDO 7KH RU WKH HQHUJ RI WKH ORZHVW XQRFFXSLHG DQWLERQG LQJ RUELWDO /802
  • 8. KDV EHHQ HVWLPDWHG DW H9 LQGLFDWHV WKH KLJK HOHFWURQ DIILQLW ZLWK UHVSHFW WR WKH FHQWUDO FDUERQ DWRP KHQFH LW LV VXVFHSWLEOH WR DWWDFN E QXFOHRSKLOH DQG WR WKH UHGXFWLRQ ZKLOH WKDW RI KLJKHVW RFFXSLHG PROHFXODU RUELWDO +2 02
  • 9. LV VXVFHSWLEOH WR DWWDFN E HOHFWURSKLOH GXH WR LWV KLJK ORFDOL]HG HOHFWURQ GHQVLW DV R[JHQ LQ SODQH ORQH SDLUV ,W DOVR LQWHUDFWV ZHDNO ZLWK /HZ LV DQG %URQVWHG DFLGV D@ DUERQ GLR[LGH FRQVLVWV RI WZR GHJHQHUDWH +202 DQG /802 OHYHOV 7KH GHJHQHUDWHG IURQ WLHU RUELWDOV RI 2 VKRZ VLPLODULW ZLWK WKH G 7DEOH 3URSHUWLHV RI DUERQ 'LR[LGH 0ROHFXOH 5HSURGXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ $PHULFDQ KHPLFDO 6RFLHW
  • 10. Current Catalysis, , Vol. 5, No. 2 Narayanan et al. RUELWDOV DQG IRUELWDOV RI WUDQVLWLRQ PHWDOV DQG ODQ WKDQLGHV UHVSHFWLYHO 7KH PROHFXOH KDV IRXU HOHF WURQV ZLWK WKH VDPH HQHUJ LQ WKH +202 ZKLFK DUH UHDG WR EH UHOHDVHG ,W KDV DOVR IRXU XQRFFX SLHG VWDWHV WR ZKLFK IRXU HOHFWURQV FDQ WUDQVIHU )LJ
  • 11. 7KH GHJHQHUDF ZLOO EUHDN LI RQH RI IRXU HOHFWURQV DUH WUDQVIHUUHG RU UHOHDVHG @ 6LPXOWD QHRXV DGGLWLRQ RU WUDQVIHU RI HOHFWURQV GRHV QRW RFFXU LQ WKH FDVH RI FDUERQ GLR[LGH KHQFH WKH DF WLYDWLRQ LV D +RO *UDLO )LJ
  • 12. )URQWLHU PROHFXODU RUELWDOV IRU JURXQG VWDWH 2 7KH XQLW RI RUELWDO HQHUJ LV H9 LQ YDFXXP LQ ZDWHU 30
  • 13. 5HSURGXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ $PHULFDQ KHPLFDO 6RFLHW $FWLYDWLRQ RI WKH PROHFXOH RU VXEVWUDWH LV WR LQ FUHDVH WKH GHJUHH RI UHDFWLYLW LQ WKH PROHFXOH E PHDQV VXUIDFH UHDFWLRQV DQG LW LV D NH VWHS LQ DQ FDWDOWLF UHDFWLRQ 7KH RYHUDOO UDWH RI WKH FDWDOWLF UHDFWLRQ GHSHQGV RQ WKH DFWLYDWLRQ RI WKH VXEVWUDWH RU PROHFXOH ,Q PDQ FDWDOWLF UHDFWLRQV DFWLYD WLRQ RI WKH VXEVWUDWH LV WKH UDWH OLPLWLQJ VWHS 7KH PDLQ VWHSV RI FDUERQ GLR[LGH DFWLYDWLRQ DUH L
  • 14. EHQGLQJ RI 22 ERQG LL
  • 15. HORQJDWLRQ RI WZR RU RQH RI WKH 2 ERQG LQ 2 LLL
  • 16. SRODUL]DWLRQ RI WKH 2 PROHFXOH 7KHVH WKUHH DUH QRW VHSDUDWH SDWK ZDV WKH WDNH SODFH VLPXOWDQHRXVO 7KH VFKH PDWLF UHSUHVHQWDWLRQ LV JLYHQ LQ )LJ
  • 17. )LJ
  • 18. DUERQ 'LR[LGH $FWLYDWLRQ 7SHV 5HSUR GXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ $PHULFDQ KHPLFDO 6RFLHW 6LQFH LW LV D VWDEOH PROHFXOH RQH ZDQWV WR VXS SO DGGLWLRQDO HQHUJ WR FRQYHUW WKH OLQHDU VWUXF WXUH WR EHQW IRUP LH 2 WR 2 í‡ %HFDXVH RI WKH KLJK /802 OHYHO RI FDUERQ GLR[LGH WKH WUDQV IHU RI RQH HOHFWURQ WR IUHH 2 LV WKHUPRGQDPL FDOO XQIDYRXUDEOH UHTXLUHV D YHU QHJDWLYH UHGR[ SRWHQWLDO XS WR WKH RUGHU RI 9 YV 1RUPDO + GURJHQ (OHFWURGH 1+(
  • 19. ,Q SKRWRFDWDOWLF URXWH QR VHPLFRQGXFWRU SRVVHVVHV WKH FRQGXFWLRQ EDQG SRWHQWLDO UHTXLUHG IRU 2 DFWLYDWLRQ WKHUH LV D QHHG WR VXSSO DGGLWLRQDO RYHUYROWDJH ZKLFK ZLOO OHDG WR DQRWKHU HQHUJ GLOHPPD 2QH RI WKH SURPLQHQW ZDV WR UHGXFH WKH EDUUL HUV LV WR DGVRUE WKH VXEVWUDWH RQ WKH FDWDOVW VXU IDFH 7KH DGVRUSWLYH LQWHUDFWLRQ EHWZHHQ FDWDOVW VXUIDFH DQG 2 PROHFXOH FKDQJH WKH PROHFXODU VWUXFWXUH IURP OLQHDU WR EHQW 7KH EHQGLQJ RI WKH FDUERQ GLR[LGH GHSHQGV RQ WKH QDWXUH RI FDWDOVW VXUIDFH DUERQ GLR[LGH DGVRUEV RQ D PHWDO VXUIDFH E QLQH GLIIHUHQW ZDV E@ 7KH LQWHUDFWLRQ RI 2 ZLWK WKH PHWDO VXUIDFH LV EHRQG WKH VFRSH RI WKLV GRFXPHQW 2 LQWHUDFWV ZLWK VHPLFRQGXFWRU VXUIDFH LQ GLIIHUHQW ZDV DV VKRZQ LQ )LJ
  • 20. )LJ
  • 21. 3RVVLEOH ZDV RI DGVRUSWLRQ RI 2 RQ VHPL FRQGXFWRU VXUIDFHV 5HSURGXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ :,/(9+ 9HUODJ *PE+ R .*D$ :HLQKHLP 2 LQWHUDFWV ZLWK VHPLFRQGXFWRU VXUIDFH HLWKHU ZLWK R[JHQ RU WKURXJK FDUERQ 7KH SKRWRHOHFWURQ SURGXFHG RQ WKH FDWDOVW VXUIDFH DGG WR WKH /802 OHYHO RI WKH FKHPLFDOO VWDEOH FDUERQ GLR[LGH OHDG LQJ WR WKH IRUPDWLRQ RI 2 í‡ 7KH ILUVW HOHFWURQ WUDQVIHU FKDQJHV WKH JHRPHWU RI 2 IURP OLQHDU WR EHQW VKDSH 2 í‡ 7KH VWUXFWXUDO DUUDQJHPHQW RI OLQHDU 2 WR EHQW VKDSH LQYROYHV WKH FKDQJH LQ KEULGL]DWLRQ IURP sp WR sp2 DW FDUERQ FKDUDFWHU L]HG E KLJK RYHUSRWHQWLDO VLJQLILQJ D VXEVWDQWLDO NLQHWLF EDUULHU WR WKH UHDFWLRQ 2QFH IRUPHG WKH EHQW 2 í‡ XQGHUJR WZR HOHFWURQ UHGXFWLRQ UDWKHU WKDQ RQH 7KH 2 í‡ DQLRQ UDGLFDO IRUPDWLRQ KDV D VLJQLILFDQW UROH LQ WKH UHGXFWLRQ RI FDUERQ GLR[LGH 7KH IRUPDWLRQ RI 2 í‡ DORQH GRHV QRW OHDG WR 2 UHGXFWLRQ 7KH GHFUHDVH LQ WKH 22 ERQG DQJOH YLD VXUIDFH LQWHUDFWLRQV IDFLOLWDWHV WKH FKDUJH WUDQV IHU WR 2 E ORZHULQJ LWV /802 7KHRUHWLFDO LUMO +0.74(+0.88) HOMO -10.34(-10.25) HOMO-1 -14.27 (-14.14) LUMO +0.74(+0.88) HOMO -10.34(-10.25) HOMO-1 -14.27 (-14.14) HOMO-2 -14.36 (-14.33) CO Activation2 Bending(i) Elongation(ii) Polarization, electron transfer to and/or from(iii) O O C CO C O O O O OC d d d-- + O O C b a a b O O Oa C C b ba a b O O O O O C C O O O MMMMMMM
  • 22. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, Vol. 5, No. 2 VWXGLHV SURYLGH D FOHDU SLFWXUH RI HQHUJ OHYHO YDU LDWLRQ RI PROHFXODU RUELWDOV DV D IXQFWLRQ RI 22 DQJOH FDOOHG :DOVK GLDJUDP 7KH YDULDWLRQ LQ WKH HQHUJ RI /802 ZLWK UHVSHFW WR 22 ERQG DQJOH LV VKRZQ LQ )LJ
  • 23. )LJ
  • 24. 9DULDWLRQ RI WKH HQHUJ RI /802 ZUW WKH ERQG DQJOH RI JDVHRXV 2 5HSURGXFHG ZLWK SHUPLV VLRQ IURP 5HI @ DQG @ ‹ $PHULFDQ KHPL FDO 6RFLHW DQG ‹ 5RDO 6RFLHW RI KHPLVWU 7KH PRVW VWDEOH VWDWH LV WKH OLQHDU FDUERQ GLR[ LGH ZLWK R ERQG DQJOH 7KH HQHUJ RI IURQWLHU RUELWDO FKDQJHV ZLWK WKH GHFUHDVH LQ WKH ERQG DQ JOH $QLRQLF 2 í‡ UDGLFDO VKRZV D EHQW JHRPHWU ZLWK D ERQG DQJOH R ZKLOH WKDW RI QHXUDO DQG FDWLRQLF PROHFXOH SRVVHVV OLQHDU JHRPHWU 7KH GHFUHDVH LQ WKH ERQG DQJOH FDQ EH FKDUDFWHUL]HG E PHDQV RI ,5 VSHFWURVFRS ,W KDV EHHQ DOUHDG HVWDEOLVKHG WKDW UXWLOH
  • 25. FUVWDO IDFH LV DFWLYH IRU SKRWRFDWDOWLF UHGXFWLRQ RI 2 ZKLOH WKH FUVWDO ODWWLFH
  • 26. ZDV IRXQG WR EH LQDFWLYH WRZDUGV WKH UHDFWLRQ @ 7KH LQWHUDF WLRQ EHWZHHQ 7L2 DQG 2 KDV EHHQ VWXGLHG XVLQJ D ZLGH YDULHW RI VSHFWURVFRSLF WHFKQLTXHV DQG TXDQWXP PHFKDQLFDO PRGHOOLQJ )RU FRQYHQLHQFH DOO PHFKDQLVPV UHODWHG WR VHPLFRQGXFWRUV H[ SUHVVHG LQ WHUPV RI 7L2 DV D UHSUHVHQWDWLYH 7KH FDUERQ GLR[LGH FDQ DWWDFK WR WKH 7L2 VXUIDFH HL WKHU WKURXJK R[JHQ RU E FDUERQ DWRP ,W LV VXJ JHVWHG WKDW DWWDFKPHQW WKURXJK WZR R[JHQ DWRPV LV PRUH VWDEOH GXH WR WKH ELGHQWDWH QDWXUH RI 2 OLJDQG 7KH 7L IRUPHG DW WKH VXUIDFH UHGXFHV WKH 2 WR FRUUHVSRQGLQJ UDGLFDO 7KH R[JHQ YDFDQ FLHV FDQ DOVR UHGXFH 2 WR 2 DQG RQH RI WKH R[ JHQ DWRPV LQ WKH FDUERQ GLR[LGH KHDOV WKH YDFDQ F $GVRUEHG KGURJHQ DWRPV RQ WKH VXUIDFH RI 7L2 UHGXFHV WKH ERXQG 2 í‡ )LJ
  • 27. VKRZV WKH DFWLYDWLRQ RI FDUERQ GLR[LGH RQ WLWDQLXP GLR[LGH VXUIDFHV )LJ
  • 28. D
  • 29. %HQGLQJ DQG FRQFXUUHQW WKH IRUPDWLRQ RI 2 í‡ RI 2 RQ 7L2 VXUIDFHV E
  • 30. 3KRWRFDWDOWLF UH GXFWLRQ RI 2 RQ WKH DQFKRUHG 7L2 VSHFLHV 5HSUR GXFHG ZLWK SHUPLVVLRQ IURP 5HI ‹ $PHULFDQ KHPLFDO 6RFLHW ‹5RDO 6RFLHW RI KHP LVWU@ 7KH FDUERQ GLR[LGH DFWLYDWLRQ GHSHQGV RQ WKH QDWXUH RI WKH VROYHQW XVHG 6ROYHQW PRGLI WKH VXU IDFH FKDUJH RI VHPLFRQGXFWRUV DV ZHOO DV WKH FKDUJHV RQ WKH VXEVWUDWH ,W DOVR GHSHQGV RQ WKH S+ RI WKH VROXWLRQ EHFDXVH WKH VDPH PROHFXOH H[KLELWV GLIIHUHQW JHRPHWU DW YDULQJ S+ 7KH S+ DOVR FRQWUROV WKH VXUIDFH FKDUJHV RI VHPLFRQGXFWRUV LQ VROXWLRQ 7KH SRLQW ]HUR FKDUJH 3=
  • 31. RI 7L2 LV WKDW PHDQV WKH 7L2 VXUIDFH LV PRUH SRVLWLYH ZKHQ WKH S+ RI WKH VROXWLRQ LV EHORZ WKH 3= DQG PRUH QHJDWLYH ZKHQ LW LV DERYH WKH 3= 7KH FKDQJH LQ S+ RI WKH VROXWLRQ FKDQJHV WKH PRGH RI DGVRUSWLRQ RI WKH FDUERQ GLR[LGH RQ WKH VHPLFRQ GXFWRU VXUIDFHV KHQFH WKH UHDFWLRQ SDWKZD DU ERQ GLR[LGH DOVR H[KLELWV D VSHFLDWLRQ DW YDULRXV S+ ,Q DONDOLQH PHGLXP 2 H[LVWV DV +2 LRQ ZKLFK LQ WXUQ DGVRUE RQ WKH VXUIDFH RI FDWDOVW OHDGV WR D GLIIHUHQW DGVRUSWLRQ PHFKDQLVP $W KLJKHU S+ 2 LV WKH SUHGRPLQDQW VSHFLHV WKDW LV WKH VXUIDFH RI VHPLFRQGXFWRU PD EH VDWXUDWHG ZLWK WKH ELFDUERQDWH LRQ 6HH )LJ
  • 32. 7KHVH WKUHH IRUPV VKRZ GLIIHUHQW SURSHUWLHV LQ VROXWLRQ ZKLFK VKRZV WKDW WKH PHFKDQLVP RI 2 DFWLYDWLRQ PD GLIIHU DW GLIIHUHQW S+ 6LQFH WKH S]F FKDQJHV ZLWK WKH VHPLFRQGXFWRU WKH DGVRUSWLRQ PRGH RI 2 RQ DQ SDUWLFXODU VHP LFRQGXFWRU VXUIDFH KDV DOVR EHHQ GLIIHUHQW 7KLV 0.0 -2.0 -4.0 -6.0 -8.0 -10.0 -12.0 -14.0 120.0 150.0 180.0 O-C-O angle [degree] Orbitalenergy[eV] -0.55 -0.57 -0.59 -0.61 -0.63 -0.65 -0.67 -0.69 180 175 170 O-C-O bond angle, degrees COLUMOenergy.eV2 O O O O Ti4+ Ti4+ Ti4+ Ti4+ Ti4+ O O O O O = C = O Ti4+ O O O O Ti4+ Ti4+ OO C CO, O desorption desorptionO C (surface) O O O C CO2 e- e- e+ Ti 3+ Ti 3+ O-- e- e+OC H, OH desorption H, OH (surface) Ti 3+ hv Ti4+ Ti4+ O 2- lsolated TI-oxide H H O O - e e- + hv H O2 C + 4H C + OH + H 2H 2O O2 H2 CH CH3 4 OH (b) (a)
  • 33. Current Catalysis, , Vol. 5, No. 2 Narayanan et al. OHDGV WR WKH IRUPDWLRQ RI GLIIHUHQW UHGXFWLRQ SURG XFWV ZLWK LQGLYLGXDO VHPLFRQGXFWRUV XVHG ,Q VKRUW WKH DFWLYDWLRQ PHFKDQLVP FKDQJHV ZLWK WKH LQGL YLGXDO VHPLFRQGXFWRU HPSORHG )LJ
  • 35. DQG 7L2 VXUIDFH FKDUJH
  • 36. DW GLIIHUHQW S+ 7KH H[DFW PHFKDQLVP RI DFWLYDWLRQ RI FDUERQ GLR[LGH LV VWLOO XQUHYHDOHG *UHDW UHVHDUFK HIIRUWV DUH QHHGHG WR RYHUFRPH WKLV ERWWOHQHFN SUREOHP LQ WHUPV RI ERWK H[SHULPHQWDO DQG FRPSXWDWLRQDO UH VHDUFK 4XDQWXP PHFKDQLFDO PRGHOOLQJ JLYHV D EHWWHU LQVLJKW WR WKH DFWLYDWLRQ PHFKDQLVP 2QFH RQH LGHQWLILHV WKH DSSURSULDWH PDWHULDO ZKLFK ZLOO DGVRUE HYHQ JDVHRXV FDUERQ GLR[LGH DQG WUDQVIHU LW LQWR WKH FRUUHVSRQGLQJ UDGLFDO DQLRQ LHOG SURG XFWV ZLWK JUHDWHU WKDQ VLOYHU ERWWRP HIILFLHQ F LQ D VLPLODU ZD RI DPPRQLD VQWKHVLV WKHQ WKH UHVW EHFRPHV KLVWRU 62/$5 (1(5* $6 $1 (1(5* 6285( 7KH XWLOL]DWLRQ RI VRODU HQHUJ LV WKH PDLQ DW WUDFWLRQ IRU SKRWRFDWDOWLF UHGXFWLRQ RI FDUERQ GL R[LGH 2WKHUZLVH WKH ODUJH RYHUSRWHQWLDO UHTXLUHG IRU WKH UHGXFWLRQ RI FDUERQ GLR[LGH LWVHOI FUHDWHV D ODUJH EDUULHU LQ WKH SURFHVV 7KH VXQOLJKW LI LW LV IUHH RI FRVW DEXQGDQW DQG HDVLO DYDLODEOH LV DG YDQWDJHRXV 7KH VXQOLJKW WKDW IDOOV RQ WKH HDUWK V VXUIDFH LQ DQ KRXU KDV HQRXJK HQHUJ WR UXQ WKH HQWLUH ZRUOG IRU D HDU 7KHUHIRUH VRODU HQHUJ FRQYHUVLRQ EHFRPHV RQH RI WKH OHDGLQJ UHVHDUFK LQWHUHVW LQ WKH VW FHQWXU @ 7KH FRQYHUVLRQ RI VRODU HQHUJ LV D GLIILFXOW SURFHVV 7KH JUHDW EDUULHU LV DVVRFLDWHG ZLWK WKH FRQYHUVLRQ SURFHVV DV ZHOO DV IRU LQGXVWULDO LP SOHPHQWDWLRQ 3KRWRYROWDLF UHVHDUFK LV WKHUH IRU FRQYHUWLQJ VRODU HQHUJ WR HOHFWULFLW ZKLFK LV DOVR DVVRFLDWHG ZLWK VWRUDJH DQG WUDQVSRUWDWLRQ LVVXHV 7KH HIILFLHQF RI SKRWRYROWDLF FHOO UHDFKHG WKH GH VLUHG OHYHO RI LQGXVWULDO LPSOHPHQWDWLRQ EXW WKH SURFHVV HFRQRPLFV DUH KLJK 7KH VRODU FHOOV DUH VDLG WR EH D SROOXWLRQ IUHH WHFKQRORJ WKDW PHDQV LW GRHV QRW HPLW FDUERQ GLR[LGH LQWR WKH DWPRVSKHUH KHQFH LW LV DOVR WHUPHG DV D FDUERQ QHXWUDO WHFKQRO RJ ,Q WKH UHDO VHQVH WKH VRODU FHOOV RU DQ RWKHU VRODU HQHUJ FRQYHUWLQJ SURFHVVHV DUH QRW D FDUERQ QHXWUDO WHFKQRORJ UHDWLRQ DQG DSSHQGLQJ WKH SDUWV RI VRODU FHOOV DUH PDGH E PHDQV RI IRVVLO IXHO HQHUJ DQG LW DOVR FDXVHV WKH HPLVVLRQ RI 2 VXOIXU KH[DIOXRULGH ) OLNH JUHHQKRXVH JDVHV ZKLFK SRVVHVV DQG WLPHV KLJKHU JOREDO ZDUPLQJ SRWHQWLDO WKDQ FDUERQ GLR[LGH UH VSHFWLYHO @ 6LPLODUO RWKHU VRODU HQHUJ FRQ YHUVLRQ SURFHVVHV DOVR GHSHQG RQ IRVVLO IXHOV IRU WKH SURGXFWLRQ PDWHULDOV 7KH PDLQ DWWUDFWLRQ RI SKRWRFDWDOVLV LV WKDW WKH FDUERQ GLR[LGH IRRWSULQW LV FRPSDUDWLYHO ORZ DV FRPSDUHG WR WKH RWKHU FDU ERQ GLR[LGH FRQYHUVLRQ WHFKQLTXHV 0RVW RI WKH VWXGLHV LQ FDUERQ GLR[LGH UHGXFWLRQ DUH FDUULHG RXW E WKH 89 OLJKW VRXUFH UDWKHU WKDQ VXQOLJKW 7KH 89 FRQWHQW RI WKH VXQOLJKW LV RQO DERXW @ DQG LW YDULHV ZLWK WLPH ODWLWXGH DQG VHDVRQV )LJ
  • 37. +HQFH WKH H[SORUDWLRQ RI 89 OLJKW IURP VXQOLJKW LV GLIILFXOW $ YHU IHZ VWXGLHV KDYH EHHQ FDUULHG RXW XVLQJ )LJ
  • 38. KDQJHV LQ WKH 89 LUUDGLDWLRQ DV D IXQFWLRQ RI ODWLWXGH WLPH DQG GD RI WKH HDU 5HSURGXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ E WKH $PHULFDQ KHPLFDO 6RFLHW CO2 CO2 (aq) Bicarbonate Negative Carbonate 2TiO surface pH (M)[H ] + Acidic Neutral Basic -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 10-14 101010 -12-10-8 10-6 10-4 10-2 1 Positive 5 4 3 2 1 0 0 10 20 30 40 50 60 70 80 90 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Latitude N / ‘ Latitude N / ‘ UVfractionoftotallight irradianceatsolarnoon/% UVirradiance/kJm-2day-1 1600 1400 1200 1000 800 600 400 200 0 0 10 20 30 40 50 60 70 80 90D N O S A J J M MA JF D N O S A J J M MA JF 0 200 400 600 800 1000 1200 1400 1600
  • 39. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, Vol. 5, No. 2 WKH QDWXUDO VXQOLJKW DV DQ HQHUJ VRXUFH HVSHFLDOO 9DUJKHVH et al UHSRUWHG WKH PD[LPXP LHOG @ 7KH ZDYHOHQJWK UDQJH RI WKH LQFLGHQW OLJKW LQIOX HQFHV WKH SURGXFW LHOG PD[LPXP HIILFLHQF ZDV UHSRUWHG DW D ZDYHOHQJWK RI QP DV FRPSDUHG ZLWK WKDW RI QP @ ,Q D UHDO OLIH SRLQW RI YLHZ WKH 89 OLJKW XWLOL]DWLRQ XVLQJ D ODPS LPSRV HV DQ H[WUD EXUGHQ WR WKH HQHUJ FKDOOHQJH 7KH LUUDGLDWLRQ RI XOWUDYLROHW OLJKW EHORZ ZDYH OHQJWK QP LQLWLDWHV WKH SKRWRFKHPLFDO UHDFWLRQ RI JDVHRXV SURGXFWV OLNH PHWKDQH FDUERQ PRQR[ LGH DQG IRUPDOGHKGH YLD IUHH UDGLFDO UHDFWLRQV DQG DIIHFWV WKH LQWHUSUHWDWLRQ RI DQDOVLV RI SURG XFWV 7KH LQFUHDVHG DPRXQW RI SURGXFW LHOG EHORZ ZDYHOHQJWK QP PD EH EHFDXVH RI WKH SKRWR FKHPLFDO UHDFWLRQ WDNLQJ SODFH LQ WKH JDVHRXV SKDVH RI WKH UHDFWLRQ VVWHP 0HWKDQH SURGXFHG E WKH SKRWRFDWDOWLF UHGXFWLRQ RI FDUERQ GLR[LGH FRPELQHG ZLWK WKH KGUR[O UDGLFDOV WR IRUP D YD ULHW RI SURGXFWV OLNH ++2 2 DQG XOWLPDWHO 2 DQG RWKHU JDVHRXV SURGXFWV DOVR XQGHUJR SKR WRFKHPLFDO UHDFWLRQ EHORZ ZDYHOHQJWK QP @ +HQFH RQH FDQ QHYHU SUHVXPH WKDW DOO WKH GHWHFWHG JDVHRXV SURGXFWV DUH IRUPHG GLUHFWO IURP 2 RU FDUERQ DUWLIDFW SKRWRFKHPLFDO GLVVR FLDWLRQ RI PHWKDQH LWVHOI FRQWULEXWHV WR WKH 2 DQG ++2 IRUPDWLRQ 7KH VFKHPDWLF UHSUHVHQWDWLRQ RI R[LGDWLRQ RI PHWKDQH LQ WKH SUHVHQFH RI KGUR[O UDGLFDOV LV JLYHQ LQ )LJ
  • 40. )LJ
  • 41. 2[LGDWLRQ SDWKZDV RI PHWKDQH LQ SUHVHQFH RI KGUR[O UDGLFDO 5HSURGXFHG ZLWK SHUPLVVLRQ IURP @ ‹ -RKQ :LOH 6RQV ,QF 7KH FDUERQ GLR[LGH PROHFXOH LWVHOI XQGHUJRHV GLVVRFLDWLRQ LQ WKH SUHVHQFH RI KLJK HQHUJ XOWUDYL ROHW UDGLDWLRQ WR FDUERQ PRQR[LGH ZKLFK LV WKH SUHGRPLQDQW VRXUFH RI FDUERQ PRQR[LGH LQ WKH XS SHU DWPRVSKHUH 7KH 89 LUUDGLDWLRQ SUREOHP FDQ EH VROYHG XS WR D SDUWLFXODU H[WHQW E SODFLQJ WKH ODPS KRUL]RQWDOO WR WKH OLTXLG UHDFWLRQ VVWHP WKHUHE WKH GLUHFW LQWHUDFWLRQ EHWZHHQ JDVHRXV SURGXFWV DQG 89 OLJKW FDQ EH DYRLGHG 7KH WRS RI WKH KHPLVSKHUH UHFHLYHV DURXQG :P RI HQHUJ 6LQFH WKH HDUWK LV VSKHULFDO DQG URWDWLQJ :P JHWV VSUHDG RXW WR DQ DY HUDJH RI :P @ 7KH DERYH PHQWLRQHG SUREOHP DOVR DSSOLHV WR WKH OLTXLG SKDVH SKRWRFDWD OWLF UHGXFWLRQ RI FDUERQ GLR[LGH LQ VXFK D ZD WKDW WKH SKRWRQV UHDFKHG RQ WKH VXUIDFH RI WKH VRO YHQW QRW H[DFWO HTXDOV ZLWK WKH HQHUJ DEVRUEHG E WKH SKRWRFDWDOVW LW XQGHUJRHV PXOWLSOH VFDWWHU LQJ DV LQ WKH DWPRVSKHUH +HQFH WKH PDMRULW RI WKH SKRWRQ IOX[ UHDFKHG RQ WKH HDUWK V VXUIDFH DUH QRW DYDLODEOH IRU WKH SKRWRFDWDOWLF UHDFWLRQ VVWHP @ )LJ
  • 42. 6RODU 5DGLDWLYH )OX[ DW HDUWK V VXUIDFH 5HSUR GXFHG ZLWK SHUPLVVLRQ IURP @ ‹ $PHULFDQ 0HWHRURORJLFDO 6RFLHW ,W LV FOHDU WKDW WKH HQHUJ UHDFKHG RQ WKH HDUWK V VXUIDFH ZKLFK LV GLIIHUHQW IURP WKH HQHUJ UHDFKHG DW WKH WRS RI WKH DWPRVSKHUH 6HH )LJ
  • 43. 7KH LQ WHQVLW RI WKH VXQOLJKW YDULHV FRQVWDQWO ZLWK WKH HQYLURQPHQWDO IDFWRUV VXFK DV JHRJUDSKLF UHJLRQ DQG VHDVRQV ODWLWXGHV JHRJUDSKLFDO UHJLRQV DHUR VRO FRQFHQWUDWLRQ DQG FORXG FRYHU @ 2QH FDQ XWLOL]H WKH DYDLODEOH VXQOLJKW UHDFKHG RQ WKH HDUWK¶V VXUIDFH PRUH HIILFLHQWO XVLQJ DSSURSULDWH UHDFWRU GHVLJQV @ 7KH UHVSRQVLELOLW RI D SKRWRUHDF WRU LV WR FDSWXUH WKH VRODU UDGLDWLRQ DQG WUDQVPLW LW WR WKH SKRWRFDWDOVW VXUIDFH LQ D EHWWHU ZD 7KXV IDLOXUH PD KDSSHQ LI WKH GHVLJQ RI UHDFWRU LV QRW SURSHU HYHQ LI RQH KDYH WKH FKDPSLRQ SKRWRFDWD OVW 7KH UHDFWRU VKRXOG EH PDGH LQ VXFK ZD WKDW LW WUDQVPLWV PRUH DPRXQW LUUDGLDWHG OLJKW HYHQ LQ WKH SUHVHQFH RI GLIIXVHG VXQOLJKW $ QXPEHU RI LQ QRYDWLYH UHDFWRU GHVLJQV IRU 2 UHGXFWLRQ KDYH CH4 OH CH3 2H O O2 + CH3O2 NO OH HO2 CH3 CH3OOH O O2 HCHO OH OH,hu CO OH CO2 Wet/ Dry Deposition hu 107 107 Wm-3 Reflected Solar Radiation Reflected by Clouds, Aerosol and Atmospheric Gases 77 30 Reflected by Surface 168 Absorbed by Surface 24 Thermals 78 Evapo- transpiration 390 Surface Radiation 324 Absorbed by Surface 324 Back Radiation 40350 24 67 78 Heat Latent Absorbed by Atmosphere 165 30 Emitted by Clouds Emitted by Atmosphere 40 Atmospheric Window Greenhouse Gases 235 Outgoing Longwave Radiation 235 Wm-3-2 342 Incoming Solar Radiation 342 Wm
  • 44. Current Catalysis, , Vol. 5, No. 2 Narayanan et al. EHHQ DVVDHG 5HFHQWO SKRWRFDWDOWLF KGURJHQ JHQHUDWLRQ ZDV DFKLHYHG RQ FRPSRXQG SDUDEROLF FRQFHQWUDWRU 3
  • 45. XQGHU GLUHFW VRODU LUUDGLDWLRQ LQ SUHVHQFH ZDVWHZDWHU DV VDFULILFLDO UHDJHQW @ 7KH EHQHILW RI 3 WHFKQRORJ LV WKDW LW ZLOO FRQ FHQWUDWH DOO WSHV RI UDGLDWLRQ LUUHVSHFWLYH RI ZKHWKHU LW LV GLIIXVHG RU QRW LQWR WKH FHQWUDO WXEH FRQWDLQLQJ SKRWRFDWDOVW DQG WKH VXEVWUDWHV 7KLV WSH RI UHDFWRU FDQ EH XVHG RQ FORXG GDV ZKLFK HIILFLHQWO FRQFHQWUDWH WKH GLIIXVHG OLJKW WRZDUGV WKH SKRWRFDWDOWLF UHDFWRU 0RUHRYHU LW GRHV QRW QHHG DQ VRODU WUDFNLQJ OLNH IDFLOLWLHV WKH RQO QHHG LV WR DUUDQJH WKH 3 DW DQ DQJOH HTXLYDOHQW WR WKH ODWLWXGH RI WKDW SDUWLFXODU UHJLRQ @ 7KH DSSOLFDELOLW RI WKLV WSH RI UHDFWRU JHRPHWU HW WR EH WHVWHG IRU 2 UHGXFWLRQ ERWK LQ WKH DTXHRXV VROXWLRQ DV ZHOO DV JDVHRXV IRUP 1RUPDOO WKH 2 UHGXFWLRQ LV FDUULHG RXW LQ EDWFK WSH RI UHDF WRU ZKLFK ZLOO JLYH EHWWHU LHOG EXW QRW DSSOLFDEOH WR WKH SLORW SODQW VFDOH .RFL et al VWXGLHG WKH HIIHFW RI UHDFWRU JHRPHWU RQ WKH SKRWRUHGXFWLRQ FDUERQ GLR[LGH XVLQJ WZR DQQXODU EDWFK UHDFWRUV @ 7KH VWXG UHYHDOV WKDW WKH SURGXFW LHOG GHSHQGV RQ WKH UHDFWRU GLDPHWHU DV ZHOO DV WKH YROXPH RI WKH OLT XLG SKDVH DQG FRQILUPHG WKDW SHUIHFW PL[LQJ ZDV QRW WDNLQJ SODFH LQ WKH DQQXODU UHDFWRU 7KH KLJKHVW LHOG RI WKH SURGXFWV ZDV DFKLHYHG ZKHQ WKH ODPS SODFHG MXVW QHDU WKH VXUIDFH RI WKH OLTXLG LQ WKH UH DFWRU 7KHUHIRUH IURP WKH DERYH LW LV HYLGHQW WKDW WKH PDFURVFRSLF SDUDPHWHUV SOD DQ LPSRUWDQW UROH LQ WKH SKRWRFDWDOWLF UHGXFWLRQ RI FDUERQ GLR[LGH )XUWKHU LQVLJKW LQYHVWLJDWLRQV DUH UHTXLUHG WR RYHU FRPH WKH EDUULHUV DVVRFLDWHG ZLWK WKH VRODU HQHUJ XWLOL]DWLRQ @ ROODERUDWLYH HIIRUWV IURP VFLHQ WLVWV EHORQJLQJ WR YDULRXV GLVFLSOLQHV DUH UHTXLUHG IRU WKH VXFFHVVIXO XWLOL]DWLRQ RI FDUERQ GLR[LGH ZDWHU DQG VXQOLJKW WRJHWKHU @ 3+272$7$/7, 5('87,21 2) 2 21 6(0,21'8725 685)$(6 7KH SURFHVV VWDUWV ZLWK WKH DEVRUSWLRQ RI D SKR WRQ ZLWK HQHUJ JUHDWHU WKDQ WKH EDQGJDS RI WKH VHPLFRQGXFWRU 7KH DEVRUSWLRQ RI OLJKW PRYHV DQ HOHFWURQ IURP WKH YDOHQFH WR WKH FRQGXFWLRQ EDQG WKH DEVHQFH RI HOHFWURQ LQ WKH YDOHQFH EDQG FUHDWHV D SRVLWLYH FHQWHU FDOOHG KROH 7KH HOHFWURQ DQG KROH FDUULHG RXW WKH UHGXFWLRQ DQG R[LGDWLRQ SURFHVVHV UHVSHFWLYHO OHDGLQJ WR WKH IRUPDWLRQ RI D UHGR[ FRXSOH )LJ
  • 46. 7KH OLIH WLPH RI FKDUJH FDUULHU LQ DQ VHPLFRQGXFWRU LQIOXHQFHV WKH UHDFWLRQ UDWH % LQFUHDVLQJ WKH OLIHWLPH RI FKDUJH FDUULHUV XVLQJ UH VSHFWLYH PHWKRG RQH FDQ XWLOL]H WKH HOHFWURQ LQ DQ HIILFLHQW ZD 7KH FRPPRQO XVHG PHWKRGV IRU LQFUHDVLQJ WKH OLIH RI FKDUJH FDUULHUV DUH FDWLRQ RU DQLRQ GRSLQJ DQG XVH RI VDFULILFLDO UHDJHQWV HWF 7KHVH PHWKRGV XS WR DQ H[WHQW UHGXFH WKH HOHFWURQ KROH UHFRPELQDWLRQ )LJ
  • 47. 3KRWRLQGXFHG JHQHUDWLRQ RI HOHFWURQV DQG KROHV DQG WKHLU UHDFWLRQ FXP UHFRPELQDWLRQ SDWKZDV 5HSURGXFHG ZLWK SHUPLVVLRQ IURP UHI @ ‹ $PHULFDQ KHPLFDO 6RFLHW 7KH HOHFWURQ DQG KROH FDQ EH XWLOL]HG LQWR D YD ULHW RI PHDQV D
  • 48. )RU SURGXFLQJ HOHFWULFLW 3KRWRYROWDLFV
  • 49. E
  • 50. )RU WKH SURGXFWLRQ RI XVHIXO FKHPLFDOV DQG IXHOV 6RODU IXHOV JHQHUDWLRQ
  • 51. F
  • 52. )RU UHPRYLQJ SROOXWDQWV IURP ZDWHU DQG DLU 3KRWRR[LGDWLRQ
  • 53. G
  • 54. )RU SKRWRHOHFWUROVLV RI ZDWHU 3KRWRHOHFWUR FKHPLVWU
  • 55. 7KH XWLOL]DWLRQ RI HOHFWURQ WKURXJK SKRWRFDWDOWLF ZD LV SURPLVLQJ DSSURDFK EHFDXVH LW VWRUHV WKH VRODU HQHUJ LQ FKHPLFDO ERQGV ZKLFK FDQ EH XVHG ODWHU DV IXHOV IRU HQHUJ JHQHUDWLRQ @ ,Q SKRWRYROWDLFV HYHQ WKRXJK LW LV D ZHOOHVWDEOLVKHG ILHOG WKH HQHUJ VWRUDJH LV WKH PDLQ SUREOHP DQG WKH WUDQVPLVVLRQ RI VRODU HOHFWULFLW WKURXJK JULGV DUH DOVR DVVRFLDWHG ZLWK WKH GLVVLSDWLRQ RI HQHUJ DV KHDW ,Q WKH FDVH RI FDUERQ GLR[LGH UHGXFWLRQ WKH JHQHUDWHG FRQGXFWLRQ EDQG HOHFWURQ UHGXFHV WKH 2 PROHFXOH WR FDUERQ GLR[LGH DQLRQ UDGLFDO ZKLFK LQLWLDWHV WKH UHGXFWLRQ VWHS 7KH LQLWLDWLRQ VWHS LQYROYHV D ODUJH UHGXFWLRQ SRWHQWLDO XS WR 9 YV 1+( 7KH FDUERQ GLR[LGH XQGHUJRHV D hv hv CB VB Surface Recombination Oxidation D D+ SurfaceRecombination Volume Recombination Reduction A A- 1 4 4 3 2 3 + - +- + - - + - - + +
  • 56. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, Vol. 5, No. 2 PXOWLHOHFWURQ UHGXFWLRQ LQ WKH SURWRQDWHG HQYLURQ PHQW LQWR YDULRXV SURGXFWV DW ORZHU UHGXFWLRQ SR WHQWLDOV 9DOHQFH EDQG KROH JLYHV ULVH WR R[JHQ WKURXJK ZDWHU R[LGDWLRQ WKXV JHQHUDWHG KGURJHQ LRQ FRQYHUWHG WR KGURJHQ JDV E FRQGXFWLRQ EDQG HOHFWURQV XOWLPDWHO UHGXFHV WKH FDUERQ GLR[LGH PROHFXOH 7KH EDQG DOLJQPHQW GLDJUDP RI YDULRXV VHPLFRQGXFWRUV ZLWK UHVSHFW WR YDFXXP OHYHO DQG WKH 1+( IRU VHOHFWHG VHPLFRQGXFWRUV DW S+ LV JLYHQ LQ )LJ DORQJ ZLWK WKH SRVVLEOH PXOWLHOHF WURQ WUDQVIHU SURFHVVHV 7DEOH
  • 57. )LJ
  • 58. %DQG DOLJQPHQW RI YDULRXV VHPLFRQGXFWRUV ZLWK UHVSHFW WR YDFXXP OHYHO DQG WKH 1+( DW S+ 5H SURGXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ 5RDO 6RFLHW RI KHPLVWU %DQG HGJH SRVLWLRQV RI VHPLFRQGXFWRUV YDU DFFRUGLQJ WR WKH QDWXUH RI WKH VROYHQW XVHG DQG WKH VROXWLRQ S+ 0RVW RI WKH QRQDTXHRXV VWXGLHV LQ YDULDEO XVH WKH DERYH UHGXFWLRQ SRWHQWLDOV RI FDU ERQ GLR[LGH PXOWLHOHFWURQ WUDQVIHU IRU LQWHUSUHWLQJ WKH PHFKDQLVP 7DEOH
  • 59. 7KLV DVSHFW VKRXOG EH FKDQJHG EHFDXVH WKH PXOWLOHOHFWURQ WUDQVIHU UHGXF WLRQ SRWHQWLDOV RI FDUERQ GLR[LGH YDULHV ZLWK WKH VROYHQW XVHG HVSHFLDOO LQ RUJDQLF VROYHQWV 5H FHQWO 3HJLV et al KDYH VWXGLHG WKH VROYHQW HIIHFW RQ WKH VWDQGDUG UHGXFWLRQ SRWHQWLDOV RI 22 DQG 2+ FRXSOHV LQ DFHWRQLWULOH DQG 1 1 'LPHWKOIRUPDPLGH DQG UHSRUWHG WKDW FDUERQ GL R[LGH UHGXFWLRQ SRWHQWLDOV XQGHUJR VRPH FKDQJHV DFFRUGLQJ WR WKH VROYHQW XVHG 7DEOH
  • 60. 7DEOH 7KH UHGXFWLRQ SRWHQWLDO (
  • 61. RI 2 IRU YDULRXV SURGXFWV 5HGXFWLRQ 5HDFWLRQ ( 9
  • 67. + Hí ĺ +22+ í 2 J
  • 68. + Hí ĺ +22+ í 2 J
  • 90. + J
  • 91. +2 7DEOH 7KHUPRGQDPLF FFOH IRU GHWHUPLQLQJ WKH VWDQGDUG UHGXFWLRQ SRWHQWLDOV RI 2+2 22 DQG 2+ LQ 0H1 DQG '0) 5HSURGXFHG ZLWK SHUPLVVLRQ IURP UHI @ ‹ $PHULFDQ KHPLFDO 6RFLHW Reduction Reaction MeCN E0 (V vs Fc+/0 ) DMF E0 (V vs Fc+/0 ) O2 + 4H+ + 4e- ĺ 2H2O CO2 (g) + 8H+ + 8eí ĺ CH4 (g) + 2H2O CO2 (g) + 2H+ + 2eí ĺ CO + H2O 2 1 0 1 H2O/H2 O2H2O 2 3 -4.50 -3.67 -3.41 -4.29 -4.67 -4.21 -4.33 -4.24 -4.00 -3.99 -3.88 -3.47 -4.00 -4.05 -4.83 -4.85 -4.69 -3 -4 -5 -6 -7 -8 -9 -4.95 -4.95 -4.59 -4.88 1.2 1.9 2.2 2.4 2.8 2.2 4.0 3.4 3.5 3.4 4.0 3.2 2.7 3.2 5.0 2.4 2.7 2.4 3.3 2.8 Cu,O Ce2O3 Caf2O3 Ag,O Fe2O3 In2O3 3.5 Lan2O3 Nb2O3 SnO3 Ta3O2 z3O2 ZnO WO3 TO3 Ag3PO2 BIVO4 SrTO,3 C3N2 NIO Bi2O3 BeTO3 1 0 1 H2O/H2 O2H2O 2 3 -3 -4 -5 -6 -7 -8 -3.70 -3.80 -4.10 -3.46 -3.72 -4.14 -4.32 -4.73 -3.70 -4.09 -4.06 -4.44 -4.75 -3.59 -3.98 -4.58 -4.50 -4.40 -4.20 -4.36 -4.44 -4.92 0.9 2.4 2.1 1.1 1.3 1.5 1.3 2.0 0.95 1.17 1.9 0.3 1.7 2.1 1.35 3.6 1.7 1.4 0.8 1.1 1.1 CdTe CdSe WS3 SnS3 ZnS Sb3S3 PbS S, Sb3Se3 PbSe MonolayerMoS3 BulbMoS3 In3S3 Fe3S3 Culn3S3 Culn3S3 Cu3S3Aus3 Cu3S3 Ce3S3 Cds Ae3S Ae3S3 2.5 E vs NHEbE vs vaccuam E vs NHEaE vs vaccuam
  • 92. Current Catalysis, , Vol. 5, No. 2 Narayanan et al. 1RZ WKHUH DUH YDULRXV TXHVWLRQV OHIW XQDQ VZHUHG D
  • 93. +RZ LV WKDW RQH REVHUYLQJ WKH UHGXFHG 2 VSHFLHV OLNH 2 +22+ +2+ + HYHQ WKRXJK WKH ILUVW HOHFWURQ WUDQVIHU DVVRFLDWHG ZLWK KLJK HQHUJ EDUULHU E
  • 94. :KHWKHU WKH /802 OHYHO RI 2 LV DOWHUHG LQ WKH DGVRUEHG VWDWH F
  • 95. 2Q ZKDW WSHV RI VLWHV WKLV UHGXFWLRQ LQ WKH HQ HUJ RI /802 OHYHO RI 2 FDQ WDNH SODFH G
  • 96. 7KH DERYH PHQWLRQHG UHDFWLRQ DQG FRUUHVSRQG LQJ UHGXFWLRQ SRWHQWLDOV DUH DSSOLFDEOH RQO WR WKH JDVHRXV 2 PROHFXOHV DQ RQH XVH WKH VDPH IRU OLTXLG SKDVH UHDFWLRQV H
  • 97. :KLFK LV PRUH LPSRUWDQW DFWLYDWLRQ RI 2 RQ VHPLFRQGXFWRU RU WKH UHGXFWLRQ SRWHQWLDO I
  • 98. :KLFK LV WKH VRXUFH RI 2 z DQLRQ UDGLFDO GH WHFWHG LQ WKH UHDFWLRQ PL[WXUH /HW XV LPDJLQDWLYHO ORRN DW RQH RU PRUH SRVVLEOH PRGH RI DGVRUSWLRQ RI FDUERQ GLR[LGH RQ VHPLFRQ GXFWRU VXUIDFHV ,W LV NQRZQ WKDW 2 DGVRUSWLRQ RQ VWRLFKLRPHWULF GHIHFW IUHH 7L2 LV QRW VWURQJ HQRXJK KHQFH WKH /802 OHYHO DOWHUDWLRQ FDQQRW WDNH SODFH RQ WKH VXUIDFH $QLRQ GHIHFWHG DQDWDVH VXUIDFH ZRXOG DGVRUE FDUERQ GLR[LGH PRUH HIIHFWLYHO WKDQ WKH GHIHFW IUHH VXUIDFHV @ ,I FDUERQ GLR[LGH DG VRUSWLRQ RQ WKH VXUIDFH WKURXJK R[JHQ WKHQ LW FDQ ORZHU WKH EDUULHU DQG JLYH ULVH WR WKH GLVVRFLDWLRQ 2 WR 2 7KH R[JHQ UHOHDVHG IURP WKH 2 KHDOV WKH YDFDQF 2 FDQ DOVR DGVRUE ELGHQWDWHO ZLWK WLWDQLXP LRQV WKURXJK R[JHQ DWRPV 7KH PHFKDQLVPV DUH DOUHDG GLVFXVVHG LQ WKH VHFWLRQ +HQFH WKH SKRWRFDWDOVW VKRXOG KDYH JRRG DGVRUS WLRQ VLWHV DQG QHFHVVDU EDQG DOLJQPHQW ZUW 2 UHGXFWLRQ DQG ZDWHU VSOLWWLQJ VLQFH ERWK DUH FRPSHWL WLYH SURFHVV ([WUDFWLQJ WKH H[DFW PHFKDQLVP RI 2 UHGXFWLRQ RQH PXVW FRQVLGHU WKH R[LGDWLRQ KDOI UHDF WLRQ DOVR ERWK DUH LQWHUGHSHQGHQW FKHPLFDO SURFHVV HV 7KH R[JHQ SURGXFHG LQ WKH YDOHQFH EDQG FRQ VXPHV WKH HOHFWURQV IRUPLQJ WKH VXSHUR[LGH UDGLFDO ZKLFK LQ WXUQ SURGXFHV KGUR[O UDGLFDOV WKH VHF RQG ODUJHVW R[LGDQW DIWHU IOXRULGH LRQ UHVSHFWLYHO 7DEOH
  • 99. 7KH KGUR[O UDGLFDO R[LGL]HV WKH UHGXFHG SURGXFWV RI FDUERQ GLR[LGH UHGXFWLRQ OHDGLQJ WR D GHFUHDVH LQ WKH RYHUDOO HIILFLHQF RI WKH SURFHVV LQ WHUPV RI SURGXFW LHOG 7KH ORZ GLVVROYHG R[JHQ OHYHO LQ WKH 2 UHGXFWLRQ SURFHVV DFFRXQWV IRU WKLV DVSHFW 0DQ UHSRUWV GR QRW FRQVLGHU WKLV SRV VLELOLW DQG UHSRUWV WKH HIILFLHQF ZLWKRXW DQ LQ YHVWLJDWLRQV RQ WKH FRPSHWLWLYH UHDFWLRQV 7KH R[L GDWLRQ KDOI UHDFWLRQ LV DOVR LPSRUWDQW IRU KGURJHQ LRQ JHQHUDWLRQ IURP ZDWHU R[LGDWLRQ ZKLFK IXUWKHU UHGXFHV WKH 2 7KH H[DFW LQWHUGHSHQGHQF RI WKHVH WZR UHDFWLRQV LV VWLOO XQFOHDU DOFXODWLQJ WKH DFWLYLW RI WKH SKRWRFDWDOVW ZLWK UHVSHFW WR WKH 2 UHGXFWLRQ GRHV DORQH QRW PDNH DQ VHQVH EH FDXVH WKH HOHFWURQ SURGXFHG LQ WKH FRQGXFWLRQ EDQG DOVR XWLOL]HG E + DQG 2 SUHVHQW ZLWKLQ WKH UHDFWLRQ VVWHP +HQFH WKH FDWDOVW EDVHG DFWLYLW PHDVXUHV VKRXOG FRQVLGHU DOO WKH YLDEOH SURFHVVHV WKDW WDNH SODFH LQ WKH VVWHP DW OHDVW HOHFWURQLF SURFHVVHV 7DEOH 2[LGDWLRQ SRWHQWLDOV RI VRPH FRPPRQ R[LGDQWV 2[LGDQW 2[LGDWLRQ 3RWHQWLDO 9
  • 100. )OXRULGH ,RQ +GUR[O 5DGLFDO 2]RQH +GURJHQ 3HUR[LGH 0HWDO ORDGHG VHPLFRQGXFWRU KDV EHHQ D SURPLV LQJ URXWH WR LQFUHDVH WKH FDUERQ GLR[LGH DGVRUSWLRQ RQ WKH VXUIDFH RI WKH FDWDOVW @ 7KH PHWDO GH SRVLWHG RQ WKH VXUIDFH IDFLOLWDWHV WKH HOHFWURQ WUDQV IHU IURP WKH G VWDWH RI WKH PHWDO WR WKH SL RUELWDO RI 2 WKHUHE UHGXFHV WKH ERQJ DQJOH RI 2 EHORZ ࢓ 7KH UHGXFHG ERQG DQJOH RU WKH EHQW VWUXFWXUH HDVLO XQGHUJRHV QXFOHRSKLOLF DV ZHOO DV HOHFWURSKLOLF DWWDFN OHDGLQJ WR WKH UHGXFWLRQ SURG XFWV 7KH SUHVHQFH RI PHWDO LRQV RQ WKH VXUIDFH QRW RQO SURPRWHV WKH ILUVW HOHFWURQ WUDQVIHU SURFHVV EXW DOVR IDFLOLWDWHV WKH VXEVHTXHQW PXOWLHOHFWURQ WUDQVIHU UHDFWLRQV DQG WKH UDWH FRPSDUDWLYH UHDF WLRQV E VKLIWLQJ WKH DEVRUSWLRQ UHJLRQ RI VHPLFRQ GXFWRU WRZDUGV YLVLEOH WKURXJK D SKHQRPHQRQ FDOOHG 6XUIDFH 3ODVPRQ 5HVRQDQFH 635
  • 101. @ $J 3W X QDQRSDUWLFOHV ZKLFK DUH HIIHFWLYHO H[ FLWHG E YLVLEOH OLJKW ZLWKLQ D QDUURZ VL]H LQWHUYDO FRPSDUHG WR RWKHU PHWDO QDQRSDUWLFOHV DQG LW FDQ EH WXQHG E FKDQJLQJ WKH VL]H VXUURXQGLQJV DQG PRGLILFDWLRQ RI QDQRSDUWLFOHV ([FHVV RI GHSRVLW PHWDOV RQ WKH VXUIDFH FDQ DFW DV D FHQWHU IRU HOHF WURQKROH UHFRPELQDWLRQ DV ZHOO DV UHGXFLQJ WKH FDWDOWLF DFWLYH FHQWHUV RQ WKH SKRWRFDWDOVW OHDGV WR D GHFUHDVH LQ WKH UDWH RI IRUPDWLRQ RI SURGXFWV
  • 102. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, Vol. 5, No. 2 7KHUHIRUH VLJQLILFDQW LPSURYHPHQW LQ WKH SKRWR DFWLYLW LV SRVVLEOH RQO DW ORZ GRSDQW FRQFHQWUD WLRQV ,W IXUWKHU DFWLYDWHV WKH FRPSHWLWLYH SURFHVVHV RQ WKH SKRWRFDWDOVW VXUIDFHV KRZHYHU WKH H[DFW LQYROYHPHQW RI WKHVH SURFHVVHV DUH VWLOO QRW NQRZQ 7KH VXUIDFH PHWDO LRQ DFWLYDWHV WKH FDUERQ GLR[LGH PROHFXOH LQ D GLIIHUHQW ZD DV WKDW RI VHPLFRQGXF WRUV OHDGLQJ WR D UHODWLYHO KLJK SURGXFW LHOG FRPSDUHG WR WKH EDUH SKRWRFDWDOVW 7KH HDUWK V DEXQGDQFH DQG FRVW RI WKH PHWDOV DUH WKH PDLQ SUREOHPV ZKLFK DGYHUVHO DIIHFW WKH SURFHVV HFR QRPLFV KHQFH WKH PHWDO GRSLQJ LQFUHDVHV WKH RYHUDOO FRVW RI WKH SURFHVV +HQFH WKH SUDFWLFDO LP SOHPHQWDWLRQ LV QRW SRVVLEOH ZLWK WKH PHWDO GRSHG SKRWRFDWDOVW HYHQ WKRXJK LW¶V D SURPLVLQJ URXWH IRU WKH FRQYHUVLRQ RI FDUERQ GLR[LGH LQWR FKHPLFDO DQG IXHOV 8VH RI VDFULILFLDO UHDJHQW KDV EHHQ DQRWKHU PHWKRG WR LQFUHDVH WKH DYDLODELOLW RI FRQGXFWLRQ EDQG HOHFWURQV YLD WKH R[LGDWLRQ RI WKH VDFULILFLDO UHDJHQW E KROHV RPPRQO XVHG VDFULILFLDO UHD JHQWV DUH 7(2$ 7($ RU DOFRKROV +RZHYHU WKH OLIH WLPH VDFULILFLDO UHDJHQWV DUH WRR VKRUW ZLWKLQ WKH VVWHP ,W VKRXOG EH QRWHG WKDW PRVW RI WKH FRPPRQO XVHG VDFULILFLDO UHDJHQWV DUH VDPH DV WKDW RI WKH UHGXFWLRQ SURGXFWV RI FDUERQ GLR[LGH +HQFH D SDUW RI WKH UHGXFHG SURGXFW DOVR R[LGL]HG E VFDYHQJLQJ WKH KROHV DQG RWKHU UDGLFDOV OHDGLQJ WR D ORZHU SURGXFW LHOG 7KH DEVRUEHG OLJKW HQHU J DOVR XVHG IRU WKH GHJUDGDWLRQ RI VDFULILFLDO UHD JHQWV ZKLFK LQIOXHQFHV WKH HQHUJ EDODQFH RI WKH UHDFWLRQ XQIDYRUDEO 7KH XQGHVLUHG VLGH SURGXFW IRUPHG DIWHU WKH R[LGDWLRQ RI VDFULILFLDO UHDJHQWV PDNHV WKH VVWHP FUXGHU SRLVRQV WKH FDWDOVW E DGVRUELQJ RQ WKH DFWLYH VLWHV DQG LW DEVRUEV D UD WLRQDO DPRXQW RI WKH LUUDGLDWHG OLJKW ,I IRUPDWH LRQ LV XVHG DV D VDFULILFLDO DJHQW 2 z DQLRQ UDGLFDO ZLOO EH WKH UHGXFWLRQ LQWHUPHGLDWH YLD FXUUHQW GRX EOLQJ HIIHFW 7KLV PD DOVR EH WKH VRXUFH RI (65 GHWHFWHG 2 z DQLRQ UDGLFDO LQ VROXWLRQ 7KH LQ FUHDVH LQ SURGXFW LHOG LQ SUHVHQFH RI VDFULILFLDO UHDJHQW LV GXH WR WKH EHWWHU FKDUJH VHSDUDWLRQ GXH WR WKH VXSSUHVVLRQ RI R[LGDWLRQ DELOLW ,I VDFULIL FLDO UHDJHQW VXSSUHVVHV WKH R[LGDWLRQ DELOLW WKHQ
  • 103. ZKHUH GLG WKH 2 JHWV VXIILFLHQW KGURJHQ LRQV IRU UHGXFWLRQ UHDFWLRQ
  • 104. :KDW LV WKH IDWH RI VDFULILFLDO UHDJHQWV LQ WKH UHGXFWLRQ VVWHP
  • 105. :KHWKHU WKH R[LGDWLRQ SURGXFWV RI VDFULILFLDO UHD JHQWV LQWHUIHUH ZLWK WKH UHGXFWLRQ SURGXFWV 6LQFH WKH SURFHVV DVVRFLDWHG ZLWK WKH IUHH UDGLFDO PHFKD QLVP WKH KGURJHQ VRXUFH PD EH WKH R[LGDWLRQ SURGXFW RI VDFULILFLDO UHDJHQW )RU H[DPSOH LI PHWKDQRO LV XVHG DV D VDFULILFLDO UHDJHQW WKH R[LGD WLRQ RI PHWKDQRO SURGXFHV IRUPDOGHKGH DORQJ ZLWK WZR KGURJHQ LRQV DQG VLQJOH HOHFWURQ UDGLFDO ZLOO WUDQVIHUUHG WR WKH FRQGXFWLRQ EDQG RI WKH VHP LFRQGXFWRU WKH SURFHVV LV FDOOHG FXUUHQW GRXEOLQJ HIIHFW 6HH )LJ
  • 106. @ +22 K ĺ 2 z + 2 z ĺ 2z H% XUUHQW 'RXEOLQJ (IIHFW
  • 107. 7ZR HOHFWURQV SURGXFHG ZLOO WUDQVIHUUHG WR WKH FRQGXFWLRQ EDQG RI WKH VHPLFRQGXFWRU ,I PHWKDQRO LV XVHG DV VDFULILFLDO UHDJHQW WKHQ WKH UHDFWLRQ SUR FHHGV WKURXJK WKH VDPH ZD +2+ z 2+ ĺ z +2+ +2 z +2+ 2 ĺ ++2 +2 z +2+ K ĺ z +2+ + z +2+ ĺ ++2 + H% XUUHQW 'RX EOLQJ (IIHFW
  • 108. +GURJHQ LRQ IRUPDWLRQ WKURXJK WKH R[LGDWLRQ )LJ
  • 109. 3URFHVVHV LQYROYHG LQ WKH SKRWRFDWDOWLF + HYROXWLRQ IURP DTXHRXV PHWKDQRO VROXWLRQ ERWK LQ WKH SUHV HQFH DQG DEVHQFH RI PHWDO GHSRVLWLRQ 5HSURGXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ $PHULFDQ KHPLFDO 6R FLHW HCHO +H+ H2 2 H + CH2OH + H+ CH2OH (a) 3 1 4 6 5 2 Ti4+ E1 Ti3+ Eghv - + CH3OH CH2OH + H+ (b) 3 4 HCHO +H+ H2 2 H + Eghv E1 6 1 Ti3+ Ti4+ 2- + 5 Pt
  • 110. Current Catalysis, , Vol. 5, No. 2 Narayanan et al. RI PHWKDQRO LV HDVLHU FRPSDUHG WR ZDWHU R[LGDWLRQ 7KLV OHDGV WR DQ HQKDQFHG KGURJHQ FRQFHQWUDWLRQ QHDU WKH DFWLYH VLWHV RI SKRWRFDWDOVW DGVRUEHG E FDUERQ GLR[LGH ZKLFK UHVXOWV LQ D EHWWHU IRUPDWLRQ RI SURGXFWV 6DFULILFLDO GRQRUV OLNH 7ULHWKO DPLQH SURGXFHV KLJKO UHDFWLYH LQWHUPHGLDWHV OLNH LPLQHV DQG HQDPLQHV ZKLFK ZLOO IXUWKHU FRPSOLFDWH WKH RYHUDOO UHDFWLRQ 6DFULILFLDO UHDJHQWV SURYLGH RQO WKH LQLWLDO KSH RWKHUZLVH DGGLWLRQ RI UHDJHQW LQ HTXDO LQWHUYDO RI WLPH LV UHTXLUHG +HQFH WKH SUR GXFWLRQ RI FKHPLFDOV DQG IXHOV E VDFULILFLQJ D FKHPLFDO HQWLW LV QRW D YLDEOH HFRQRPLF SURFHVV 5HFHQWO 2 FRQYHUWHG WR IRUPLF DFLG XVLQJ D UHFFODEOH VDFULILFLDO GRQRU ZDV UHSRUWHG HOVH ZKHUH XVLQJ WULFFOLF WHUWLDU DPLQH HQGRDQWL D]DPHWKR[PHWKOWULFFOR @ XQGHFDQH WKURXJK D SKRWRFKHPLFDO SDWKZD )LJ
  • 112. LQ WKH VHPLFRQGXFWRU ODWWLFH RIIHUV D SURPLVLQJ URXWH WR ZDUGV WKH SURGXFWLRQ RI VRODU IXHOV EXW WKH LP SURYHPHQW LQ WKH SKRWRFDWDOWLF DFWLYLW LV PDUJLQDO ZLWK UHVSHFW WR WKH EDUH VHPLFRQGXFWRU LQ PRVW RI WKH FDVHV EXW WKH LHOG LV PRUH LQ WKH FDVH RI PHWDO GHSRVLWHG KHWHURDWRP GRSHG VHPLFRQGXFWRU VVWHPV @ $ VLJQLILFDQW EUHDNWKURXJK LQ WKH SKRWRFDWDOW LF UHGXFWLRQ RI JDV SKDVH 2 VDWXUDWHG ZLWK ZDWHU YDSRU XVLQJ QDWXUDO VXQOLJKW KDV UHFHQWO EHHQ UH SRUWHG E 9DUJKHVH et al @ XVLQJ QLWURJHQ GRSHG WLWDQLXP GLR[LGH QDQRWXEH DUUDV FDWDO]HG ZLWK X3W QDQRSDUWLFOHV WR PHWKDQH DQG RWKHU KGURFDU ERQV DW KLJK UDWHV —/JK
  • 113. ZLWK D TXDQWXP HIIL FLHQF RI 'RSLQJ ZLWK JUHDWHU WKDQ RI DQ KHWHUR DWRP FKDQJHV WKH ODWWLFH VWUXFWXUH XOWL PDWHO UHGXFHV WKH SKRWRFDWDOWLF DFWLYLW +HWHURD WRP LQFRUSRUDWLRQ GRHV QRW FKDQJH WKH SRVLWLRQ RI FRQGXFWLRQ EDQG RU UHGXFWLRQ SRWHQWLDO RI DQ SDU WLFXODU VHPLFRQGXFWRU KHQFH WKH LQFUHDVH LQ SURGXFW LHOG RQO GXH WR WKH GHFUHDVH LQ FDUULHU FKDUJH FRPELQDWLRQ DQG LW GRHV QRW FRQWULEXWH DQWKLQJ WR ZDUGV WKH WKHUPRGQDPLF DFWLYDWLRQ RI FDUERQ GLR[ LGH 7KH ODUJH VFDOH SURGXFWLRQ RI GRSHG VHPLFRQ GXFWRU ZLWK VLPLODU SRUH VL]H VXUIDFH DUHD FRPSRVL WLRQ HWF LV DOVR DQRWKHU KXUGOH KHQFH DIIHFWV WKH UH SURGXFLELOLW RI WKH UHVXOW ,QFUHDVLQJ YLVLEOH OLJKW DFWLYLW DORQH GRHV QRW FRQWULEXWH WR WKH FDUERQ GLR[LGH UHGXFWLRQ SURFHVV 7KH VWDWHRIWKHDUW PHWKRGV RI LQFUHDVLQJ YLVLEOH OLJKW DFWLYLW GR QRW FKDQJH WKH UHGXFWLRQ SRWHQWLDO RI WKH SKRWRFDWDOVW WRZDUGV PRUH QHJDWLYH RU FKDQJHV RQO XS WR P9 ,W QHHGV D VWDEOH SKRWR FDWDOVW ZLWK D PRGHUDWH EDQG JDS WR DEVRUE WKH YLVLEOH OLJKW ZLWK QHFHVVDU EDQG HGJH SRVLWLRQV ZLWK UHVSHFW WR WKH FDUERQ GLR[LGH DFWLYDWLRQ SR WHQWLDO 7KLV FDQ EH DFKLHYHG WKURXJK EDQG JDS HQ JLQHHULQJ DQG LI LW KDSSHQV WKHQ WKH DERYH PHQ WLRQHG FDWDOVW PRGLILFDWLRQV FDQ LQFUHDVH WKH UHDF WLRQ UDWH WUHPHQGRXVO 0($685(6 2) ()),,(1 6LQFH WKH FDUERQ GLR[LGH UHGXFWLRQ LV D FRPSOH[ SURFHVV WKH HIILFLHQF GHSHQGV XSRQ D QXPEHU RI IDFWRUV VXFK DV HOHFWURQ PLJUDWLRQ WKURXJK EDQG JDS HOHFWURQ WUDQVIHU UHDFWLRQV DGVRUSWLRQ RI VXE VWUDWH RQ WKH VHPLFRQGXFWRU VXUIDFH VXUIDFH UHDF WLRQV QDWXUH RI VROYHQW PHGLXP LOOXPLQDWLRQ VRXUFH UHDFWRU JHRPHWU DQG D QXPEHU RI RWKHU )LJ
  • 114. 3KRWRFKHPLFDO UHGXFWLRQ RI FDUERQ GLR[LGH LQWR IRUPLF DFLG XVLQJ WULFFOLF WHUWLDU DPLQH DV D VDFULILFLDO GRQRU D
  • 116. DPLQH UDGLFDO FDWLRQ IRUPHG IURP WULFFOLF DPLQH F
  • 117. UHJHQHUDWLRQ RI DPLQH E KGURJHQDWLRQ XVLQJ 3G FDWDOVW 5HSURGXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ 0F0LOODQ 3XEOLVKHUV /WG CO2 H2O+ hv HCO2H + 1/2O2 N OMe H2+ OMe 1/2O2H2O H2 + hv CO2 OMe hv HCO2H + OMe N CO2 + - OMe H H H H N + b OH OHH H H H O H HO HO OH + 602 hv 6H2O 6CO2 + a c +
  • 118. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, Vol. 5, No. 2 SURFHVVHV 7KH FRQGXFWLRQ EDQG HOHFWURQV QRW RQO UHGXFH WKH FDUERQ GLR[LGH EXW DOVR WDNHV SDUW LQ WKH KGURJHQ SURGXFWLRQ DV ZHOO DV LQ VXSHUR[LGH IRUPDWLRQ ZKLFK LV SURGXFHG IURP WKH QRQ VWRLFKLRPHWULF R[JHQ HYROYHG GXULQJ WKH R[LGD WLRQ RI ZDWHU DGVRUEHG RQ WKH VHPLFRQGXFWRU VXU IDFH KDUJH FDUULHUV DOVR UHDFW ZLWK VDFULILFLDO DJHQWV VHQVLWL]HUV E SURGXFW IRUPHG GXULQJ WKH SURFHVV +HQFH WKH DFWXDO HIILFLHQF RI WKH SKRWR FDWDOVW GHSHQGV RQ WKH RYHUDOO UHDFWLRQV EXW WKH FXUUHQWO DFKLHYHG HIILFLHQF LV OLPLWHG WR D SDUWLF XODU UHDFWLRQ RU D VLWH )RU H[DPSOH LQ FDUERQ GL R[LGH UHGXFWLRQ SURFHVV WKH HIILFLHQF LV PHDVXUHG RQO LQ WHUPV RI WKH DPRXQW RI SURGXFWV IRUPHG GXULQJ WKH UHGXFWLRQ 7KH RWKHU UHDFWLRQV DUH H[ FOXGHG IURP WKH HIILFLHQF PHDVXUHV 6R WKH UH SRUWHG HIILFLHQFLHV GR QRW JLYH DQ LGHD DERXW WKH DFWXDO HIILFLHQF RI WKH SKRWRFDWDOVW ,Q OLJKW EDVHG HIILFLHQF PHDVXUHV RQH RQO PHDVXULQJ WKH OLJKW DEVRUEHG E WKH UHDFWLRQ PHGLXP DQG LW LV GLIIHUHQW IURP WKH OLJKW DEVRUEHG E WKH SKRWRFDWD OVW 7KH LOOXPLQDWHG OLJKW XQGHUJRHV PXOWLSOH UH IOHFWLRQ DQG VFDWWHULQJ EHIRUH LW UHDFKHV WKH SKRWR FDWDOVW VXUIDFH ,W LV DOVR DEVRUEHG E WKH VDFULIL FLDO UHDJHQWV RU VHQVLWL]HUV SUHVHQW LQ WKH UHDFWLRQ VVWHP DQG WKH FKRLFH RI ZDYHOHQJWK DEVRUEHG E WKH VVWHP DQG WKH VHPLFRQGXFWRU DOVR PD EH GLI IHUHQW ,QFUHDVHG OLJKW DEVRUSWLRQ VRPHWLPHV IDFLO LWDWHV WKH FKDUJH FDUULHU UHFRPELQDWLRQ :LWK DOO WKLV SURVSHFW LW LV HYLGHQW WKDW WKH HIILFLHQF PHDVXUHV XVHG LQ SKRWRFDWDOVLV VKRXOG EH UHYLVLW HG 7KH QHZ HIILFLHQF VFDOH VKRXOG EH EDVHG RQ SKRWRFDWDOVW DV ZHOO DV WKH LOOXPLQDWLRQ DQG LQGH SHQGHQW RI WKHVH LQGLYLGXDO SDUDPHWHUV DQG DOVR FRQVLGHU WKH RYHUDOO UHDFWLRQ SURFHVV WKHQ RQO RQH FDQ FRPSDUH GLIIHUHQW SKRWRFDWDOVW VVWHPV DQG WR HOHFW WKH FKDPSLRQ SKRWRFDWDOVW 352'87 $1$/6,6 5HGXFWLRQ RI FDUERQ GLR[LGH SURGXFHV D QXPEHU RI SURGXFWV OLNH DOFRKROV DFLGV DOGHKGHV HWF 6LQFH WKH SKRWRFDWDOWLF UHGXFWLRQ LV D PXOWLHOHF WURQ SURFHVV WKH SURGXFWV IRUPHG LQ WKH UHDFWLRQ VVWHP FRQVLVW RI PDQ FRPSRXQGV ERWK LQ OLTXLG DOFRKROV DOGHKGHV DFLGV HWF
  • 119. DV ZHOO DV JDVHRXV VWDWH 2 + DQG XQUHDFWHG 2 HWF
  • 120. 7KH H[ DFW LGHQWLILFDWLRQ DQG TXDQWLILFDWLRQ RI WKHVH SURG XFWV DUH UHTXLUHG IRU WKH DQDOVLV RI WKH RYHUDOO UH DFWLRQ HIILFLHQF DQG KHQFH WKH GHVLJQ RI D EHWWHU SKRWRFDWDOVW 1RUPDOO XVHG DQDOWLFDO WHFKQLTXHV DUH * +3/ /06 ,5 ,( 899LV + RU 105 2QFH D SURGXFW LV IRUPHG LQ WKH UHDFWLRQ VV WHP LW XQGHUJRHV R[LGDWLRQ WKURXJK YDOHQFH EDQG KROHV DQG WKHUHE LQLWLDWH IUHH UDGLFDO UHDFWLRQV LQ WKH VVWHP ZKLFK SURGXFHV D ODUJH QXPEHU RI E SURGXFWV +HQFH RQH RU WZR DQDOWLFDO PHWKRGV LV QRW HQRXJK IRU LGHQWLILFDWLRQ DQG TXDQWLILFDWLRQ D FRPER RI DOO VWDWHRIWKHDUW WHFKQLTXHV FDQ EH XVHG IRU DQDOVLV %XW WKH DFWXDO SUREOHP LV WKDW WKH TXDQWLW RI PDQ SURGXFWV IRUPHG GXULQJ WKH UHDFWLRQ LV EHORZ WKH PLQLPXP GHWHFWDEOH OLPLW DQG WKH RWKHU SURGXFWV IRUPHG PD LQWHUIHUH ZLWK HDFK RWKHU E UHDFWLRQV LQVLGH WKH DQDOVLV FROXPQ ZKLFK OHDGV WR D PLVLQWHUSUHWDWLRQ RI UHVXOWV 7KH LQWHQVLW RI DQ SHDN LQ WKH FKURPDWRJUDSKLF VV WHP ZLOO KLJKO GHSHQG RQ WKH QDWXUH VROYHQW PH GLXP XVHG +RQJ DQG FRZRUNHUV @ H[DPLQHG WKH GLIIHUHQW FKURPDWRJUDSKLF WHFKQLTXHV XVHG IRU WKH DQDOVLV RI 2 UHGXFWLRQ SURGXFWV LQ D EHWWHU ZD DQG SURSRVHG D QHZ VHW RI WHFKQLTXHV IRU WKH DFFXUDWH TXDQWLILFDWLRQ RI UHGXFWLRQ SURGXFWV ZLWK ORZ GHWHFWLRQ OLPLWV RQ WKH EDVLV RI WKHLU ILQGLQJV 6HH )LJ
  • 121. 7KH DOVR H[DPLQHG WKH HIIHFW RI RUJDQLF DGGLWLYHV VXFK DV VDFULILFLDO UHDJHQWV SKR WRVHQVLWL]HUV LQ WKH DQDOVLV XVLQJ * DQG +3/ ,W KDV EHHQ IRXQG WKDW DOFRKRO DQDOVLV XVLQJ * LV PRUH VHQVLWLYH WRZDUGV PRVW RI WKH RUJDQLF DGGL WLYHV DQG WKDW RI DFLG DQG DOGHKGH E +3/ DUH XQDIIHFWHG E WKH RUJDQLF DGGLWLYHV H[FHSW '0) DQG 7(2$ IRU IRUPLF DQG DFHWLF DFLG UHVSHFWLYHO )LJ
  • 122. *DV DQG OLTXLG SKDVH DQDOVLV RI 2 UHGXF WLRQ SURGXFWV SURSRVHG E 5DQJ ;X DQG FRZRUNHUV 5HSURGXFHG ZLWK SHUPLVVLRQ IURP 5HI @ ‹ 5RDO 6RFLHW RI KHPLVWU 8VH RI GLIIHUHQW SUHSDUDWLYH PHWKRGV IRU LP SURYLQJ WKH DFWLYLW RI SKRWRFDWDOVW WRZDUGV 2 UHGXFWLRQ LQGXFHV VRPH XQGHVLUHG WURXEOH LQ WKH SURGXFW DQDOVLV 3UHSDUDWLRQ PHWKRGV XVXDOO LQ YROYH WKH XVH RI RUJDQLF VROYHQW KLJK WHPSHUDWXUH PHWKRG RU YDFXXP DQQHDOLQJ 7KHVH PHWKRGV LP HCOOH (3.9) CH3COOH (6.9) Hi-Plex H CL HPLC+VWD HPLC+VWD C18 CL Derivatization GC+FID DB-Wax CL Methanizer Molsieve 5A CL + Hayesep Q CL GC+TCD/FID CH3CHO (0.07), CH3COCH3(0.07) HCHO (0.08), CH3CH2CHO (0.03) CH3CH(OH)CH3(1.7) CH3CH2CH2OH (2.3) CH3OH (3.5) CH3CH2OH (3.3) CH3CH3 (0.004) CO2 (2.6), CO (0.07), CH4 (0.03), Circulator Vacuum Gas phase Liquid phase Reactor
  • 123. Current Catalysis, , Vol. 5, No. 2 Narayanan et al. SDUW VRPH FDUERQ LPSXULWLHV RQ WKH SKRWRFDWDOVW VXUIDFHV 7KH FDUERQ UHVLGXHV DOVR WDNH SDUW LQ WKH UHDFWLRQ UHVXOWLQJ LQ DQ HOHYDWHG UDWH RI SKRWRFRQ YHUVLRQ 0DQ UHSRUWV LQ WKH OLWHUDWXUH FODLPLQJ KLJKHU UDWHV PD EH GXH WR WKH SUHVHQFH RI FDUERQ LPSXULWLHV SUHVHQW LQ WKH VVWHP 6XSSRVH VRPH VDPSOH FRQWDLQV RI FDUERQ UHVLGXH SHU J RI WKH SKRWRFDWDOVW WKHQ WKH SKRWRSURGXFWLRQ UDWH DIWHU LUUDGLDWLRQ ZLOO EH XS WR VRPH WHQV RI PL FURPROHV ZKLFK LV IDU JUHDWHU WKDQ PDQ UHSRUWHG YDOXHV @ +HQFH D VVWHPDWLF DVVD RI WKH SURG XFWV ZDV QHHGHG IRU WKH HYDOXDWLRQ RI WKH SKRWRDF WLYLW IRU WKH GHVLJQ RI EHWWHU SKRWRFDWDOVW OHDQ LQJ WKH VXUIDFH EHIRUH WKH UHGXFWLRQ SURFHVV WR PLQLPL]H WKH HIIHFW RI VXFK DUWLIDFWV LV KLJKO UHF RPPHQGHG 7KHVH SUREOHPV FDQ VLPSO EH RYHU FRPH E WKH LQFRUSRUDWLRQ RI 2 WUDFHU H[SHUL PHQWV EHVW DQDO]HG XVLQJ 105 RU *06 @ DQJ et al @ SHUIRUPHG D FRPSUHKHQ VLYH VWXG RI WKH XQGHVLUHG UROH RI FDUERQ DUWLIDFWV WKURXJK )7,5 PHDVXUHPHQWV XVLQJ LVRWRSLFDOO ODEHOOHG 2 3ULRU WR LVRWRSLFDOO ODEHOHG H[SHUL PHQWV RQH PXVW EH FDUHIXO DERXW WKH SXULW RI WKH LVRWRSH XVHG EHFDXVH XVXDOO ORZ JUDGH VDPSOHV RI 2 FRQWDLQ WUDFH DPRXQWV + +HQFH SXULW VKRXOG EH FRQILUPHG SULRU WR WKH H[SHULPHQW RWK HUZLVH LW OHDGV WR FRQWDPLQDWHG UHVXOWV 7,7$1,80 ',2;,'( 587 7LWDQLXP GLR[LGH DQG LWV PRGLILFDWLRQ KDYH EHHQ D PDWWHU RI DWWUDFWLRQ VLQFH WKH SXEOLFDWLRQ RI WKH ZRUN E 7HLFKQHU DQG FRZRUNHUV LQ @ IROORZHG E )XMLVKLPD¶V EUHDNWKURXJK DUWLFOH LQ @ 1RZ WKH WHUP WLWDQLXP GLR[LGH EH FRPHV D VQRQP RI VHPLFRQGXFWRU EDVHG SKRWR FDWDOVLV UHVHDUFK 6HYHUDO QHZ SKRWRFDWDOVWV KDYH EHHQ LQWURGXFHG LQWR WKH ILHOG HYHQ WKRXJK WKH PDMHVW RI 7L2 KDV QRW EHHQ DIIHFWHG E WKHP $IWHU WKH LQWURGXFWLRQ RI D QHZ PDWHULDO HYHU VFL HQWLVW KDV HQWKXVLDVP RI KRZ LW ZRUNV ZLWK UHVSHFW WR WKDW RI 7L2 7KLV LV WUXH IRU WKH FDVH RI PDWHUL DOV OLNH ]HROLWHV @ GRXEOH ODHUHG KGUR[LGHV @ KHWHURSRO DFLGV @ JUDSKHQH @ FDU ERQ QLWULGH @ FDUERQ QDQRWXEHV @ PHWDO QDQR FOXVWHUV @ PHWDO RUJDQLF IUDPHZRUN @ TXDQWXP GRWV @ VXSUDPROHFXODU FRP SRXQGV @ DQG PHWDO FRPSOH[HV @ 7KH LQWHU HVWLQJ SRLQW LV WKDW DOPRVW DOO SRVVLEOH HOHPHQWV DUH DOVR LQFRUSRUDWHG LQ WKH 7L2 PDWUL[ IRU LQFUHDVLQJ WKH SKRWRDFWLYLW RI LW WRZDUGV WKH YLVLEOH OLJKW UH JLRQ 7KH GDUN VLGH LV WKDW WKHVH PRGLILFDWLRQV KDYH QRW OHG WR LHOG WKH SURGXFWV DW DQ DSSUHFLDEOH OHYHO ZLWK GHVLUHG HIILFLHQF 7LWDQLXP GLR[LGH KDV EHHQ WKH SULPH SKRWRFDWD OVW LQ WKH VRODU IXHO JHQHUDWLRQ SURFHVV @ 0DQ UHSRUWV DUH DYDLODEOH LQ WKH OLWHUDWXUH RQ WKH SKRWR FDWDOWLF FRQYHUVLRQ RI 2 WR IXHOV XVLQJ WLWDQLXP GLR[LGH DQG LWV GHULYDWLYHV @ 7KH SULPH UHDVRQ IRU WKH XVH RI WLWDQLXP GLR[LGH DV D SKRWR FDWDOVW IRU YDULRXV DSSOLFDWLRQV RI SKRWRFDWDOVLV LV LWV VWDELOLW ,W LV VWDEOH XQGHU YLJRURXV FRQGL WLRQV OLNH KLJK DFLGLF S+ KHQFH LW LV QRW VXVFHSWL EOH WR SKRWRFRUURVLRQ ZKHUHDV PRVW RI WKH VHPL FRQGXFWRUV ZRXOG IDLO DQG WKH LQFRUSRUDWLRQ RI WKH ORZ SHUFHQWDJH RI KHWHURDWRPV RU PHWDO IRU WKH LPSURYLVDWLRQ RI WKH YLVLEOH OLJKW DFWLYLW GRHV QRW DIIHFW WKH FUVWDO ODWWLFH RI 7L2 PDWUL[ 7LWDQLXP GLR[LGH ODUJHO XVHG LQ WKH SKRWRR[LGDWLRQ RI RU JDQLF FRPSRXQGV GXH WR WKH KLJKHU R[LGDWLRQ SR WHQWLDO RI YDOHQFH EDQG KROHV ,W LV OHVV IDYRUDEOH LQ WKH FDVH RI FDUERQ GLR[LGH UHGXFWLRQ PHFKDQLVP GXH WR WKH ORZ UHGXFWLRQ SRWHQWLDO 7KH FRQGXFWLRQ EDQG SRVLWLRQ RI 7L2 9 YV 1+(
  • 124. LV PRUH SRVLWLYH FRPSDUHG WR WKH 22 z 9
  • 125. UHGXF WLRQ SRWHQWLDO $QDWDVH IRUP RI 7L2 LV WKH PRVW VWXGLHG WLWDQL XP GLR[LGH SROPRUSK IRU 2 UHGXFWLRQ LQ ZKLFK WKH FRQGXFWLRQ EDQG OLHV DW 9 S+
  • 126. ZLWK D EDQG JDS RI H9 @ 2WKHU SROPRUSKV UXWLOH @ EURRNLWH @ DQG 7L2 %
  • 127. @ DOVR KDYH EHHQ LQYHVWLJDWHG IRU 2 UHGXFWLRQ KRZHY HU WKHLU SRWHQWLDO DV D SKRWRFDWDOVW QRW HW IXOO UHYHDOHG 7KH FRPPRQ EHOLHI LV WKDW DQDWDVH IRUP LV PRUH SKRWRDFWLYH WKDQ WKH RWKHUV 0DQ UHVHDUFK JURXSV UHYLVLWHG WKLV FRQFHSW DQG UHYHDOHG WKH PVWHU LQ GLIIHUHQW ZDV DQG IRXQG WKDW RWKHU SKDVHV DUH DOVR DFWLYH XQGHU VSHFLILF UHJLPHV @ +HQFH RQH FDQ FRPSDUH WKH SKRWRDF WLYLW RI WKHVH SROPRUSKV RQO ZLWK UHVSHFW WR D SDUWLFXODU VXEVWUDWH *HQHUDOL]HG FRPSDULVRQV RI WKHVH SROPRUSKV DUH QRW YDOLG EHFDXVH WKH SKRWR DFWLYLW GHSHQGV RQ WKH QDWXUH RI VXEVWUDWH DGVRUS WLRQ RQ WKH SKRWRFDWDOVW /LX et al VWXGLHG WKH FRQYHUVLRQ RI FDUERQ GLR[ LGH LQ WKH QDQRFUVWDO IRUP RI WLWDQLXP GLR[LGH SROPRUSKV DQG FRPSDUHG WKH DFWLYLW XVLQJ LQ VLWX '5,)7 DQG SKRWRDFWLYLW PHDVXUHPHQWV @ ,W LV IRXQG WKDW GHIHFW IUHH R[JHQ GHILFLHQW VXUIDFH RI EURRNLWH VKRZHG WKH KLJKHVW LHOG IRU 2 DQG + )LJ
  • 128. 7KLV VKRZV WKDW WKH VXUIDFH LQWHU IDFH VKRZHG D FUXFLDO UROH LQ SKRWRFDWDOWLF UHGXF
  • 129. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, 2016, Vol. 5, No. 2 93 tion. The yield of product depends on the extent of adsorption of carbon dioxide on the photocatalyst. Anpo et al also studied the photoactivity of single crystal surface of Ti terminating rutile (100) and oxygen terminating rutile (110) and found after careful kinetic measurements that the TiO2 (100) facet was 7.4 times more active than TiO2 (110) in reducing CO2 [25]. This is due to the fact that the transfer of d electrons to the LUMO of CO2 is more favourable in Ti terminating surface. It is already known that carbon dioxide adsorbs strong- ly in steps sites, hence the creation of proper step active sites would lead to better carbon dioxide adsorption on the surface which facilitate the elec- tron transfer from the photocatalyst to the CO2 and thereby increases the product yield. Fig. (15). Production of CO and CH4 on the untreated and the treated titania polymorphs Reproduced with permission from ref [123]. ©2012 American Chemical Society. Titanium oxide nanomaterials also have been studied extensively for CO2 reduction in the last decade [125-128]. Most of the studies conducted due to the common belief that the semiconductor nanomaterials increase the visible light activity. In a real way, the belief is no longer true, it’s one of the misconceptions in photocatalysis. Decreasing particle size from bulk to nano level increases the bandgap and their by decreases the visible light activity. Most of the semiconductor nanoparticles and clusters active only under UV irradiation be- low 320 nm. The Ti-oxide highly dispersed TiO4 single unit site absorbs only UV light under the wavelength 230-280 nm (Fig. 16) [27]. The ab- sorption of that particular wavelength creates an electron-hole pair within the single site unit con- tributed to the high and unique photocatalytic ac- tivity. Incorporation of titanium dioxide single site photocatalyst into the zeolite matrix, thus a prom- ising route towards the carbon dioxide conversion. However, it suffers by the lower product yield. Fig. (16). Bandgap diagram of different titania struc- tures. Reproduced with permission from Ref. [27]. ©2012 Royal Society of Chemistry. By comparing the yield of the product by the dif- ferent titanium dioxide structures for the conversion of CO2 (see Table 5), one can find that the product yield is too low as compared to the other material structures. Table 5 shows the product and product yield irrespective of their reaction conditions. TiO2 Degussa P25 (presently Evonik) is the most used material for CO2 reduction, normally used as a standard reference material in thermody- namically “downhill” photocatalytic processes. It is a mixture of two polymorphs of titanium diox- ide, namely anatase (80%) and rutile (20%) and the particle size up to some nanometers. Recently, Ohtani et al found that Degussa P25 also contains trace amount of amorphous titanium dioxide [165]. The superior photocatalytic activity of P25 makes it as a standard reference in photocatalytic oxidation processes. The mechanism of superior activity of P25 is still a controversy among the photocatalytic community [166]. When scientists realize that CO2 can also reduce by the photocatalytic phenomenon, the followers used P25 as the reference material, even though it’s not a champion photocatalyst for CO2 reduction. In a process like CO2 reduction, the product yield depends on many factors interde- pendently as compared to the normal photocatalytic oxidation processes (See Table 6) [167]. The elec- tron as well as proton transfer plays a crucial role in the thermodynamic uphill processes such as water or carbon dioxide splitting into valuable fuels that means the reaction led not alone by light irradiation. 21 18 15 12 9 6 3 0 CO CH4 TiA(UP) TiA(He) TiB(UP) TiB(He) TiR(UP) TiR(He) Productionofproduct(mmolg.1 ) TiO2 phase (A = anatase; B = brookite; R = rutile; UP = unpretreated; He = helium treated) Conduction band (cb) Valence band (vb) 400 nm (hv) ~350 nm Semiconducting bulk TiO2 Nanocluster of Ti-oxides Isolated Ti-oxide Charge transfer excited state ~320 nm 300 nm 250~ h+ e- O2- O2- O2- O2- O2- O2- O2- Ti4+ Ti4+ O2+ O2+ O2+ O2+ Ti4+ Ti3+ O2- O2- O2- hv O2-
  • 130. Current Catalysis, , Vol. 5, No. 2 Narayanan et al. 7DEOH 3KRWRFDWDOWLF UHGXFWLRQ RI FDUERQ GLR[LGH ZLWK SURGXFW LHOG JUHDWHU RU HTXDO WR —/ K JFDW
  • 131. LUUHVSHFWLYH RI WKH UH DFWLRQ FRQGLWLRQV Photocatalyst Product (yield, μl h-1 gcat -1 ) References Year TiO2 Anatase Film 2
  • 132. Au (0.25%) /Pt (0.75%)/TiO2 nanofiber +
  • 133. 2
  • 137. Pt (1.3%)/TiO2 single crystal +
  • 143. Ni/SiO2-Al2O3 (AM 1.5 filter) +
  • 144. NiO (AM 1.5 filter) +
  • 145. Fe2O3 (AM 1.5 filter) 2
  • 146. CoO (AM 1.5 filter) 2
  • 147. +
  • 148. Ni/SiO2-Al2O3 ( Ȝ 420nm) +
  • 149. NiO ( Ȝ 420nm) +
  • 150. 2
  • 159. 2
  • 161. 2
  • 163. +
  • 164. 2
  • 166. ZLWK 3W Cu based MOF +2+ SSP J K
  • 168. Porphyrin/Graphene + + —PRO P K
  • 170. 23.3 wt % AgBr-TiO2 +
  • 171. +2+
  • 172. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, 2016, Vol. 5, No. 2 95 Table 5: contd…. C2H5OH (13.28) CO (32.14) CdS/TiO2 nanotubes CH3OH (159.5) 148 2012 Bi2S3/TiO2 nanotubes CH3OH (224.6) 148 2012 GaP/TiO2 CH4 (118) 149 2014 Ru (0.5%)/ TiO2 CH4 (200) H2 (250) 150 2006 3 wt % CuO/TiO2 CH3OH (2655) 151,152 2005,2009 2 wt % CuO/TiO2 CH3OH (1000) O2 (20) 153,154 2002,2004 2 wt% Cu/TiO2/SBA-15 CH4 (627) 155 2009 0.1% Y-TiO2 HCHO (382.62) 156 2011 3 wt % Ag TiO2 H2 (100) CH4 (6) C3H6 (14) 157 CeF3/TiO2 CH3OH (162) 158 2014 Pt/TiO2 CH4 (277.2) C2H6 (12.4) H2 (389.2) O2 (785.3) 159 2014 Pt/MgO/TiO2 nanotubes CH4 (100.22 ppm/hr cm2 ) CO (10.4 ppm/hr cm2 ) 160 2014 In/TiO2 CH4 (244) CO (81) 161 2015 N-TiO2/Ni CH3OH (482) 162 2010 N-TiO2/Pt-Cu CO (111 ppm/h cm2 ) 32 2009 N-TiO2 nanotubes CH3OH (1132.6) HCHO (921.6) HCOOH (12475.8) 163 2012 C/TiO2 HCOOH (2610.98) 164 2011 The CO2 adsorption and the concurrent reaction with the electrons highly depends on the nature of the material surfaces. Not all the semiconductors have the similar surface arrangement, therefore, the reaction pathway and the interaction of CO2 moiety with surfaces varies according to the materials used. The product and yield vary within the titanium diox- ide compounds itself [124]. Since the CO2 reduction doesn't only depend on the visible light activity of the photocatalytic material, but also many other fac- tors described in Table 6, so the benchmarking of titanium dioxide P25 for CO2 reduction seems to be irrelevant and any comparison of reactions is only possible after the implementation of a standard pro- cedure. A new benchmark system has to be evolved instead of TiO2 P25 because it is not a pure single component system. Recently, scientific efforts are reported in the literature for benchmarking the pho- tocatalytic material for electrochemical water split- ting reactions [168-170]. It would be a surprising
  • 173. 96 Current Catalysis, 2016, Vol. 5, No. 2 Narayanan et al. fact that such kinds of effort are not seen in the CO2 reduction field especially in the electrocatalytic CO2 reduction. Table 6. Factors that determine the photoactivity of a semi- conductor surface. Reproduced with permission from Ref. [167] ©2015 American Chemical Society. Properties Factors Impacts Optical Band gap Photonic Efficien- cy Electronic Carrier Mobility Quantum Effi- ciency Structural and Morphological Surface Area Crystallinity/ Crystal Faces Particle Size Defects Crystal Phase Multiple Ways Multiple Ways Multiple Ways Multiple Ways Multiple Ways Surface Chemical Acid-Base character Surface Groups Multiple Ways The innovation of new materials, alternative to TiO2 has been in progress. Many materials like carbon nitride, BiVO4 offer a better activity than that of TiO2 but it lacks the in detail in situ and op- erando studies. The interaction of CO2 with these two materials has not been revealed in full swing. New studies on these materials for CO2 reduction do not consider the nature of interaction with CO2 (adsorption mechanism, since it varies with mate- rials) and the followed reaction pathways. The ra- tional modelling of these materials under real con- ditions is still missing, limiting the generation of alternative or next generation photocatalytic mate- rials. Since the photocatalytic reaction is too com- plex, the use of state-of-the-art techniques and methods are needed to overcome the barriers asso- ciated with process and to find an alternative pho- tocatalytic material for solar fuel generation. The combination of theoretical modelling, time re- solved spectroscopies, surface science methodolo- gies and radical chemistry is needed for the suc- cessful understanding of the mechanism of solar fuel generation both in terms of thermodynamics and kinetics [171]. 6. PERSPECTIVES Photocatalytic reduction of carbon dioxide is an immediate need in the energy as well as environ- mental points of view. The amount of product formed during the reaction still suffered by lower yield say up to some micromoles. A complete revisit to each individual process associated with the car- bon dioxide reduction is required for elucidating the reaction pathways and preparing a suitable mecha- nism. At this point, the scientist should deviate from the conventional TiO2 route [167,172]. The mecha- nistic studies using TiO2 are highly encouraged due Fig. (17). Best Solar Cell Efficiencies. This plot is courtesy of the National Renewable Energy Laboratory, Golden, CO. 50 48 44 40 36 32 28 24 20 16 12 8 4 0 1975 1980 1985 1990 1995 2000 2005 2010 2015 Best Research-Cell Efficiencies Efficiency(%) Multijunction Cells (2-terminal, monoltic) LM - Latice matched MM - meternophic Three-junction concentrator Three-junction (non-concentrator) Two-junction concentrator Two-junction (non-concentrator) Four-junction of more (concentrator) Four-junction of more (non-concentrator) Sigle crystal Concontrator Thin-flm crystal Sigle-junction GaAs Crystaline Si Cells Single crystal (concentrator) Single crystal (non-concentrator) Multisoysiline Slioon hebterestructures (HiT) Thin-frm crystal IMM- irverled, metanorphic Quantum dot cells Inorganic cells (CZTSSe) Organic Landen cells Organic cells (various typed) Poroside cells (non stabiled) Dye-sensitized cells Emerging PV IBM (TJ. Watson Research Center) Mobel Solar Macsushita Macsushita U of Marie U of Marie RCA RCA RCA RCA RCA RCA RCABoeing Boeing Boeing Solarex Kodsk Boeing Kodsk Kodsk Kodsk Solarex Solarex Boeing ARCO No, Canolina State U. RCA ARCO ARCO Boeing AVETEK Spine Varian Flonda U, So Photon Energy United Solar EPFL EPFL EPFL EPFL United Solar NREL Matsushita Euro-CIS NREL NREL NREL NREL NREL NREL NREL NREL U Sungart United Solar NREL UNSW UNSW Georgia Tech Georgia Tech Georgia Tech UNSW UNSW UNSW Spire UNSW UNSW ARCO Sandia Westing- house Stanford NREL Kepin Vanian Varisn Varisn Varisn Stanford (140x) (205x) (216x) NREL NREL SunPower (B6x) UNSW UNSW UNSW UNSW Japan Energy NREL/ Spectrpiab Spectrpiab Spectrpiab Spectrpiab Spectrpiab Spectrpiab SpectrpiabSpectrpiab Spectrpiab Spectrpiab Boeing NREL Spectrpiab Boeing NREL (MM 179x) (MM 299x) Boeing (MM 240x) (MM 454x) Boeing (MM) Fraunholar ieSE (MM 364x) Boeing Eurosolare NREL (14x) Sanyo Sanyo Sanyo Sanyo Sanyo NREL U. Stuttgart FiG-ISE Radood U Radood U FiG-ISE FiG-ISE Amonts (92x) (232x) IES-UPM (1026x) NREL Boeing (MM) Sharp (MM) Sharp (MM) FiG-ISE (117x) NREL Ati Devious Panasonic Alta Devioes NREL (457x) NREL (MM, 325 .7x) Solar Junction (MM, 416x) Sotec (4J, 319x) NREL (4J, 327x) NREL Boieng- Spectrotab (5-J) Sharp (MM) Sharp (MM, 302x) Solar Soitec Spine Semoonductor (MM, 406x) Junction (LM, 942x) (4-J, 297x) Fraunholar ISE/ Soitec LG Electronics SunPoewr (Nurgo Anda)Panasonic Ati Devious Panasonic NREL (154x) NREL 2SW NREL (14.7x) Solend ZSW Solar Frontier First Solar EPFL Trine Solar Souro KRACT Solar Fronder GE Globel Research KRICT AIST Hong Kong UST IBM IBM First SolarGE Gobal Research LG Electronics FrX Sorc ISFH Fraunhclor ISE Misubshi ChomUnited Solar (aSadusSuscus) Sharp IBM IBM NIMS EPEL Sharp UCLA Sumi- lomo Konana Solamer KonatoNREL / Konanta U- LineGroningen U. Line U. Line Semeng Pleelectronis U. Dresden Helacek NREL (ZnOPbS-CO) U. Tanonda (PbS-CO) MiT Heliees U. Tanonda U. Tanonda UCLA Sumdomo Chew ZSW-EMPA (Flex poly) Per.12.1670) 10.4% 10.4% 11.4% 11.4% 12.4% 13.6% 20.4% 21.0% 21.2% 21.5% 22.5% 23.3% 25.0% 25.6% 27.5% 27.4% 28.3% 29.1% 31.1% 34.1% 37.9% 38.8% 44.4% 46.0% Thin-Film Technologies CIGS (concentrator) CIGS CdTe Amonphous ScH (scebTzed)
  • 174. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, 2016, Vol. 5, No. 2 97 to its appreciable stability in most of the vigorous medium compared to other photocatalysts. Most of the studies have not explained the source of product formed during the reduction re- action, whether it is from the artifact or not. Iso- topic study or blank run is recommended to all CO2 reduction processes in order to reveal the ex- act carbon source thereby avoiding the bias in CO2 reduction. A standard experimental procedure is an immediate need in the carbon dioxide reduction process. Only with the standard methods one can compare the efficiency of material innovated from the different research groups, and also to choose the prominent candidate as the champion photo- catalyst. Now different groups normalize the reac- tion efficiency in different ways, no standard method is also available for the normalization of efficiency of the CO2 reduction process. Standard method and normalization of efficiency is needed for developing an efficiency chart for selection of best photocatalysts as in the photovoltaics. In pho- tovoltaics field, the National Renewable Energy Laboratory (NERL) maintains a plot that combines all research cell efficiencies reported so far since 1976 (Fig. 17) [173]. The plot includes the current state of the art efficiencies that are reported on a standardized basis based on Standard Test or Re- porting Conditions defined by IEC 60904-3 edi- tion 2 or ASTM G173 at 250 C. The reaction rate and the product yields are low compared to the natural photosynthesis. The cata- lyst is deactivated in the operation stage itself. Hence the quantum efficiencies are often very low. For the real life implementation of the photocata- lytic reduction of CO2 or so called artificial photo- synthesis, one has to prepare catalyst systems which will be more effective in the visible region and also give more than 10% quantum efficiency [174]. Osterloh in 2008, has excellently depicted a pictorial representation on the selection of materi- als for water splitting reaction (Fig. 18) [174, 175]. The materials represented in the Fig. 20 are also relevant to the CO2 reduction process. The figure clearly depicts that if a photocatalyst is said to be economic, it has to give at least 10% quantum ef- ficiency in the visible region of the electromagnet- ic spectrum. To the best of the author’s knowledge, no material which has been identified to satisfy both criteria as shown in the shaded part of the figure. Photo-fuel cell is an attractive route to reach the solar energy conversion in an effective way. It of- fers a spatial separation of redox reactions, the an- ode catalyst oxidise the water and the cathode cat- alyst reduces the H+ ions to H2 using holes and electrons respectively. The theoretical efficiency is found to be 32% when the device is based on a single bandgap absorber that constitute a semicon- ductor [176]. The same principle is also applied for CO2 reduction by Hurst et al. in 2010. In that, water oxidation catalyst ejects electrons and holes when irradiated by light and the concurrently formed electron undergoes a series of reduction reactions to produce H2, which will further react with the CO2 to yield fuels (Fig. 19) [177]. The reaction is suffered by the rapid deactivation of the water oxidation ligands. The discovery of visible light active, durable, cost effective water oxidation molecular photo-catalyst and stable ligands accel- erate the yield of fuels. The present scenario does Fig. (18). Quantum efficiencies of various materials used for photocatalytic water splitting reaction. Reproduced with permission from [174]. ©2010 The Royal Society. 100 10 1 0.1 100 200 300 400 500 600 700 wavelength (nm) UV Ni: lnTaO4 Cr/Ta: SrTiO3 +LaTiO2N + + WO3 visible K4Sr1.5Ta3O10 (M = K, Rb, Cs) M2La2Ti3O10 Zn :La2O3/Ga2O3 HCa2Nb3O10 La2Ti2O3 M4Nb6O17 (M = K, Rb) TiO2 + Sr2Nb2O7 CdS ZHS La :NaTaO3 Nb2O3 :TaO2 +La4CaTi3O12 ZnNaTaO3 Ge3N4 KBa2Ta3O10 MTa2O6 TiO2 (anatase) (M = Sr, Ba, Sn) + GaN :ZnO + MZnS (M = Ni, Pb, Cu) +PbBi2Nb2O9 +Zn :[In(OH)ySz]+BiVO4 + + + + +++ ++ ++ ++ + + quantumefficiency(%) ?
  • 175. 98 Current Catalysis, 2016, Vol. 5, No. 2 Narayanan et al. not offer such a kind of materials and stable and self-reparable ligands. More research effort is needed. [178]. Swiegers and coworkers put forward an idea towards the efficient production of hydrogen from solar energy based on a bio-inspired photosynthet- ic mechanism [178, 179]. The set-up consists of two electrons separated by a plastic membrane which allows the one directional transfer of pro- tons. In this, the manganese impregnated mem- brane is attached to the ruthenium based DSSC (Dye Sensitised Solar Cell) which absorbs visible light irradiation and transfer an electron into the TiO2 nanoparticles. The water oxidation catalyst (Mn4O4) also absorbs light and grab electrons from water. The electrons are transmitted to the cathode by means of an external circuit and the protons passed through the H+ conducting nafion mem- brane further reduced to H2 at the cathode by the electrons (See Fig. 20). This cell is too inefficient to produce hydrogen economically. If succeeded, one can make 15 times more hydrogen compared to the conventional hydrogen evolution pathways. The realization of this idea and incorporating this to CO2 reduction process offers a significant re- search avenue. In a similar way, Seger et al investigated meth- anol as a source of hydrogen in a PEFC with TiO2 photoanode and Pt cathode with no applied bias [180]. The acidified methanol oxidized under UV irradiation on TiO2 and the H+ formed is transport- ed to the Pt cathode through the nafion membrane. Fig. (19). Solar fuel cells based on the concept of a Polymer Electrolyte Fuel Cell (PEFC). Reproduced with per- mission from ref [176, 177]. ©2006 National Academy of Science (left) ©2010 American Association for the Ad- vancement of Science (right). Fig. (20). Photoanode consisting of titania sensitized Ru dye coated over a nafion layer doped with manganese based water oxidation catalyst along with the cross sectional arrangement of photoelectrochemical cell. Reproduced with permission from Ref. [179] ©2010 American Chemical Society. Fuel Cell Solar Fuel Cell anode membrane cathode 4H+ e- e- H2 O2 H2O O2 cat anode O2 A Solar PV assembly 4H+ H2 cat cathode 2H2 02 2H2 O 4H++ WOC Light energy 4e- Photoactive element 4H+ (+ CO2) 2H2 (or CH2O + H2H) Dye Nafion Electrolyte Cathode Conductive glass TiO2 TiO2 Nafion 4x1e-4e- SO3 SO3 SO 3 SO3 SO 3 O 2 O O O OO H+ HH H MnMn Mn Mn 2H2 SO 3 SO 3 SO3 4x1e- 4e-hv4hv diffusion Electrolyte FTOCoatedGlass O O O O C C N N N NRu N N 2H2 O 2H2 O2 hv hv Ru* e- e- e- e- 4H+ Ru*/Ru* [Mn4 O4 L6 ]4
  • 176. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, 2016, Vol. 5, No. 2 99 The hydrogen ion is reduced to H2 with a rate of 69 μL h−1 cm−2 . Kim et al also studied the nafion layer-enhanced photocatalytic conversion of CO2 [181]. The main role of nafion membrane is to en- hance the proton activity. It also prevents the re- oxidation of the CO2 reduction products. The cur- rent efficiency of solar fuel cells restricts this pro- cess from real-life implementation. Since water oxidation is one of the key steps in the photocatalytic reduction of carbon dioxide, any breakthrough in water splitting research also con- tributes to the CO2 reduction process. Materials used for water splitting reactions and its pros and cons were excellently reviewed elsewhere [175, 182-186]. Recently more research has been con- centrated on hydrogen evolution reaction [187- 191] and the evolved hydrogen is channeled for the CO2 reduction [192-205]. Some reports also used CH4 as a reductant, instead of water and ex- ternally channeled hydrogen [199, 201]. Such kind of CO2 reduction systems is innovative but one cannot term it as photocatalytic even though the hydrogen produced ex situ by photocatalytic water splitting. Photocatalytic process involves genera- tion and combined utilization of charge carriers within the reaction system and the in-situ genera- tion of hydrogen ions from water oxidation and consecutive reduction to hydrogen, which is di- rectly used for CO2 reduction on the surface of a photocatalyst. The artificial photosynthetic systems should make use of the state-of-the-art microscopic and spectroscopic techniques for the in-situ experi- mental studies. Chromatography based analytical measurements do not give any insight into the mechanism of photocatalytic reaction. It only helps to identify the products formed during the process or the reaction pathways. Most of the product formed are also under the detectable limit of chromatographic measurements or the product formed during the reaction will interface with each other over the chromatographic column. The unre- acted carbon dioxide should be vented out proper- ly, otherwise it will adversely affect the chromato- graphic column during the continuous operation. Incorporation of XANES, XES like spectro- scopic techniques give a detailed information on the reaction mechanism of the surface photocata- lytic reactions. It reveals the chemical environ- ment, charge transfer and charge symmetry with respect to the particle size and impurity level, which will throw light on the surface reaction mechanism of the photocatalytic reaction. X-ray photoelectron technique is another important tool in photocatalytic research while the exact potential of that technique is not fully explored. Casalongue et al directly probed the relationship between the adsorbed chemical species on the surface and the electrochemical potential in the case of polymer electrolyte membrane fuel cells using ambient pressure X-ray photoelectron spectroscopy (See Fig. 21) [206]. It is found that non-hydrated hy- droxyl species were the protuberant surface spe- cies and the exclusion of hydration increases the reactivity of oxygen species on the surface of the electrode. This type of in situ experiments can also be useful in solar energy conversion processes, which may throw light on the dark shaded CO2 reduction mechanism and many other processes. Fig. (21). Schematic representation of a PEM fuel cell set-up for in situ APXPS investigations Reproduced with permission from Ref. [206]. ©2013 Macmillan Publishers Limited. For in-situ experiments most commonly used microscopic and spectroscopic techniques are en- vironmental transmission electron microscopy (E- TEM) [207-209], In-situ vibrational spectroscopic [210-212], ambient pressure X-ray photoelectron spectroscopy [206,210,213], X-ray absorption spectroscopy [213,214-217], and Raman spectros- copy [218]. Making use of this in-situ experi- ments, the solar fuel generation processes will get a new dimension to the state-of-the-art beliefs. Moreover, the catalysts structure, coverage and composition also change with time, the combina- tion of ultrafast of in-situ spectroscopic techniques reveal the structure and catalytic activity relation- ships (See Table 7) [217]. x-ray e- e- e- e- e- e- e- e- e- e-e-e- e- e- Cathode Anode Nafion H+ H+ H+ H+ O2 H2, H2O e- e- A V
  • 177. 100 Current Catalysis, 2016, Vol. 5, No. 2 Narayanan et al. The potential of electroanalytical techniques such as cyclic voltammetry and impedance spec- troscopy is also not fully explored in photocatalyt- ic studies which is primarily used for the rapid screening and high throughput evaluation of pho- tocatalysts. The use of in-situ analytical techniques used for heterogeneous catalysis is extensively re- viewed elsewhere [213-218]. The main advantage of in-situ experiments is; one can avoid the artifacts or interference from sample transfer or ion beam cleaning when using surface sensitive techniques. The applicability of this online techniques to the artificial photosynthe- sis is highly recommended. It will help to map the entire photocatalytic reaction leading to better un- derstanding of the overall photocatalytic process- es. Commonly used microscopic techniques ana- lyze the photocatalytic material prior to the exper- iments while the properties of photocatalyst vary in solution or restructured with respect to the sol- vent medium. Most of the present literature does not consider this type of changes or postulates that the reaction rate decreases without any scientific evidences for the catalyst deactivation. This kind of changes can be monitored using in-situ experi- ments by mapping the entire life span of the cata- lyst during the photocatalytic process. It also re- veals the deactivation mechanism of photocata- lysts which will help us to modify the catalyst sur- face. Most of the laboratories suffered by the in- situ setup due to its high cost. One can at least do the characterization of photocatalyst prior and af- ter the reaction or one can design the experiment in such a way that conducting the same experiment in different times and characterize the catalyst. This kind crude methods will impose impurities to the samples while transferring. Separation of products formed during the reac- tion imposes an additional challenge to the photo- catalytic conversion process. Recently, Alexis Bell and Meenesh Singh proposed an effective method for synthesizing pure liquid ethanol from carbon dioxide, which uses a saturated salt electrolyte [219, 220]. According to the theoretical calcula- tions, the system would be capable of producing 15.27 million gallons of ethanol per year per square kilometer. The suggestion is based on an effect known as salting out. They used an electro- lyte supersaturated with caesium carbonate, the attraction between the salt and water weakens the water-ethanol interaction which leads to the for- mation of a micro-emulsion that can be separated by means of a liquid-liquid separator (Fig. 22). The main challenge in front of the proposers is to make this idea in a cost effective manner. If it is experimentally proven, then it will be a break- Table 7. Some of In situ used techniques and applications in the solar fuel generation. Extracted from Ref [211,216, 218]. Method Applications AP-XPS Mainly used for studying the elemental compositions, the redox state of the sur- face and the subsurface region etc. HP-STM Elucidating the surface structure. SFG-FTIR Identifying the reaction intermediates and molecular nature of active sites. EPR Detection and identification of paramag- netic centers and free radicals TA It will give a reaction up to femto to the microsecond. Effective tool for unravelling at the kinet- ics of a single step from the subsequent reaction steps under relevant reaction conditions and probing the charge carrier dynamics and lifetimes. Ultrafast TA was used for probing the hole transfer kinetics. XAS,EXAFS, NEXAFS Extracts the evidence about the chemical state environment like the oxidation state, symmetry or the local charge distribution. It also gives the local environment of atoms (coordination number, distance between the neighboring atom etc.) ab- sorbing the incident radiation. KPFM Used for the investigation of surface po- tential of materials Electrochemical Imped- ance Spectroscopic Methods Reveals the chemistry at electrolyte / semiconductor interfaces AFM, SECM, STM Visualization of catalyst structure in oper- ando conditions. Provide finest details of the surface atom by atom. TEM In situ TEM reveals atomic level structure activity relationships of photocatalysts under reaction conditions. EELS Used in gas composition studies and sim- ultaneous atomic structural characteriza- tion of the particles during the reaction. Raman Spectroscopy Used to study the spectral features of solar fuel materials under reaction conditions.
  • 178. Photocatalytic Reduction of Carbon Dioxide: Issues and Prospects Current Catalysis, 2016, Vol. 5, No. 2 101 through in artificial photosynthesis where the greatest challenge is to separate alcohols from wa- ter due to its high solubility and crossover [221]. Generally, the natural photosynthetic process is associated with the absorption of light in the near infrared region of the electromagnetic spectrum. Most of the semiconductors are not activated by the absorption of light near infrared region due to the bandgap values. One way to make the artificial photosynthesis efficient would be to increase the visible light absorption of the photocatalyst. Stud- ies are reported for activating the photocatalyst using light near infrared region [222, 223]. A re- cent study reports the strategy for converting the infrared light into visible light using quantum dots films [224, 225]. The film was made up of a lead sulphide semiconductor quantum dot glazed with a single layer of fatty acids that make the surface inactive. The top crystalline layer was made up of rubrene, an organic molecule. The top layer ab- sorbs infrared light and transfers it in the bottom layers (See Fig. 23). The energy inside the system exists in the form of excitons which diffuse over the rubrene through a process called triplet-triplet annihilation. When it is irradiated with infrared radiation, glowing of the film occurred which is the direction of the production of visible during the process. It claims that the collision of two low energy excitons creates a high energy exciton or singlet, which can further emit visible light. If it is possible to create the materials in large scale, then it will be an asset to the artificial photosynthesis process if and only if the champion photocatalyst is discovered. 7. CONCLUSION Carbon dioxide reduction is a promising route to the sustainable solar energy conversion. The Fig. (22). Proposed system incorporated with the liquid-liquid extractor for the conversion of carbon dioxide into pure liquid ethanol fuel. Reproduced with permission from Ref. [219]. ©2016 Royal Society of Chemistry Fig. (23). Schematic representation of quantum dot sensitized upconversion of IR to Visible light via triplet-triplet annihilation. Reproduced with permission from [224] © 2015 Macmillan Publishers Limited. Saturated Salt Electrolyte Liquid Fuel Make-up Water ArtificialLeaf CO2Reservoir Carhode AEM CO2 Anode LightAbsorber O2 e + Pbs NC Transfer Rubrene TTA 1 nm Emitter;Annihilator; Rubrene DBPPbs NC Sensitizer; Excitation Emission G S1 S1TTA T1= 1.14 eV E1 q = 4.8nm Rubrene;0.5% DBP 80 nm NC submonolayer Glass
  • 179. 102 Current Catalysis, 2016, Vol. 5, No. 2 Narayanan et al. existing level of knowledge does not permit the design of economically viable process for the con- version carbon dioxide into chemicals and value added fuels. It could happen only by the collabora- tive research effort from various groups, irrespec- tive of the implicit bias among the scientific com- munity. The material development and the lack of a standard procedure has been the bottleneck. The material should give at least 10 % quantum effi- ciency in the visible region of the solar spectrum. Currently, all such CO2-to-fuel research efforts have been scattered around the various parts of the globe. A global initiative is needed for the resur- rection of CO2-to-fuel technology in a real life process and it should be targeted on the policy makers as well as the general audience. The global initiative should be like a compound parabolic concentrator in which all the scattered research efforts concentrated into a central point. The cur- rent pace shows that the plants will face a tight competition from the CO2-to-fuel solar business in the near future! LIST OF ABBREVIATIONS AFM = Atomic Force Microscopy AP-XPS = Ambient Pressure X-Ray Photoe- lectron Spectroscopy CPC = Compound Parabolic Concentrator DMF = N, N-dimethylformamide EELS = Electron Energy Loss Spectrosco- py EPR = Electron Paramagnetic Resonance or electron spin resonance (ESR) EXAFS = Extended X-ray Absorption Fine Structure Fc+/0 = ferrocenium/ferrocene couple HOMO = Highest Occupied Molecular Or- bital HP-STM = High-Pressure Scanning Tunneling Microscopy IR = Infra Red KPFM = Kelvin Probe Force Microscopy LUMO = Lowest Occupied Molecular Or- bital MeCN = Acetonitrile MOT = Molecular Orbital Theory NEXAFS = Near Edge X-Ray Absorption Fine Structure NHE = Normal Hydrogen Electrode PCR = Photocatalytic Reaction PZC = Point of Zero Charge SECM = Scanning Electrochemical Micros- copy SFG-FTIR = Sum Frequency Generation Vibra- tional Spectroscopy SPR = Surface Plasmon Resonance STM = Scanning Tunneling Microscopy TA = Transient Absorption TEM = Transmission Electron Microscopy UV light = Ultraviolet light XANES = X-Ray Absorption Near Edge Structure XAS = X-Ray Absorption Spectroscopy XES = X-ray emission spectroscopy CONFLICT OF INTEREST The authors have no conflict of interest to dis- close. ACKNOWLEDGEMENTS Financial support from the UGC BSR to one of the authors (HN) by means of Junior Research Fel- lowship is gratefully acknowledged. We thank to Department of Science and Technology, Govt. of India for the prolonged support for establishing research facilities at NCCR. REFERENCES [1] Ciamician, G. The Photochemistry of the Future, Science, 1912, 36, 385-394. [2] Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 238, 37 – 38. [3] Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocata- lytic reduction of carbon dioxide in aqueous suspensions of semi- conductor. Nature, 1979, 277, 637 – 638. [4] Hautala, R.R.; King, R.B.; Kutal C. Solar Energy: Chemical Con- version and Storage, Humana Press, 1979.