SlideShare ist ein Scribd-Unternehmen logo
1 von 8
Downloaden Sie, um offline zu lesen
Module 10 . Pumps
Lesson 29
CLASSIFICATION OF PUMPS
29.1 Introduction
Pumps are used to transfer and distribute liquids in various industries. Pumps convert mechanical energy
into hydraulic energy. Electrical energy is generally used to operate the various types of pumps.
Pumps have two main purposes.
Ø Transfer of liquid from one place to another place (e.g. water from an underground into a water
storage tank).
Ø Circulate liquid around a system (e.g. cooling water or lubricants through machines and
equipment).
29.2 Components of a Pumping System
· Pump casing and impellers
· Prime movers: electric motors, diesel engines or air system
· Piping used to carry the fluid
· Valves, used to control the flow in the system
· Other fittings, controls and instrumentation
· End-use equipment, which have different requirements (e.g. pressure, flow) and therefore
determine the pumping system components and configuration. Examples include heat
exchangers, tanks and hydraulic machines.
29.3 Classification
There exist a wide variety of pumps that are designed for various specific applications. However, most of
them can be broadly classified into two categories as mentioned below.
i. positive displacement
ii. dynamic pressure pumps
http://localhost:8101/moodle/file.php/14/Lesson_29.htm
1 of 8 02-01-2017 11:34
Fig. 29.1 Classification of pumps
29.4 Positive Displacement Pumps
The term positive displacement pump is quite descriptive, because such pumps are designed to displace a
more or less fixed volume of fluid during each cycle of operation. The volumetric flow rate is determined
by the displacement per cycle of the moving member (either rotating or reciprocating) times the cycle rate
(e.g. rpm). The flow capacity is thus fixed by the design, size, and operating speed of the pump. The
pressure (or head) that the pump develops depends upon the flow resistance of the system in which the
pump is installed and is limited only by the size of the driving motor and the strength of the parts.
Consequently, the discharge line from the pump should never be closed off without allowing for recycle
around the pump or damage to the pump could result. They can be further classified as:
29.5 Types of Positive Displacement Pumps
29.5.1 Reciprocating pumps
Pumping takes place by to and fro motion of the piston or diaphragm in the cylinder. It is often used
where relatively small quantity of liquid is to be handled and where delivery pressure is quite large.
Piston pump: A piston pump is a type of positive displacement pump where the high-pressure seal
reciprocates with the piston. The pump has a piston cylinder arrangement. As the piston, goes away after
the delivery stoke, low pressure is created in the cylinder which opens the suction valve. On forward
stoke, the fluid filled inside the cylinder is compressed which intern opens the delivery valve for the
delivery of liquid.
http://localhost:8101/moodle/file.php/14/Lesson_29.htm
2 of 8 02-01-2017 11:34
Fig. 29.2 Piston pump
Diaphragm pump: uses a combination of the reciprocating action of a rubber, thermoplastic or Teflon
diaphragm and suitable non-return check valves to pump a fluid. Sometimes this type of pump is also
called a membrane pump.
Fig. 29.3 Diaphragm pump
29.5.2 Rotary pumps
In rotary pumps, relative movement between rotating elements and the stationary element of the pump
cause the pumping action. The operation is different from reciprocating pumps, where valves and a piston
are integral to the pump. They also differ from centrifugal pumps, where high velocity is turned into
pressure. Rotary pumps are designed so that a continuous seal is maintained between inlet and outlet ports
by the action and position of the pumping elements and close running clearances of the pump. Therefore,
rotary pumps do not require valve arrangements similar to reciprocating pumps.
Gear pumps: uses the meshing of gears to pump fluid by displacement. They are one of the most common
types of pumps for hydraulic fluid power applications. The rigid design of the gears and houses allow for
very high pressures and the ability to pump highly viscous fluids.
http://localhost:8101/moodle/file.php/14/Lesson_29.htm
3 of 8 02-01-2017 11:34
Fig. 29.4 Gear pump
Lobe pump: Lobe pumps are similar to external gear pumps in operation in that fluid flows around the
interior of the casing. As the lobes come out of mesh, they create expanding volume on the inlet side of
the pump. Liquid flows into the cavity and is trapped by the lobes as they rotate. Liquid travels around the
interior of the casing in the pockets between the lobes and the casing. Finally, the meshing of the lobes
forces liquid through the outlet port under pressure.
Fig. 29.5 Lobe pump
Screw Pump: These pumps are rotary, positive displacement pumps that can have one or more screws to
transfer high or low viscosity fluids along an axis. Although progressive cavity pumps can be referred to as
a single screw pumps, typically screw pumps have two or more intermeshing screws rotating axially
clockwise or counterclockwise. Each screw thread is matched to carry a specific volume of fluid. Screw
pumps provide a specific volume with each cycle and can be dependable in metering applications.
http://localhost:8101/moodle/file.php/14/Lesson_29.htm
4 of 8 02-01-2017 11:34
Fig. 29.6 Screw pump
Vane pump: A rotary vane pump is a positive-displacement pump that consists of vanes mounted to a rotor
that rotates inside of a cavity. In some cases, these vanes can be variable length and/or tensioned to
maintain contact with the walls as the pump rotates.
Fig. 29.7 Vane pump
Rotary plunger pump: The pumping action takes place by rotating rotor and reciprocating plunger. In a
rotary plunger rotary pump, the axes of the plungers are perpendicular to the rotational axis of the rotor or
at an angle of not less than 45° to the axis; the rotor is located eccentrically with respect to the axis of the
case.
Fig. 29.8 Rotary plunger pump
Suction and forced delivery of the liquid occur with the reciprocating motion of the plungers as a result of
centrifugal forces and spring action. Rotary pumps of this type may have as many as 72 plungers arranged
in multiple rows, provide a delivery Q ≤ 400 liters/min, and build up a pumping pressure ρ ≤ 100 MN/m2
.
29.6 Dynamic Pressure Pumps
In dynamic pressure pump, during pumping action, tangential force is imparted which accelerates the fluid
normally by rotation of impeller. Some systems which contain dynamic pump may require positive
http://localhost:8101/moodle/file.php/14/Lesson_29.htm
5 of 8 02-01-2017 11:34
displacement pump for priming. They are normally used for moderate to high discharge rate. The pressure
differential range for this type of pumps is in a range of low to moderate. They are popularly used in a
system where low viscosity fluids are used.
29.6.1 Centrifugal pumps
They use a rotating impeller to increase the pressure of a fluid. Centrifugal pumps are commonly used to
move liquids through a piping system. The fluid enters the pump impeller along or near to the rotating axis
and is accelerated by the impeller, flowing radially outward into a diffuser or volute chamber (casing),
from where it exits into the downstream piping system. Centrifugal pumps are used for large discharge
through smaller heads. These types of pumps are used for supply of water and handling of milk in dairy
plants.
Fig. 29.9 Centrifugal pump
29.6.2 Propeller pump
A propeller pump is a high flow, low lift impeller type device featuring a linear flow path. The propeller
pump may be installed in a vertical, horizontal, or angled orientation and typically has its motor situated
above the water level with the impeller below water. These pumps function by drawing water up an outer
casing and out of a discharge outlet via a propeller bladed impeller head.
http://localhost:8101/moodle/file.php/14/Lesson_29.htm
6 of 8 02-01-2017 11:34
Fig. 29.10 Propeller pump
29.6.3 Turbine pump
Turbine pumps are centrifugal pumps that use pressure and flow in combination with a rotary mechanism
to transfer fluid. They typically employ blade geometry, which causes fluid circulation around the vanes
to add pressure from inlet to outlet. Turbine pumps operate using kinetic energy to move fluid utilizing an
impeller. The centrifugal force drives the liquid to the housing wall in close proximity to the vanes of the
impeller or propeller. The cyclical movement of the impeller produces pressure in the pumping bowl. The
shape of turbine pumps also contributes to suction and discharge rates.
Fig. 29.11 Turbine pump
http://localhost:8101/moodle/file.php/14/Lesson_29.htm
7 of 8 02-01-2017 11:34
http://localhost:8101/moodle/file.php/14/Lesson_29.htm
8 of 8 02-01-2017 11:34

Weitere ähnliche Inhalte

Was ist angesagt?

Pumps and types of pumps in detail
Pumps and types of pumps in detailPumps and types of pumps in detail
Pumps and types of pumps in detail
FARRUKH SHEHZAD
 

Was ist angesagt? (20)

Basics Fundamentals and working Principle of Centrifugal Pump.
Basics Fundamentals and working Principle of Centrifugal Pump.Basics Fundamentals and working Principle of Centrifugal Pump.
Basics Fundamentals and working Principle of Centrifugal Pump.
 
Pump
PumpPump
Pump
 
Positive Displacement Pumps
Positive Displacement PumpsPositive Displacement Pumps
Positive Displacement Pumps
 
multi stage pump
multi stage pumpmulti stage pump
multi stage pump
 
Gear Pumps
Gear PumpsGear Pumps
Gear Pumps
 
Pumps
PumpsPumps
Pumps
 
Fluid mechanics
Fluid mechanics Fluid mechanics
Fluid mechanics
 
Water pump
Water pumpWater pump
Water pump
 
pumps and centrifugal pump and their classifications
pumps and centrifugal pump and their classificationspumps and centrifugal pump and their classifications
pumps and centrifugal pump and their classifications
 
Pump selection and application
Pump selection and applicationPump selection and application
Pump selection and application
 
pump system and curves
pump system and curvespump system and curves
pump system and curves
 
Basics of pump
Basics of pump Basics of pump
Basics of pump
 
Pumps and types of pumps in detail
Pumps and types of pumps in detailPumps and types of pumps in detail
Pumps and types of pumps in detail
 
Reciprocating Pumps
Reciprocating PumpsReciprocating Pumps
Reciprocating Pumps
 
Pumps presentation
Pumps presentationPumps presentation
Pumps presentation
 
Jet pump
Jet pumpJet pump
Jet pump
 
Basics of pumps
Basics of pumpsBasics of pumps
Basics of pumps
 
Centrifugal by minal naveed
Centrifugal by minal naveedCentrifugal by minal naveed
Centrifugal by minal naveed
 
Pump
PumpPump
Pump
 
Pumps and types, Npsh, centrifugal pump
Pumps and types, Npsh, centrifugal pumpPumps and types, Npsh, centrifugal pump
Pumps and types, Npsh, centrifugal pump
 

Ähnlich wie Pumps.pdf

CLASSIFICATION-OF-PUMPS.pdf
CLASSIFICATION-OF-PUMPS.pdfCLASSIFICATION-OF-PUMPS.pdf
CLASSIFICATION-OF-PUMPS.pdf
SheikhRif
 
water pumping machinery for students .pptx
water pumping machinery for students .pptxwater pumping machinery for students .pptx
water pumping machinery for students .pptx
RiochelBantatua
 
Lect.9 centifugal pump ppt. 2021.pdf
Lect.9 centifugal pump ppt.  2021.pdfLect.9 centifugal pump ppt.  2021.pdf
Lect.9 centifugal pump ppt. 2021.pdf
fabmovieKhatri
 

Ähnlich wie Pumps.pdf (20)

CLASSIFICATION-OF-PUMPS.pdf
CLASSIFICATION-OF-PUMPS.pdfCLASSIFICATION-OF-PUMPS.pdf
CLASSIFICATION-OF-PUMPS.pdf
 
water pumping machinery for students .pptx
water pumping machinery for students .pptxwater pumping machinery for students .pptx
water pumping machinery for students .pptx
 
pumps for Students01.pdf
pumps for Students01.pdfpumps for Students01.pdf
pumps for Students01.pdf
 
Centrifugal pump and Reciprocal pump
Centrifugal pump and Reciprocal pumpCentrifugal pump and Reciprocal pump
Centrifugal pump and Reciprocal pump
 
Reciprocating pump pdf
Reciprocating pump pdfReciprocating pump pdf
Reciprocating pump pdf
 
Pumps compressors
Pumps compressorsPumps compressors
Pumps compressors
 
centrifugal pump -
 centrifugal pump -  centrifugal pump -
centrifugal pump -
 
Pumptypes
PumptypesPumptypes
Pumptypes
 
unit 6 pumps and primers.pptx
unit 6 pumps and primers.pptxunit 6 pumps and primers.pptx
unit 6 pumps and primers.pptx
 
Centrifugal pumps
Centrifugal pumpsCentrifugal pumps
Centrifugal pumps
 
MARINE PUMPS
MARINE PUMPS MARINE PUMPS
MARINE PUMPS
 
Various types of Pumps in mechanical engineering.pptx
Various types of Pumps in mechanical engineering.pptxVarious types of Pumps in mechanical engineering.pptx
Various types of Pumps in mechanical engineering.pptx
 
Detailed presentation on pumps
Detailed presentation on pumpsDetailed presentation on pumps
Detailed presentation on pumps
 
Lect.9 centifugal pump ppt. 2021.pdf
Lect.9 centifugal pump ppt.  2021.pdfLect.9 centifugal pump ppt.  2021.pdf
Lect.9 centifugal pump ppt. 2021.pdf
 
Pedal Powered Water Pump
Pedal Powered Water PumpPedal Powered Water Pump
Pedal Powered Water Pump
 
Hydraulic Pumps (Positive displacement pumps)
Hydraulic Pumps (Positive displacement pumps)Hydraulic Pumps (Positive displacement pumps)
Hydraulic Pumps (Positive displacement pumps)
 
Centrifugal Pumps Components, Working, Types & Applications – A Detailed Guide
Centrifugal Pumps Components, Working, Types & Applications – A Detailed GuideCentrifugal Pumps Components, Working, Types & Applications – A Detailed Guide
Centrifugal Pumps Components, Working, Types & Applications – A Detailed Guide
 
PUMPS.pptx
PUMPS.pptxPUMPS.pptx
PUMPS.pptx
 
Centrifugalpump
CentrifugalpumpCentrifugalpump
Centrifugalpump
 
Pumps.pptx
Pumps.pptxPumps.pptx
Pumps.pptx
 

Kürzlich hochgeladen

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Kürzlich hochgeladen (20)

Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 

Pumps.pdf

  • 1. Module 10 . Pumps Lesson 29 CLASSIFICATION OF PUMPS 29.1 Introduction Pumps are used to transfer and distribute liquids in various industries. Pumps convert mechanical energy into hydraulic energy. Electrical energy is generally used to operate the various types of pumps. Pumps have two main purposes. Ø Transfer of liquid from one place to another place (e.g. water from an underground into a water storage tank). Ø Circulate liquid around a system (e.g. cooling water or lubricants through machines and equipment). 29.2 Components of a Pumping System · Pump casing and impellers · Prime movers: electric motors, diesel engines or air system · Piping used to carry the fluid · Valves, used to control the flow in the system · Other fittings, controls and instrumentation · End-use equipment, which have different requirements (e.g. pressure, flow) and therefore determine the pumping system components and configuration. Examples include heat exchangers, tanks and hydraulic machines. 29.3 Classification There exist a wide variety of pumps that are designed for various specific applications. However, most of them can be broadly classified into two categories as mentioned below. i. positive displacement ii. dynamic pressure pumps http://localhost:8101/moodle/file.php/14/Lesson_29.htm 1 of 8 02-01-2017 11:34
  • 2. Fig. 29.1 Classification of pumps 29.4 Positive Displacement Pumps The term positive displacement pump is quite descriptive, because such pumps are designed to displace a more or less fixed volume of fluid during each cycle of operation. The volumetric flow rate is determined by the displacement per cycle of the moving member (either rotating or reciprocating) times the cycle rate (e.g. rpm). The flow capacity is thus fixed by the design, size, and operating speed of the pump. The pressure (or head) that the pump develops depends upon the flow resistance of the system in which the pump is installed and is limited only by the size of the driving motor and the strength of the parts. Consequently, the discharge line from the pump should never be closed off without allowing for recycle around the pump or damage to the pump could result. They can be further classified as: 29.5 Types of Positive Displacement Pumps 29.5.1 Reciprocating pumps Pumping takes place by to and fro motion of the piston or diaphragm in the cylinder. It is often used where relatively small quantity of liquid is to be handled and where delivery pressure is quite large. Piston pump: A piston pump is a type of positive displacement pump where the high-pressure seal reciprocates with the piston. The pump has a piston cylinder arrangement. As the piston, goes away after the delivery stoke, low pressure is created in the cylinder which opens the suction valve. On forward stoke, the fluid filled inside the cylinder is compressed which intern opens the delivery valve for the delivery of liquid. http://localhost:8101/moodle/file.php/14/Lesson_29.htm 2 of 8 02-01-2017 11:34
  • 3. Fig. 29.2 Piston pump Diaphragm pump: uses a combination of the reciprocating action of a rubber, thermoplastic or Teflon diaphragm and suitable non-return check valves to pump a fluid. Sometimes this type of pump is also called a membrane pump. Fig. 29.3 Diaphragm pump 29.5.2 Rotary pumps In rotary pumps, relative movement between rotating elements and the stationary element of the pump cause the pumping action. The operation is different from reciprocating pumps, where valves and a piston are integral to the pump. They also differ from centrifugal pumps, where high velocity is turned into pressure. Rotary pumps are designed so that a continuous seal is maintained between inlet and outlet ports by the action and position of the pumping elements and close running clearances of the pump. Therefore, rotary pumps do not require valve arrangements similar to reciprocating pumps. Gear pumps: uses the meshing of gears to pump fluid by displacement. They are one of the most common types of pumps for hydraulic fluid power applications. The rigid design of the gears and houses allow for very high pressures and the ability to pump highly viscous fluids. http://localhost:8101/moodle/file.php/14/Lesson_29.htm 3 of 8 02-01-2017 11:34
  • 4. Fig. 29.4 Gear pump Lobe pump: Lobe pumps are similar to external gear pumps in operation in that fluid flows around the interior of the casing. As the lobes come out of mesh, they create expanding volume on the inlet side of the pump. Liquid flows into the cavity and is trapped by the lobes as they rotate. Liquid travels around the interior of the casing in the pockets between the lobes and the casing. Finally, the meshing of the lobes forces liquid through the outlet port under pressure. Fig. 29.5 Lobe pump Screw Pump: These pumps are rotary, positive displacement pumps that can have one or more screws to transfer high or low viscosity fluids along an axis. Although progressive cavity pumps can be referred to as a single screw pumps, typically screw pumps have two or more intermeshing screws rotating axially clockwise or counterclockwise. Each screw thread is matched to carry a specific volume of fluid. Screw pumps provide a specific volume with each cycle and can be dependable in metering applications. http://localhost:8101/moodle/file.php/14/Lesson_29.htm 4 of 8 02-01-2017 11:34
  • 5. Fig. 29.6 Screw pump Vane pump: A rotary vane pump is a positive-displacement pump that consists of vanes mounted to a rotor that rotates inside of a cavity. In some cases, these vanes can be variable length and/or tensioned to maintain contact with the walls as the pump rotates. Fig. 29.7 Vane pump Rotary plunger pump: The pumping action takes place by rotating rotor and reciprocating plunger. In a rotary plunger rotary pump, the axes of the plungers are perpendicular to the rotational axis of the rotor or at an angle of not less than 45° to the axis; the rotor is located eccentrically with respect to the axis of the case. Fig. 29.8 Rotary plunger pump Suction and forced delivery of the liquid occur with the reciprocating motion of the plungers as a result of centrifugal forces and spring action. Rotary pumps of this type may have as many as 72 plungers arranged in multiple rows, provide a delivery Q ≤ 400 liters/min, and build up a pumping pressure ρ ≤ 100 MN/m2 . 29.6 Dynamic Pressure Pumps In dynamic pressure pump, during pumping action, tangential force is imparted which accelerates the fluid normally by rotation of impeller. Some systems which contain dynamic pump may require positive http://localhost:8101/moodle/file.php/14/Lesson_29.htm 5 of 8 02-01-2017 11:34
  • 6. displacement pump for priming. They are normally used for moderate to high discharge rate. The pressure differential range for this type of pumps is in a range of low to moderate. They are popularly used in a system where low viscosity fluids are used. 29.6.1 Centrifugal pumps They use a rotating impeller to increase the pressure of a fluid. Centrifugal pumps are commonly used to move liquids through a piping system. The fluid enters the pump impeller along or near to the rotating axis and is accelerated by the impeller, flowing radially outward into a diffuser or volute chamber (casing), from where it exits into the downstream piping system. Centrifugal pumps are used for large discharge through smaller heads. These types of pumps are used for supply of water and handling of milk in dairy plants. Fig. 29.9 Centrifugal pump 29.6.2 Propeller pump A propeller pump is a high flow, low lift impeller type device featuring a linear flow path. The propeller pump may be installed in a vertical, horizontal, or angled orientation and typically has its motor situated above the water level with the impeller below water. These pumps function by drawing water up an outer casing and out of a discharge outlet via a propeller bladed impeller head. http://localhost:8101/moodle/file.php/14/Lesson_29.htm 6 of 8 02-01-2017 11:34
  • 7. Fig. 29.10 Propeller pump 29.6.3 Turbine pump Turbine pumps are centrifugal pumps that use pressure and flow in combination with a rotary mechanism to transfer fluid. They typically employ blade geometry, which causes fluid circulation around the vanes to add pressure from inlet to outlet. Turbine pumps operate using kinetic energy to move fluid utilizing an impeller. The centrifugal force drives the liquid to the housing wall in close proximity to the vanes of the impeller or propeller. The cyclical movement of the impeller produces pressure in the pumping bowl. The shape of turbine pumps also contributes to suction and discharge rates. Fig. 29.11 Turbine pump http://localhost:8101/moodle/file.php/14/Lesson_29.htm 7 of 8 02-01-2017 11:34