SlideShare ist ein Scribd-Unternehmen logo
1 von 4
Downloaden Sie, um offline zu lesen
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
INTRODUCTION	
  
Utilizing	
  their	
  expertise	
  in	
  human	
  motion	
  analysis,	
  Drs.	
  G.	
  Goulet,	
  J.	
  Deneweth	
  and	
  S.	
  
McLean,	
  and	
  S.	
  Kessler	
  of	
  the	
  Human	
  Performance	
  Innovation	
  Laboratory	
  at	
  the	
  University	
  
of	
  Michigan	
  are	
  conducting	
  a	
  study	
  aimed	
  at	
  providing	
  novel	
  insights	
  into	
  muscle	
  activation	
  
differences	
  when	
  using	
  a	
  variety	
  of	
  weighted	
  exercise	
  equipment.	
  
	
  
METHODOLOGY	
  
Participants	
  &	
  Instrumentation	
  
Seventeen	
  active	
  men	
  and	
  women	
  aged	
  30-­‐50	
  were	
  recruited	
  to	
  participate	
  in	
  a	
  one-­‐
hour	
   laboratory	
   session.	
   Participants	
   were	
   instrumented	
   with	
   electromyography	
   (EMG)	
  
and	
  inertial	
  (IMU)	
  sensors	
  on	
  the	
  following	
  muscles	
  and	
  segments	
  (Figure	
  1):	
  
EMG	
  
1. Middle	
  Deltoid	
  
2. Latissimus	
  Dorsi	
  
3. Erector	
  Spinae	
  (thoracic	
  and	
  lumbar)	
  
4. External	
  Oblique	
  
5. Pectoralis	
  Major	
  
6. Rectus	
  Abdominus	
  
7. Gluteus	
  Medius	
  
8. Vastus	
  Medialis	
  
9. Biceps	
  Femoris	
  
	
  
IMU	
  
1. Upper	
  thoracic	
  
2. Lower	
  thoracic	
  
3. Pelvis	
  
4. Bilateral	
  upper	
  arm	
  
5. Bilateral	
  forearm	
  
6. Bilateral	
  thigh	
  
7. Right	
  shank	
  
	
  
	
  
	
  
	
  
EMG	
  and	
  IMU	
  placement	
  was	
  not	
  disturbed	
  for	
  the	
  entirety	
  of	
  the	
  data	
  collection	
  session.	
  
Additionally,	
  participants	
  wore	
  a	
  heart	
  rate	
  monitor	
  to	
  assess	
  resting	
  and	
  continuous	
  heart	
  
rate.	
  
	
  
SCHOOL OF KINESIOLOGY | UNIVERSITY OF MICHIGAN
HUMAN PERFORMANCE INNOVATION LAB
  2	
  
	
  
Figure	
   1.	
   Participants	
   instrumented	
   with	
   electromyography	
   (blue)	
   and	
   inertial	
  
(red)	
   sensors.	
   Sensors	
   were	
   placed	
   on	
   bilateral	
   arms	
   and	
   legs,	
   and	
   the	
   back	
   to	
  
monitor	
  muscle	
  activity	
  and	
  body	
  segment	
  kinematics.	
  
	
  
Following	
  a	
  5-­‐minute	
  treadmill	
  warm-­‐up,	
  participants	
  were	
  familiarized	
  with	
  a	
  series	
  of	
  
exercises	
  via	
  video	
  instruction.	
  Exercises	
  included:	
  
1. Hinge,	
  right-­‐left	
  swing	
  
2. Overhead	
  side-­‐bend	
  
3. Reverse	
  lunge,	
  balance,	
  press	
  
4. Sit-­‐up,	
  hold,	
  rotate	
  
5. Steering	
  wheel	
  squat
	
  
Exercises	
  were	
  performed	
  with	
  three	
  apparatus:	
  standard	
  fitness	
  bar	
  (SB),	
  medicine	
  ball	
  
(MB),	
  and	
  ActivMotion	
  bar	
  (AMB).	
  The	
  weight	
  of	
  each	
  apparatus	
  was	
  10	
  lbs	
  for	
  males	
  and	
  6	
  
lbs	
   for	
   females.	
   Participants	
   practiced	
   the	
   exercises	
   with	
   the	
   apparatus	
   until	
   they	
   felt	
  
comfortable.	
  
Synchronous	
  EMG,	
  IMU,	
  and	
  high-­‐speed	
  video	
  data	
  were	
  collected	
  at	
  1,500	
  Hz,	
  200	
  Hz,	
  and	
  
100	
  Hz,	
  respectively,	
  while	
  participants	
  followed	
  the	
  instructional	
  video	
  for	
  each	
  exercise	
  
(six	
  repetitions	
  per	
  exercise).	
  In	
  addition	
  to	
  providing	
  further	
  instruction,	
  the	
  video	
  served	
  
to	
  control	
  the	
  pace	
  of	
  exercise	
  execution.	
  Throughout	
  the	
  exercises,	
  consistency	
  in	
  range	
  of	
  
motion	
   across	
   apparatus	
   was	
   ensured	
   using	
   real-­‐time	
   kinematics,	
   derived	
   from	
   IMU	
  
output.	
  
Participants	
  performed	
  all	
  exercises	
  with	
  each	
  apparatus,	
  resulting	
  in	
  15	
  combinations	
  of	
  
movements	
  (five	
  exercises	
  ×	
 three	
  apparatus).	
  The	
  order	
  of	
  exercises	
  was	
  randomized,	
  and	
  
the	
  order	
  of	
  apparatus	
  within	
  each	
  exercise	
  was	
  also	
  randomized	
  to	
  eliminate	
  fatigue	
  and	
  
learning	
   effects.	
   Fatigue	
   effects	
   were	
   additionally	
   monitored	
   and	
   minimized	
   by	
   ensuring	
  
between-­‐exercise	
  heart	
  rate	
  was	
  within	
  10%	
  of	
  resting	
  heart	
  rate.	
  
	
  
  3	
  
Data	
  Processing	
  
EMG	
  signals	
  were	
  calibrated	
  by	
  subtracting	
  the	
  mean	
  of	
  the	
  raw	
  signal	
  from	
  each	
  data	
  
point.	
  Signals	
  were	
  then	
  full-­‐wave	
  rectified,	
  low-­‐pass	
  (dual-­‐pass,	
  butterworth;	
  cut-­‐off:	
  500	
  
Hz)	
   and	
   notch	
   (59-­‐61	
   Hz)	
   filtered,	
   and	
   subsequently	
   submitted	
   to	
   root	
   mean	
   squared	
  
(RMS)	
  averaging	
  with	
  a	
  window	
  length	
  of	
  300	
  ms	
  (MR3	
  Software,	
  Noraxon;	
  Figure	
  2).	
  High-­‐
speed	
   reference	
   video	
   was	
   used	
   to	
   crop	
   exercises	
   into	
   individual	
   repetitions	
   for	
   further	
  
analysis.	
  
	
  
	
  
Figure	
   2.	
   Exemplar	
   electromyography	
   signal	
   from	
   deltoid	
   during	
   six	
   repetitions	
   of	
   the	
  
hinge	
  swing	
  exercise.	
  Raw,	
  unprocessed	
  (blue)	
  and	
  processed	
  (rectified,	
  filtered,	
  averaged;	
  
red	
  overlay).	
  
	
  
Analysis	
  
Processed	
  EMG	
  signals	
  were	
  analyzed	
  using	
  a	
  custom	
  routine	
  (Matlab)	
  that	
  extracted	
  
maximal	
   amplitude	
   (mV)	
   and	
   the	
   area	
   under	
   the	
   activation	
   signal	
   (mV-­‐ms).	
   Five	
  
satisfactory	
   repetitions	
   were	
   included	
   for	
   analysis	
   for	
   each	
   exercise	
   and	
   apparatus	
  
combination.	
  Trials	
  with	
  significant	
  movement	
  artifact	
  in	
  the	
  EMG	
  signal,	
  or	
  trials	
  that	
  were	
  
incorrectly	
   performed	
   were	
   omitted	
   from	
   analysis.	
   Amplitude	
   and	
   activation	
   (i.e.,	
   area	
  
under	
  the	
  curve)	
  for	
  all	
  15	
  movement	
  conditions	
  were	
  submitted	
  to	
  a	
  repeated	
  measures	
  
analysis	
  of	
  variance	
  to	
  determine	
  the	
  within-­‐subject	
  effect	
  of	
  exercise	
  apparatus	
  on	
  muscle	
  
activation	
  (SPSS	
  20).	
  
	
  
RESULTS	
  
For	
  the	
  participants	
  analyzed	
  to-­‐date	
  (n	
  =	
  9;	
  mean	
  age:	
  39.4	
  ±	
  5.0	
  yrs),	
  ActivMotion	
  bar	
  
resulted	
  in	
  greater	
  muscle	
  activation	
  in	
  seven	
  of	
  the	
  nine	
  muscles	
  analyzed,	
  relative	
  to	
  the	
  
standard	
  bar	
  and	
  the	
  medicine	
  ball	
  (Figure	
  3;	
  activation	
  for	
  the	
  gluteus	
  medius	
  and	
  biceps	
  
femoris	
  was	
  consistent	
  across	
  apparatus).	
  Significant	
  differences	
  were	
  found	
  in	
  the	
  deltoid,	
  
latissimus	
   dorsi,	
   oblique,	
   pectoralis	
   major,	
   rectus	
   abdominus,	
   trapezius,	
   and	
   vastus	
  
medialis	
   muscles	
   (p<0.05;	
   Table	
   1).	
   Additionally,	
   ActivMotion	
   bar	
   tended	
   to	
   result	
   in	
  
greater	
   activation	
   in	
   the	
   erector	
   spinae	
   muscles,	
   relative	
   to	
   the	
   standard	
   bar	
   and	
   the	
  
medicine	
  ball	
  (p<0.10;	
  Table	
  1	
  and	
  Figure	
  3).	
  
  4	
  
	
  
Figure	
   3.	
   Schematic	
   of	
   muscles	
   with	
   increased	
   activation	
   when	
  
using	
  the	
  ActivMotion	
  bar,	
  compared	
  to	
  a	
  standard	
  fitness	
  bar	
  or	
  
medicine	
  ball.	
  
	
  
Table	
   1.	
   Statistically	
   significant	
   (p<0.05)	
   percent	
   increase	
   in	
   muscle	
   activation	
  
(active	
  time	
  ×	
  amplitude)	
  with	
  ActivMotion	
  bar,	
  relative	
  to	
  standard	
  fitness	
  bar	
  or	
  
medicine	
  ball.	
  p<0.10	
  where	
  noted	
  *.	
  
Muscle	
  
Standard	
  Bar	
  
%	
  
Medicine	
  Ball	
  
%	
  
Deltoid	
   28	
   93	
  
Latissimus	
  Dorsi	
   15	
   ⎯	
  
Pectoralis	
  Major	
   15	
   28	
  
External	
  Oblique	
   18	
   22	
  
Rectus	
  Abdominus	
   ⎯	
   13	
  
Middle	
  Trapezius	
   22	
   77	
  
Vastus	
  Medialis	
   12	
   27	
  
Erector	
  Spinae	
   21*	
   ⎯	
  
	
  
CONCLUSION	
  
When	
   controlled	
   for	
   range	
   of	
   motion,	
   static	
   weight,	
   and	
   speed	
   of	
   movement,	
   the	
  
ActivMotion	
   bar	
   elicited	
   greater	
   muscle	
   activation,	
   relative	
   to	
   a	
   standard	
   fitness	
   bar	
   or	
  
medicine	
  ball.	
  Ostensibly,	
  the	
  increase	
  in	
  muscle	
  activation	
  was	
  the	
  result	
  of	
  the	
  internal	
  
passive	
   weights,	
   which	
   generated	
   a	
   dynamic	
   moment	
   of	
   inertia,	
   thereby	
   enhancing	
   the	
  
stabilizing	
  demands	
  on	
  the	
  muscles.	
  
Deltoid
Trapezius
Latissimus
Dorsi
Pectoralis
Major
External
Oblique
Vastus
Medialis
Erector
Spinae
P < 0.05
P < 0.10
Rectus
Abdominus

Weitere ähnliche Inhalte

Was ist angesagt?

Henry et al J Sport Rehab 2010
Henry et al J Sport Rehab 2010Henry et al J Sport Rehab 2010
Henry et al J Sport Rehab 2010
Ben Henry
 

Was ist angesagt? (19)

Anthony Shield - is nmi a risk factor for hamstring strain injury
Anthony Shield - is nmi a risk factor for hamstring strain injury Anthony Shield - is nmi a risk factor for hamstring strain injury
Anthony Shield - is nmi a risk factor for hamstring strain injury
 
John Orchard - hamstrings injuries
John Orchard - hamstrings injuriesJohn Orchard - hamstrings injuries
John Orchard - hamstrings injuries
 
Handheld Dynamometers And Manual Muscle Testing
Handheld Dynamometers And Manual Muscle TestingHandheld Dynamometers And Manual Muscle Testing
Handheld Dynamometers And Manual Muscle Testing
 
Poster SIF morra_LP
Poster SIF morra_LPPoster SIF morra_LP
Poster SIF morra_LP
 
Ricard pruna - Return To Play
Ricard pruna - Return To PlayRicard pruna - Return To Play
Ricard pruna - Return To Play
 
Evidence For Manual Therapy Interventions For Lateral Elbow Pain
Evidence For Manual Therapy Interventions For Lateral Elbow PainEvidence For Manual Therapy Interventions For Lateral Elbow Pain
Evidence For Manual Therapy Interventions For Lateral Elbow Pain
 
Hipstres7 (1)
Hipstres7 (1)Hipstres7 (1)
Hipstres7 (1)
 
Transversus abdominis and obliquus internus activity during pilates exercises...
Transversus abdominis and obliquus internus activity during pilates exercises...Transversus abdominis and obliquus internus activity during pilates exercises...
Transversus abdominis and obliquus internus activity during pilates exercises...
 
Rehabilitation in spastic paresis
Rehabilitation in spastic paresisRehabilitation in spastic paresis
Rehabilitation in spastic paresis
 
Sma 2015 hamstring symposium
Sma 2015 hamstring symposiumSma 2015 hamstring symposium
Sma 2015 hamstring symposium
 
Trick movement
Trick movementTrick movement
Trick movement
 
Fabrizio Tencone - experiences in hamstrings
Fabrizio Tencone - experiences in hamstrings Fabrizio Tencone - experiences in hamstrings
Fabrizio Tencone - experiences in hamstrings
 
Henry et al J Sport Rehab 2010
Henry et al J Sport Rehab 2010Henry et al J Sport Rehab 2010
Henry et al J Sport Rehab 2010
 
Current trends in_sports_injuries_ppt
Current trends in_sports_injuries_pptCurrent trends in_sports_injuries_ppt
Current trends in_sports_injuries_ppt
 
Marivo_SIF_2016[1094]
Marivo_SIF_2016[1094]Marivo_SIF_2016[1094]
Marivo_SIF_2016[1094]
 
Crimson Publishers- The Effect of Medial Hamstring Weakness on Soft Tissue Lo...
Crimson Publishers- The Effect of Medial Hamstring Weakness on Soft Tissue Lo...Crimson Publishers- The Effect of Medial Hamstring Weakness on Soft Tissue Lo...
Crimson Publishers- The Effect of Medial Hamstring Weakness on Soft Tissue Lo...
 
miha bodytec EMS system - rapidly tone & strengthen your body
miha bodytec EMS system - rapidly tone & strengthen your bodymiha bodytec EMS system - rapidly tone & strengthen your body
miha bodytec EMS system - rapidly tone & strengthen your body
 
Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...
Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...
Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...
 
Basic concepts of Manual Muscle Testing (MMT)
Basic concepts of Manual Muscle Testing (MMT)Basic concepts of Manual Muscle Testing (MMT)
Basic concepts of Manual Muscle Testing (MMT)
 

Ähnlich wie ActivMotion Bar Study

ZMPCZM019000.11.03 EMG based evaluation & therapy concept for pelvic floor Dy...
ZMPCZM019000.11.03 EMG based evaluation & therapy concept for pelvic floor Dy...ZMPCZM019000.11.03 EMG based evaluation & therapy concept for pelvic floor Dy...
ZMPCZM019000.11.03 EMG based evaluation & therapy concept for pelvic floor Dy...
painezeeman
 
Effect of Sit To Sit And Activity On Forward Bending Test
Effect of Sit To Sit And Activity On Forward Bending TestEffect of Sit To Sit And Activity On Forward Bending Test
Effect of Sit To Sit And Activity On Forward Bending Test
Apeksha Besekar
 
최종본 295 229 2013-352.indd
최종본 295 229 2013-352.indd최종본 295 229 2013-352.indd
최종본 295 229 2013-352.indd
성현 조
 
Tahran 2020 modified posterior shoulder stretching exercises sis
Tahran 2020   modified posterior shoulder stretching exercises sisTahran 2020   modified posterior shoulder stretching exercises sis
Tahran 2020 modified posterior shoulder stretching exercises sis
OLGUINHUERTACRISTIAN
 
1.Sinclair_proof-1
1.Sinclair_proof-11.Sinclair_proof-1
1.Sinclair_proof-1
Jack Hebron
 
Schlink et al. 2021 eletromiografia muscular
Schlink et al. 2021 eletromiografia muscularSchlink et al. 2021 eletromiografia muscular
Schlink et al. 2021 eletromiografia muscular
FBIOJUNERLANFERDINI
 
Brodersen_Kinesio Tape_Finalized_Jan 2017 (54 inch version) (1)
Brodersen_Kinesio Tape_Finalized_Jan 2017 (54 inch version) (1)Brodersen_Kinesio Tape_Finalized_Jan 2017 (54 inch version) (1)
Brodersen_Kinesio Tape_Finalized_Jan 2017 (54 inch version) (1)
Josh Brodersen
 
Changes During Passive Recovery In Lower Limbs Tiredness After Strenuous Workout
Changes During Passive Recovery In Lower Limbs Tiredness After Strenuous WorkoutChanges During Passive Recovery In Lower Limbs Tiredness After Strenuous Workout
Changes During Passive Recovery In Lower Limbs Tiredness After Strenuous Workout
IOSR Journals
 
Activity_distribution_among_the_hamstring_muscles_.pdf
Activity_distribution_among_the_hamstring_muscles_.pdfActivity_distribution_among_the_hamstring_muscles_.pdf
Activity_distribution_among_the_hamstring_muscles_.pdf
FBIOJUNERLANFERDINI
 
2004 anterior cruciate ligament assisi
2004 anterior cruciate ligament assisi2004 anterior cruciate ligament assisi
2004 anterior cruciate ligament assisi
GUIDO MARIA FILIPPI
 
2004 anterior cruciate ligament assisi
2004 anterior cruciate ligament assisi2004 anterior cruciate ligament assisi
2004 anterior cruciate ligament assisi
GUIDO MARIA FILIPPI
 

Ähnlich wie ActivMotion Bar Study (20)

ZMPCZM019000.11.03 EMG based evaluation & therapy concept for pelvic floor Dy...
ZMPCZM019000.11.03 EMG based evaluation & therapy concept for pelvic floor Dy...ZMPCZM019000.11.03 EMG based evaluation & therapy concept for pelvic floor Dy...
ZMPCZM019000.11.03 EMG based evaluation & therapy concept for pelvic floor Dy...
 
Effect of Sit To Sit And Activity On Forward Bending Test
Effect of Sit To Sit And Activity On Forward Bending TestEffect of Sit To Sit And Activity On Forward Bending Test
Effect of Sit To Sit And Activity On Forward Bending Test
 
Emg glúteo medio
Emg glúteo medioEmg glúteo medio
Emg glúteo medio
 
최종본 295 229 2013-352.indd
최종본 295 229 2013-352.indd최종본 295 229 2013-352.indd
최종본 295 229 2013-352.indd
 
Slater and hart, 2017 agachamento
Slater and hart, 2017 agachamentoSlater and hart, 2017 agachamento
Slater and hart, 2017 agachamento
 
Tahran 2020 modified posterior shoulder stretching exercises sis
Tahran 2020   modified posterior shoulder stretching exercises sisTahran 2020   modified posterior shoulder stretching exercises sis
Tahran 2020 modified posterior shoulder stretching exercises sis
 
Nikos Malliaropoulos - Rehabilitation of hamstring injuries
Nikos Malliaropoulos - Rehabilitation of hamstring injuries Nikos Malliaropoulos - Rehabilitation of hamstring injuries
Nikos Malliaropoulos - Rehabilitation of hamstring injuries
 
An experimental study on scapulothoracic and glenohumeral kinematics followin...
An experimental study on scapulothoracic and glenohumeral kinematics followin...An experimental study on scapulothoracic and glenohumeral kinematics followin...
An experimental study on scapulothoracic and glenohumeral kinematics followin...
 
An experimental study on scapulothoracic and glenohumeral kinematics followin...
An experimental study on scapulothoracic and glenohumeral kinematics followin...An experimental study on scapulothoracic and glenohumeral kinematics followin...
An experimental study on scapulothoracic and glenohumeral kinematics followin...
 
Feb2013 rr-selkowitz
Feb2013 rr-selkowitzFeb2013 rr-selkowitz
Feb2013 rr-selkowitz
 
1.Sinclair_proof-1
1.Sinclair_proof-11.Sinclair_proof-1
1.Sinclair_proof-1
 
Schlink et al. 2021 eletromiografia muscular
Schlink et al. 2021 eletromiografia muscularSchlink et al. 2021 eletromiografia muscular
Schlink et al. 2021 eletromiografia muscular
 
Brodersen_Kinesio Tape_Finalized_Jan 2017 (54 inch version) (1)
Brodersen_Kinesio Tape_Finalized_Jan 2017 (54 inch version) (1)Brodersen_Kinesio Tape_Finalized_Jan 2017 (54 inch version) (1)
Brodersen_Kinesio Tape_Finalized_Jan 2017 (54 inch version) (1)
 
Changes During Passive Recovery In Lower Limbs Tiredness After Strenuous Workout
Changes During Passive Recovery In Lower Limbs Tiredness After Strenuous WorkoutChanges During Passive Recovery In Lower Limbs Tiredness After Strenuous Workout
Changes During Passive Recovery In Lower Limbs Tiredness After Strenuous Workout
 
Da silva et al. 2008 leg press
Da silva et al. 2008 leg pressDa silva et al. 2008 leg press
Da silva et al. 2008 leg press
 
Da silva et al. 2008 leg press
Da silva et al. 2008 leg pressDa silva et al. 2008 leg press
Da silva et al. 2008 leg press
 
Activity_distribution_among_the_hamstring_muscles_.pdf
Activity_distribution_among_the_hamstring_muscles_.pdfActivity_distribution_among_the_hamstring_muscles_.pdf
Activity_distribution_among_the_hamstring_muscles_.pdf
 
2004 anterior cruciate ligament assisi
2004 anterior cruciate ligament assisi2004 anterior cruciate ligament assisi
2004 anterior cruciate ligament assisi
 
2004 anterior cruciate ligament assisi
2004 anterior cruciate ligament assisi2004 anterior cruciate ligament assisi
2004 anterior cruciate ligament assisi
 
BEGOVIC ET AL. 2014
BEGOVIC ET AL. 2014BEGOVIC ET AL. 2014
BEGOVIC ET AL. 2014
 

Mehr von Greg Maurer

bioDensity and Vibration Research Review
bioDensity and Vibration Research ReviewbioDensity and Vibration Research Review
bioDensity and Vibration Research Review
Greg Maurer
 
strandstrongwhitepaper05-25-08
strandstrongwhitepaper05-25-08strandstrongwhitepaper05-25-08
strandstrongwhitepaper05-25-08
Greg Maurer
 

Mehr von Greg Maurer (20)

Prolon Fasting Mimicking Diet
Prolon Fasting Mimicking DietProlon Fasting Mimicking Diet
Prolon Fasting Mimicking Diet
 
reACT Article National Fitness Trade Journal
reACT Article National Fitness Trade JournalreACT Article National Fitness Trade Journal
reACT Article National Fitness Trade Journal
 
Heart Rate Training Guide for Personal Trainers
Heart Rate Training Guide for Personal TrainersHeart Rate Training Guide for Personal Trainers
Heart Rate Training Guide for Personal Trainers
 
ActivMotion Bar Training Manual
ActivMotion Bar Training Manual ActivMotion Bar Training Manual
ActivMotion Bar Training Manual
 
ActivMotion Bar Foundations Course Outline
ActivMotion Bar Foundations Course OutlineActivMotion Bar Foundations Course Outline
ActivMotion Bar Foundations Course Outline
 
ActivMotion Bar Training System
ActivMotion Bar Training SystemActivMotion Bar Training System
ActivMotion Bar Training System
 
Amb science slides
Amb science slidesAmb science slides
Amb science slides
 
ActivMotion Bar IHRSA 2015
ActivMotion Bar IHRSA 2015ActivMotion Bar IHRSA 2015
ActivMotion Bar IHRSA 2015
 
Trainer Guide - How to use the reACT Trainer
Trainer Guide - How to use the reACT TrainerTrainer Guide - How to use the reACT Trainer
Trainer Guide - How to use the reACT Trainer
 
bioDensity and Vibration Research Review
bioDensity and Vibration Research ReviewbioDensity and Vibration Research Review
bioDensity and Vibration Research Review
 
strandstrongwhitepaper05-25-08
strandstrongwhitepaper05-25-08strandstrongwhitepaper05-25-08
strandstrongwhitepaper05-25-08
 
Functional Isokinetic Training
Functional Isokinetic TrainingFunctional Isokinetic Training
Functional Isokinetic Training
 
Real Running - Club Running Program
Real Running - Club Running ProgramReal Running - Club Running Program
Real Running - Club Running Program
 
Lateral motion training with slideboards
Lateral motion training with slideboardsLateral motion training with slideboards
Lateral motion training with slideboards
 
bioDensity Overview
bioDensity OverviewbioDensity Overview
bioDensity Overview
 
National fitness trade journal article june 2013
National fitness trade journal article june 2013National fitness trade journal article june 2013
National fitness trade journal article june 2013
 
Lifetime Fitness reACT Press Release
Lifetime Fitness reACT Press ReleaseLifetime Fitness reACT Press Release
Lifetime Fitness reACT Press Release
 
Sproing Trainer Course
Sproing Trainer CourseSproing Trainer Course
Sproing Trainer Course
 
Fit traxx powerpoint linked in version
Fit traxx powerpoint linked in versionFit traxx powerpoint linked in version
Fit traxx powerpoint linked in version
 
Re Act Eccentric Training Course Linked In
Re Act Eccentric Training Course Linked InRe Act Eccentric Training Course Linked In
Re Act Eccentric Training Course Linked In
 

Kürzlich hochgeladen

GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
Lokesh Kothari
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
ssuser79fe74
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Lokesh Kothari
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
RohitNehra6
 

Kürzlich hochgeladen (20)

GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 

ActivMotion Bar Study

  • 1.                     INTRODUCTION   Utilizing  their  expertise  in  human  motion  analysis,  Drs.  G.  Goulet,  J.  Deneweth  and  S.   McLean,  and  S.  Kessler  of  the  Human  Performance  Innovation  Laboratory  at  the  University   of  Michigan  are  conducting  a  study  aimed  at  providing  novel  insights  into  muscle  activation   differences  when  using  a  variety  of  weighted  exercise  equipment.     METHODOLOGY   Participants  &  Instrumentation   Seventeen  active  men  and  women  aged  30-­‐50  were  recruited  to  participate  in  a  one-­‐ hour   laboratory   session.   Participants   were   instrumented   with   electromyography   (EMG)   and  inertial  (IMU)  sensors  on  the  following  muscles  and  segments  (Figure  1):   EMG   1. Middle  Deltoid   2. Latissimus  Dorsi   3. Erector  Spinae  (thoracic  and  lumbar)   4. External  Oblique   5. Pectoralis  Major   6. Rectus  Abdominus   7. Gluteus  Medius   8. Vastus  Medialis   9. Biceps  Femoris     IMU   1. Upper  thoracic   2. Lower  thoracic   3. Pelvis   4. Bilateral  upper  arm   5. Bilateral  forearm   6. Bilateral  thigh   7. Right  shank           EMG  and  IMU  placement  was  not  disturbed  for  the  entirety  of  the  data  collection  session.   Additionally,  participants  wore  a  heart  rate  monitor  to  assess  resting  and  continuous  heart   rate.     SCHOOL OF KINESIOLOGY | UNIVERSITY OF MICHIGAN HUMAN PERFORMANCE INNOVATION LAB
  • 2.   2     Figure   1.   Participants   instrumented   with   electromyography   (blue)   and   inertial   (red)   sensors.   Sensors   were   placed   on   bilateral   arms   and   legs,   and   the   back   to   monitor  muscle  activity  and  body  segment  kinematics.     Following  a  5-­‐minute  treadmill  warm-­‐up,  participants  were  familiarized  with  a  series  of   exercises  via  video  instruction.  Exercises  included:   1. Hinge,  right-­‐left  swing   2. Overhead  side-­‐bend   3. Reverse  lunge,  balance,  press   4. Sit-­‐up,  hold,  rotate   5. Steering  wheel  squat   Exercises  were  performed  with  three  apparatus:  standard  fitness  bar  (SB),  medicine  ball   (MB),  and  ActivMotion  bar  (AMB).  The  weight  of  each  apparatus  was  10  lbs  for  males  and  6   lbs   for   females.   Participants   practiced   the   exercises   with   the   apparatus   until   they   felt   comfortable.   Synchronous  EMG,  IMU,  and  high-­‐speed  video  data  were  collected  at  1,500  Hz,  200  Hz,  and   100  Hz,  respectively,  while  participants  followed  the  instructional  video  for  each  exercise   (six  repetitions  per  exercise).  In  addition  to  providing  further  instruction,  the  video  served   to  control  the  pace  of  exercise  execution.  Throughout  the  exercises,  consistency  in  range  of   motion   across   apparatus   was   ensured   using   real-­‐time   kinematics,   derived   from   IMU   output.   Participants  performed  all  exercises  with  each  apparatus,  resulting  in  15  combinations  of   movements  (five  exercises  × three  apparatus).  The  order  of  exercises  was  randomized,  and   the  order  of  apparatus  within  each  exercise  was  also  randomized  to  eliminate  fatigue  and   learning   effects.   Fatigue   effects   were   additionally   monitored   and   minimized   by   ensuring   between-­‐exercise  heart  rate  was  within  10%  of  resting  heart  rate.    
  • 3.   3   Data  Processing   EMG  signals  were  calibrated  by  subtracting  the  mean  of  the  raw  signal  from  each  data   point.  Signals  were  then  full-­‐wave  rectified,  low-­‐pass  (dual-­‐pass,  butterworth;  cut-­‐off:  500   Hz)   and   notch   (59-­‐61   Hz)   filtered,   and   subsequently   submitted   to   root   mean   squared   (RMS)  averaging  with  a  window  length  of  300  ms  (MR3  Software,  Noraxon;  Figure  2).  High-­‐ speed   reference   video   was   used   to   crop   exercises   into   individual   repetitions   for   further   analysis.       Figure   2.   Exemplar   electromyography   signal   from   deltoid   during   six   repetitions   of   the   hinge  swing  exercise.  Raw,  unprocessed  (blue)  and  processed  (rectified,  filtered,  averaged;   red  overlay).     Analysis   Processed  EMG  signals  were  analyzed  using  a  custom  routine  (Matlab)  that  extracted   maximal   amplitude   (mV)   and   the   area   under   the   activation   signal   (mV-­‐ms).   Five   satisfactory   repetitions   were   included   for   analysis   for   each   exercise   and   apparatus   combination.  Trials  with  significant  movement  artifact  in  the  EMG  signal,  or  trials  that  were   incorrectly   performed   were   omitted   from   analysis.   Amplitude   and   activation   (i.e.,   area   under  the  curve)  for  all  15  movement  conditions  were  submitted  to  a  repeated  measures   analysis  of  variance  to  determine  the  within-­‐subject  effect  of  exercise  apparatus  on  muscle   activation  (SPSS  20).     RESULTS   For  the  participants  analyzed  to-­‐date  (n  =  9;  mean  age:  39.4  ±  5.0  yrs),  ActivMotion  bar   resulted  in  greater  muscle  activation  in  seven  of  the  nine  muscles  analyzed,  relative  to  the   standard  bar  and  the  medicine  ball  (Figure  3;  activation  for  the  gluteus  medius  and  biceps   femoris  was  consistent  across  apparatus).  Significant  differences  were  found  in  the  deltoid,   latissimus   dorsi,   oblique,   pectoralis   major,   rectus   abdominus,   trapezius,   and   vastus   medialis   muscles   (p<0.05;   Table   1).   Additionally,   ActivMotion   bar   tended   to   result   in   greater   activation   in   the   erector   spinae   muscles,   relative   to   the   standard   bar   and   the   medicine  ball  (p<0.10;  Table  1  and  Figure  3).  
  • 4.   4     Figure   3.   Schematic   of   muscles   with   increased   activation   when   using  the  ActivMotion  bar,  compared  to  a  standard  fitness  bar  or   medicine  ball.     Table   1.   Statistically   significant   (p<0.05)   percent   increase   in   muscle   activation   (active  time  ×  amplitude)  with  ActivMotion  bar,  relative  to  standard  fitness  bar  or   medicine  ball.  p<0.10  where  noted  *.   Muscle   Standard  Bar   %   Medicine  Ball   %   Deltoid   28   93   Latissimus  Dorsi   15   ⎯   Pectoralis  Major   15   28   External  Oblique   18   22   Rectus  Abdominus   ⎯   13   Middle  Trapezius   22   77   Vastus  Medialis   12   27   Erector  Spinae   21*   ⎯     CONCLUSION   When   controlled   for   range   of   motion,   static   weight,   and   speed   of   movement,   the   ActivMotion   bar   elicited   greater   muscle   activation,   relative   to   a   standard   fitness   bar   or   medicine  ball.  Ostensibly,  the  increase  in  muscle  activation  was  the  result  of  the  internal   passive   weights,   which   generated   a   dynamic   moment   of   inertia,   thereby   enhancing   the   stabilizing  demands  on  the  muscles.   Deltoid Trapezius Latissimus Dorsi Pectoralis Major External Oblique Vastus Medialis Erector Spinae P < 0.05 P < 0.10 Rectus Abdominus