SlideShare ist ein Scribd-Unternehmen logo
1 von 38
Photophysics of dendrimers
Design principles for light harvesting systems
Giorgio Colombi – giorgio.colombi@studenti.unipd.it
Master student in Material Science
University of Padova [IT]
A.A. 2016/2017 - Aarhus University
Photochemistry (Prof. Peter Ogilby)
Catalysis
Supramolecular
The general picture
PHOTOPYSICS
Equilibrium
statistical
model
Propensity
matrix
model
Numerical
multiscale
approach
PROCESSING
Linear
E.T.
Nonlinear
effects
APPLICATIONS
and Devices
STRUCTURE
and
CONSTITUENTS
DENDRIMERS
1/37
Light harvesting
SINTESYS
DENDRIMERS
Today’s speach 2/37
Catalysis
Supramolecular
PHOTOPYSICS
Equilibrium
statistical
model
Propensity
matrix
model
Numerical
multiscale
approach
Linear
E.T.
Nonlinear
effects
APPLICATIONS
and Devices
Light harvesting
PROCESSING
STRUCTURE
and
CONSTITUENTS
SINTESYS
Introduction 3/37
• A wide world of categories and cases
• A photochemical prospective
• Natural antenna systems
Introduction_categories and cases 4/37
Dendrimer Dendron Dendritic Nanoparticle
Dendronic & Dendritic surface Dendronized polymer Dendriplex
Introduction_categories and cases 5/37
• Based on Metal Complexes • Based on Porphirines
• Based on Fullerenes
• Based on conjugated units
• Based on Azobenzene and Azomethine
• Based on PPV and PTs
Introduction_A photochemical prospective 6/37
• Solar cells
• Reverse photochemical cell
(Artificial Photosyntesis)
Introduction_A photochemical prospective 7/37
Introduction_The lesson from nature 9/37
• Involvement of supramolecular structure with a precise organization in the dimension of:
• SPACE: relative location of the components
• TIME: rates of competing processes
• ENERGY: excited states energies & redox potentials
Rin ∼ 1.8 nm
10/37
• Key photophysics
• Organization in space, time and energy
• Equilibrium Statistical model
• Dynamics of the energy transfer
• Recap of FGR
• Adsorption
• Foster energy transfer
• Propensity matrix model
• Numerical approach
Dendrimers for light harvesting
Photophysics_Organization in space 11/37
• C = coordination number of the core
• z = coordination number at each node
• (z-1) = branching
• g = number of generations
• n= n-th generation ∈ [1,g]
• Ω 𝑛 = 𝐶 𝑍 − 1 𝑛−1
= nodes in the nth generation
0
1
2
3
4g=
Photophysics_Organization in time & energy 12/37
Tb
3+
TIME
• Ultrafast (ps) energy transfer between generations
• Mean free passage time (MFPT, 𝜏 ) as a quality index
ENERGY
• E*(n-1) ≤ E* (n)
• …and a lot more to come! 
Eq. Statistical model 13/37
• Statistical model
• Ideal highly symmetric structure
• Thermodynamic equilibrium
• High number of generations
• No mechanism
Energy vs geometry (entropy)
𝜏 = 𝜏 (𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙𝑠, 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦, 𝑇, 𝑟𝑎𝑡𝑒𝑠)
Eq. Statistical model_Geometry vs Energy 14/37
kup
kup
kdown
E*
• Geometry (entropy) and Energy compete in defining the direction of energy transfer
• Energetic funnel
E*
n0 1 2 3 .... g
∆
𝜀
𝑈
𝑈
kout kin
• Geometrically induced bias
𝑘 𝑜𝑢𝑡
𝑘𝑖𝑛
=
𝑧 − 1 𝑘 𝑢𝑝
𝐾 𝑑𝑜𝑤𝑛
Eq. Statistical model_Statistical ensambles 15/37
Fixed
variables
Partition Function Probability distribution Bridge equation
Equilibrium
condition
Isothermal Isobaric 𝑁, 𝑇, 𝑃 𝑍 =
𝑖
𝑒−𝛽(𝐸 𝑖−𝑝𝑉 𝑖)
𝑃 =
1
𝑍
𝑒−𝛽(𝐸 𝑖−𝑝𝑉 𝑖) 𝐺 = −𝐾 𝐵T ln Z Min G
Microcanonical 𝑁, 𝑉, 𝐸 𝑍 =
𝑖
1 𝑃 =
1
𝑍
𝑆 = 𝐾 𝐵 ln 𝑍 MAX S
Canonical 𝑁, 𝑇, 𝑉 𝑍 =
𝑖
𝑒−𝛽𝐸 𝑖
𝑃 =
1
𝑍
𝑒−𝛽𝐸 𝑖 𝐹 = −𝐾 𝐵 𝑇 ln 𝑍 Min F
Gran Canonical 𝜇, 𝑇, 𝑉 𝑍 =
𝑖
𝑒−𝛽(𝐸 𝑖−𝜇𝑁 𝑖)
𝑃 =
1
𝑍
𝑒−𝛽(𝐸 𝑖−𝜇𝑁 𝑖) 𝑊 = −𝐾 𝐵 𝑇 ln 𝑍 Min W
• Fixed number of atoms in the dendrimer
• Adiabatic approximation (B.O.)
• Fixed temperature
• Eq. position of the excitation: 𝑍
𝐹 = 𝐸 − 𝑇𝑆
𝑃
min 𝐹
Eq. Statistical model_Geometry vs Energy 16/37
• The Partition Function
E*
n0 1 2 3 .... g
∆
𝜀
𝑈
𝑈
Ω 𝑛 = Ω 𝐸 𝑛 = 𝐶 𝑧 − 1 𝑛−1
= nodes in the nth generation
= 𝑒−𝛽ε +
𝑛=1
𝑔
𝐶 𝑧 − 1 𝑛−1 𝑒−𝛽(𝜀+Δ+ 𝑛−1 𝑈)
𝑍 =
𝑖
𝑒−𝛽𝐸 𝑖
𝑍 = 𝑒−𝛽ε + 𝐶𝑒−𝛽(𝜀+Δ)
𝑛=1
𝑔
[𝑒ln(𝑧−1)−𝛽𝑈 ] 𝑛−1
=
𝑛=0
𝑔
𝑒−𝛽𝐸 𝑛 Ω(𝐸 𝑛)
= 𝑒−𝛽𝐸0 Ω 𝐸0 +
𝑛=1
𝑔
𝑒−𝛽𝐸 𝑛 Ω(𝐸 𝑛)
Ω0 = 1 = central node
𝐸 𝑛= 𝜀 + Δ + 𝑛 − 1 𝑈
High Temperature:
Geometric Bias
dominates!
Eq. Statistical model_Geometry vs Energy 17/37
𝐾 𝐵 𝑇 <
𝑈
ln(𝑧 − 1)
Energy funnel
dominates!
Eq. Statistical model_ MFPT 18/37
• 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑅𝑒𝑙𝑎𝑡𝑒𝑠 𝐾𝑜𝑢𝑡 𝑎𝑛𝑑 𝑘𝑖𝑛 𝑘 𝑔→1 = 𝜏 −1
kup
kup
kdown
E*
kout kin
Eq. Statistical model_ MFPT 19/37
𝑘 𝑛→𝑛+1= 𝑘 𝑛+1→𝑛 𝑧 − 1 𝑒−𝛽𝑈
1
𝑍
𝐶 𝑧 − 1 𝑛−1
𝑒−𝛽(𝜀+Δ+ 𝑛−1 𝑈)
𝑘 𝑛→𝑛+1 =
1
𝑍
𝐶 𝑧 − 1 𝑛
𝑒−𝛽(𝜀+Δ+𝑛𝑈)
𝑘 𝑛+1→𝑛
𝑘 𝑜𝑢𝑡= 𝑘𝑖𝑛 𝑧 − 1 𝑒−𝛽𝑈
𝑃𝑛 𝑘 𝑛→𝑛+1 = 𝑃𝑛+1 𝑘 𝑛+1→𝑛 𝑃𝑛 = Ω 𝐸 𝑛 𝑃𝑖 =
1
𝑍
Ω 𝐸 𝑛 𝑒−𝛽𝐸 𝑛
• 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑅𝑒𝑙𝑎𝑡𝑒𝑠 𝐾𝑜𝑢𝑡 𝑎𝑛𝑑 𝑘𝑖𝑛
Geometric bias Energy funnel
Bias to the perifery No bias = Ramdom walk Bias to the trap
𝐾 𝐵 𝑇 >
𝑈
ln(𝑧 − 1)
𝐾 𝐵 𝑇 =
𝑈
ln(𝑧 − 1)
𝐾 𝐵 𝑇 <
𝑈
ln(𝑧 − 1)
𝑘𝑖𝑛 < 𝑘 𝑜𝑢𝑡 𝑘𝑖𝑛 = 𝑘 𝑜𝑢𝑡 𝑘𝑖𝑛 > 𝑘 𝑜𝑢𝑡
𝜏 ∝ 𝑒 𝑔
𝜏 ∝ 𝑔2 𝜏 ∝ 𝑔
Eq. Statistical model_ MFPT 20/37
• 𝑘 𝑜𝑢𝑡, 𝑘𝑖𝑛 𝑘 𝑔→1 = 𝜏 −1
𝑈
𝐾 𝐵 𝑇
MFPT
g
Dynamics of energy transfer 21/37
• Statistical model → Guidelines:
• Harvesting efficiency (up to 80%)
• Key parameters
• Working regimes
• Dynamics of E.T. → Follow the motion of the excitation
• No need to assume Equilibrium
• Propensity matrix model
• Involved photopysical mechanisms ABS
RET
• Absorption: σ 𝐷𝑒𝑛~ 𝑁 𝜎 𝑎𝑏𝑠
• Foster resonant energy transfer (RET)FGR
FGR_ABS and RET 22/37
• Time dependent 1th order perturbative theory
• Transition rate between two states under a perturbation U(t)
𝑘𝑖→𝑓 =
2 𝜋
ℏ
𝑓 𝑈 𝑡 = 0 𝑖 2δ(𝐸𝑓 − 𝐸𝑖)
ABS
RET
FGR_ABS: 𝐸𝑖 + ℎ𝑣 → 𝐸𝑓 23/37
𝑘𝑖→𝑓 =
2 𝜋
ℏ
𝑓 𝑈 𝑡 = 0 𝑖 2
δ(𝐸𝑓 − 𝐸𝑖)
𝑘𝑖→𝑓 ∝ 𝜓 𝑓 𝜇 𝜓𝑖
2
𝑣 𝑓|𝑣𝑖
2
𝑆𝑓|𝑆𝑖
2
+ 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + ⋯
𝑈(0) = Σ𝑖 𝑞𝑖 𝑉 𝑟𝑖 ≈ Σ𝑖 𝑞𝑖[𝑉 0 + 𝑟𝑖 𝛻𝑉 + ⋯ ]
≈ E Σ𝑖 𝑞𝑖 𝑟𝑖
≈ E( 𝜇 + 𝜇 𝑁)
𝑘𝑖→𝑓 ∝ 𝑓 𝜇 𝑖 2
+ 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + ⋯
FGR_RET: 𝐴 + 𝐷∗
→ 𝐴∗
+ 𝐷 24/37
𝑘𝑖→𝑓 =
2 𝜋
ℏ
𝐴∗
𝐷 𝑈 𝑡 = 0 𝐷∗
𝐴 2
δ(𝐸𝑓 − 𝐸𝑖)
𝑘𝑖→𝑓 ∝
𝑘2
𝜀𝑅6
𝐴∗
𝐷 𝜇 𝐴 𝜇 𝐷 𝐷∗
𝐴 2
𝑈 0 = 𝜇 𝐴 ∙ 𝐸 𝐷 =
𝜇 𝐴 𝜇 𝐷
4𝜋𝜀 𝑅3 cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin(𝜃2) cos 𝜑
Orientational factor k
∝
𝑘2
𝜀𝑅6
𝐷 𝜇 𝐷 𝐷∗ 2
𝐴∗
𝜇 𝐴 𝐴 2
∝ ABS rate of A
∝ Fluorescence rate of D
∝
𝜎𝐴
𝑤
∝
𝑘 𝑓,𝐷
𝑤3
For a single frequency 𝑤
Einstain coefficients
FGR_RET: 𝐴 + 𝐷∗
→ 𝐴∗
+ 𝐷 25/37
• For a single frequency 𝑤
𝑘𝑖→𝑓 ∝
𝑘2
𝜀𝑅6 𝐷 𝜇 𝐷 𝐷∗ 2
𝐴∗
𝜇 𝐴 𝐴 2
∝
𝑘2
𝜀𝑅6 𝑘 𝑓,𝐷 𝜎𝐴
1
𝑤4
∝
𝑘2
𝜀𝑅6
𝜙 𝑓,𝐷
𝜏 𝐷
𝜎𝐴
1
𝑤4
𝑘 𝑓,𝐷 =
𝜙 𝑓,𝐷
𝜏 𝐷
• RET over all the spectrum
𝑘𝑖→𝑓 ∝
𝑘2
𝜀𝑅6 𝜏 𝐷
0
∞
𝜙 𝑓,𝐷 𝑤 𝜎𝐴(𝑤)
𝑑𝑤
𝑤4 Spectral Overlap ( 𝐽𝑖→𝑓) ← Energy Funnel + Stoke shift
• Ensure the harvesting behavior
Harvesting_Spectral overlap ← Energy Funnel + Stoke Shift 26/37
= = =
• Without Energy Funnel: 𝑈 = 0
E*
n0 1 2 3 .... g
∆
𝜀
Abs
Fluo
• With Energy Funnel: 𝑈 ≠ 0
E*
n0 1 2 3 .... g
𝜀
Abs
Fluo
E*∆
𝑈
𝑈
Harvesting_Spectral overlap ← Energy Funnel + Stoke Shift 27/37
• Relative directional efficiency (𝜖)
kup
kup
kdown
kout
kin
𝑘 𝑢𝑝 ≈ 𝑘 𝑛→𝑛+1
1
∝
𝑘2
𝜀𝑅6 𝜏 𝐷,𝑛
𝐽 𝑛→𝑛+1
𝑘 𝑑𝑜𝑤𝑛 ≈ 𝑘 𝑛+1→𝑛
1
∝
𝑘2
𝜀𝑅6 𝜏 𝐷,𝑛+1
𝐽 𝑛+1→𝑛
÷
𝜖 =
𝑘 𝑑𝑜𝑤𝑛
𝑘 𝑢𝑝
=
𝜏 𝐷,𝑛
𝜏 𝐷,𝑛+1
𝐽 𝑛+1→𝑛
𝐽 𝑛→𝑛+1
Without Energy Funnel 𝜖 = 1 Random Walk
With Energy Funnel 𝜖 > 1 Biased search
Dynamics of energy transfer 28/37
Dynamics of E.T. → Follow the motion of the excitation
• Foster resonant energy transfer
• Propensity matrix model
• Introduction
• 1g Dendrimer
• 2g Dendrimer
Propensity Matrix Model (PMM) 29/37
• Propensity matrix model
• Ideal highly symmetric structure
• RET only among adjacent chromophores
• Few physically meaningful parameters
• Straightforward to complicate at will
𝑆𝑡: State vector at time 𝑡
Propensity Matrix Model (PMM) 30/37
• Time discretized in intervals Δ𝑡
• The energy migration is followed over all the dendrimer for each Δt
𝑆1
𝑆2
⋮
𝑆 𝑛
𝑆0 𝑡+Δ𝑡
=
𝐶1→1 𝐶2→1 … 𝐶0→1
𝐶1→2 𝐶2→2 … 𝐶0→2
⋮
𝐶1→𝑛
𝐶1→0
⋮
𝐶2→𝑛
𝐶2→0
𝐶𝑖→𝑗
⋯
⋯
⋮
𝐶 𝑛→𝑛
𝐶0→0
𝑆1
𝑆2
⋮
𝑆 𝑛
𝑆0 𝑡
𝑆𝑡+Δ𝑡
𝐶: Propensity matrix
Propensity 𝐶𝑖→𝑗: Probability of E.T. 𝑖 → 𝑗 in time Δ𝑡
• Operating 𝐶 n-times → Exitation flow over 𝑡, 𝑡 + 𝑛Δ𝑡
𝑆𝑡+𝑛Δ𝑡 = 𝐶 𝑛 𝑆𝑡
𝑓
𝑎𝑎𝜖−1
PMM_1g Dendrimer 31/37
𝑆1
𝑆2
𝑆3
𝑆0 𝑡+Δ𝑡
=
1 − 2𝑓 − 𝑎
𝑓
𝑓
𝑎
𝑓
1 − 2𝑓 − 𝑎
𝑓
𝑎
𝑓
𝑓
1 − 2𝑓 − 𝑎
𝑎
𝑎𝜖−1
𝑎𝜖−1
𝑎𝜖−1
1 − 3𝑎𝜖−1 − 𝛾
𝑆1
𝑆2
𝑆3
𝑆0 𝑡
𝛾
𝑎 0.2
𝜖 0
𝛾 0
𝑎 0.2
𝜖 50
𝛾 0
𝑎 0.2
𝜖 50
𝛾 0.2
PMM_2g Dendrimer 32/37
𝑓
𝑎
𝑎𝜖−1
𝛾
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6
𝑆7
𝑆8
𝑆9
𝑆0 𝑡+Δ𝑡
=
1 − 2𝑓 − 𝑎
𝑓
0
0
0
𝑓
𝑎
0
0
0
⋯
𝑓
0
0
0
𝑓
1 − 2𝑓 − 𝑎
0
0
𝑎
0
𝑎𝜖−1
𝑎𝜖−1
0
0
0
0
1 − 2𝑓 − 𝑎 − 2 𝑎𝜖−1
𝑓
𝑓
𝑎
⋯
0
0
0
0
𝑎𝜖−1
𝑎𝜖−1
𝑓
𝑓
1 − 2𝑓 − 𝑎 − 2 𝑎𝜖−1
𝑎
0
0
0
0
0
0
𝑎𝜖−1
𝑎𝜖−1
𝑎𝜖−1
1 − 3𝑎𝜖−1
− 𝛾
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6
𝑆7
𝑆8
𝑆9
𝑆0 𝑡
G2 G1 Trap
PMM_2g Dendrimer 33/37
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6
𝑆7
𝑆8
𝑆9
𝑆0 𝑡+Δ𝑡
=
1 − 2𝑓2 − 𝑎21
𝑓2
0
0
0
𝑓2
𝑎21
0
0
0
⋯
𝑓2
0
0
0
𝑓2
1 − 2𝑓2 − 𝑎21
0
0
𝑎21
0
𝑎21 𝜖21
−1
𝑎21 𝜖21
−1
0
0
0
0
1 − 2𝑓1 − 𝑎10 − 2𝑎21 𝜖21
−1
𝑓1
𝑓1
𝑎10
⋯
0
0
0
0
𝑎21 𝜖21
−1
𝑎21 𝜖21
−1
𝑓1
𝑓1
1 − 2𝑓1 − 𝑎10 − 2𝑎21 𝜖21
−1
𝑎10
0
0
0
0
0
0
𝑎10 𝜖10
−1
𝑎10 𝜖10
−1
𝑎10 𝜖10
−1
1 − 3𝑎10 𝜖10
−1
− 𝛾
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6
𝑆7
𝑆8
𝑆9
𝑆0 𝑡
G2 G1 Trap
Propensity Matrix Model (PMM) 34/37
• FAILS for:
• Large systems
• Long linkers
• Soft linkers
• Low steric hindrance
• Highly symmetric 𝐶
• 𝑘 𝑅𝐸𝑇,𝑛 ; 𝜖 𝑛 , 𝛾
• Propensity matrix model
• Ideal highly symmetric structure
• RET only among adjacent chromophores
• 3D Folding and geometrical distortion
Dynamics of energy transfer 35/37
PHOTOPYSICS
Equilibrium
statistical
model
Propensity
matrix
model
Numerical
multiscale
approach
Linear
E.T.
• Fundamental understanding
• Explore key parameters
• Design principles
Address the specific dendrimer
• Realism
• Time, money, effort, skills…
Numerical approach 36/37
Single
Cromophore
Dendrimer
DFT
• Ψ𝑞 → 𝜇 𝑞
• E 𝑞
MC
MD
Semiempirical CG
• Structure
• Ψ𝑞 𝑡0 𝑖
Coarse grained
graph
• 𝐻 𝑑𝑑(t)
Q.M. Propagator
algoritm
Ψi 𝑡 = Ψi 𝑡0 𝑒
−
𝑖
ℏ
𝐻 𝑑𝑑(t) 𝑡
𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑛) ∝ Σ𝑖∈𝑛 Ψi 𝑡 2
Ψ𝑔𝑠 Ψ𝑒𝑥
≈ Ψi 𝑡0
1 −
1
2
𝑖 𝐻 𝑑𝑑Δ𝑡
1 +
1
2 𝑖𝐻 𝑑𝑑Δ𝑡
Non Linear effects 37/37
• Dendrimer structure → Exceptoinal 𝜎 𝑇𝑃𝐴
• Direct TPA
∝ 𝑁
• Cooperative pooling
∝ 𝑁2
• Accretive pooling
𝑧 > 4
𝑁
RET
Bibliography
• Balzani et al., Photochemical convertion of solar energy, ChemSusChem 2008, 1, 26 –58
• Balzani et al., Harvesting sunlight by artificial supramolecular antennae, Solar Energy Materials and Solar Cells 38 (J995)
159-173
• Balzani et al., Designing light harvesting antennas by luminescent dendrimers, NewJ. Chem., 2011, 35
• Balzani et al., Forward (singlet–singlet) and backward (triplet–triplet) energy transfer in a dendrimer with peripheral
naphthalene units anda benzophenone core, Photochem. Photobiol. Sci. , 2004, 898-905
• Scholes et al., Lessons from nature about solar light harvesting, Nature chemistry 2011, 3
• Scholes, Andrews, Resonance energy transfer: Beyond the limits, Laser Photonics Rev. 5, 114–123 (2011)
• Klafter et al., Geometric versus Energetic Competition in Light Harvesting by Dendrimers, J. Phys. Chem. B 1998, 102,
1662-1664
• Klafter et al., Dendrimers as Controlled Artificial Energy Antennae, J. Am. Chem. Soc. 1997, 119, 6197-6198
• Astuc et al., Dendrimers designed for functions, Chem. Rev. 2010, 110, 1857–1959
• Andrews, Energy flow in dendrimers: An adjacency matrix representation, Chemical Physics Letters 433 (2006) 239–243
• Andrews, Light harvesting in dendrimer materials: Designer photophysics and electrodynamics, Journal of Materials
Research 2012 , 27(4), pp. 627–638
• Andrews et al., Development of the energy flow in light-harvesting dendrimers, The Journal of Chemical Physics
127,2007
• Press, The Art of Scientific Computing, second edition
• Mansfield et Klushin. Monte Carlo Studies of Dendrimer Macromolecules, Macromolecules 1993, 26, 4262-4268

Weitere ähnliche Inhalte

Was ist angesagt?

SIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase TransitionSIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase Transition
Ha Phuong
 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
foxtrot jp R
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - III
tushardatta
 
IB SL Trigonometric functions
IB SL Trigonometric functionsIB SL Trigonometric functions
IB SL Trigonometric functions
estelav
 

Was ist angesagt? (20)

Signals and systems-3
Signals and systems-3Signals and systems-3
Signals and systems-3
 
Signals and systems-4
Signals and systems-4Signals and systems-4
Signals and systems-4
 
Signals and systems-5
Signals and systems-5Signals and systems-5
Signals and systems-5
 
Eh4 energy harvesting due to random excitations and optimal design
Eh4   energy harvesting due to random excitations and optimal designEh4   energy harvesting due to random excitations and optimal design
Eh4 energy harvesting due to random excitations and optimal design
 
maxent-2016
maxent-2016maxent-2016
maxent-2016
 
Multi degree of freedom systems
Multi degree of freedom systemsMulti degree of freedom systems
Multi degree of freedom systems
 
SIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase TransitionSIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase Transition
 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - III
 
Cij strain 15%
Cij strain 15%Cij strain 15%
Cij strain 15%
 
Base Excited Systems
Base Excited SystemsBase Excited Systems
Base Excited Systems
 
Local Optimal Polarization of Piezoelectric Material
Local Optimal Polarization of Piezoelectric MaterialLocal Optimal Polarization of Piezoelectric Material
Local Optimal Polarization of Piezoelectric Material
 
A Comparative Study of Acoustic Echo Cancellation Algorithms in Sparse Impuls...
A Comparative Study of Acoustic Echo Cancellation Algorithms in Sparse Impuls...A Comparative Study of Acoustic Echo Cancellation Algorithms in Sparse Impuls...
A Comparative Study of Acoustic Echo Cancellation Algorithms in Sparse Impuls...
 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2
 
Summerp62016update3 slideshare sqd
Summerp62016update3 slideshare   sqdSummerp62016update3 slideshare   sqd
Summerp62016update3 slideshare sqd
 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqd
 
IB SL Trigonometric functions
IB SL Trigonometric functionsIB SL Trigonometric functions
IB SL Trigonometric functions
 
EH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingEH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvesting
 
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOKME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
 
H04525159
H04525159H04525159
H04525159
 

Ähnlich wie Photophysics of dendrimers

Euler lagrange equations of motion mit-holonomic constraints_lecture7
Euler lagrange equations of motion  mit-holonomic  constraints_lecture7Euler lagrange equations of motion  mit-holonomic  constraints_lecture7
Euler lagrange equations of motion mit-holonomic constraints_lecture7
JOHN OBIDI
 
Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)
Thatchaphol Saranurak
 

Ähnlich wie Photophysics of dendrimers (20)

Opto-Mechanical accelerometer sensor (FBG)
Opto-Mechanical accelerometer sensor (FBG)Opto-Mechanical accelerometer sensor (FBG)
Opto-Mechanical accelerometer sensor (FBG)
 
Euler lagrange equations of motion mit-holonomic constraints_lecture7
Euler lagrange equations of motion  mit-holonomic  constraints_lecture7Euler lagrange equations of motion  mit-holonomic  constraints_lecture7
Euler lagrange equations of motion mit-holonomic constraints_lecture7
 
Isoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationIsoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentation
 
document(1).pdf
document(1).pdfdocument(1).pdf
document(1).pdf
 
Chemical Bonding
Chemical BondingChemical Bonding
Chemical Bonding
 
Optimization of positive linear systems via geometric programming
Optimization of positive linear systems via geometric programmingOptimization of positive linear systems via geometric programming
Optimization of positive linear systems via geometric programming
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdf
 
Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)
 
Direct solution of sparse network equations by optimally ordered triangular f...
Direct solution of sparse network equations by optimally ordered triangular f...Direct solution of sparse network equations by optimally ordered triangular f...
Direct solution of sparse network equations by optimally ordered triangular f...
 
CAMSAP19
CAMSAP19CAMSAP19
CAMSAP19
 
Av 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background MaterialAv 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background Material
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Mathematics Colloquium, UCSC
Mathematics Colloquium, UCSCMathematics Colloquium, UCSC
Mathematics Colloquium, UCSC
 
Elements of Statistical Learning 読み会 第2章
Elements of Statistical Learning 読み会 第2章Elements of Statistical Learning 読み会 第2章
Elements of Statistical Learning 読み会 第2章
 
Summary of MAST
Summary of MASTSummary of MAST
Summary of MAST
 
Linear regression, costs & gradient descent
Linear regression, costs & gradient descentLinear regression, costs & gradient descent
Linear regression, costs & gradient descent
 
Average Sensitivity of Graph Algorithms
Average Sensitivity of Graph AlgorithmsAverage Sensitivity of Graph Algorithms
Average Sensitivity of Graph Algorithms
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
 
Dipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfDipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdf
 
Vibration Isolation of a LEGO® plate
Vibration Isolation of a LEGO® plateVibration Isolation of a LEGO® plate
Vibration Isolation of a LEGO® plate
 

Kürzlich hochgeladen

Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
Sérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Sérgio Sacani
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 

Kürzlich hochgeladen (20)

Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 

Photophysics of dendrimers

  • 1. Photophysics of dendrimers Design principles for light harvesting systems Giorgio Colombi – giorgio.colombi@studenti.unipd.it Master student in Material Science University of Padova [IT] A.A. 2016/2017 - Aarhus University Photochemistry (Prof. Peter Ogilby)
  • 4. Introduction 3/37 • A wide world of categories and cases • A photochemical prospective • Natural antenna systems
  • 5. Introduction_categories and cases 4/37 Dendrimer Dendron Dendritic Nanoparticle Dendronic & Dendritic surface Dendronized polymer Dendriplex
  • 6. Introduction_categories and cases 5/37 • Based on Metal Complexes • Based on Porphirines • Based on Fullerenes • Based on conjugated units • Based on Azobenzene and Azomethine • Based on PPV and PTs
  • 7. Introduction_A photochemical prospective 6/37 • Solar cells • Reverse photochemical cell (Artificial Photosyntesis)
  • 9. Introduction_The lesson from nature 9/37 • Involvement of supramolecular structure with a precise organization in the dimension of: • SPACE: relative location of the components • TIME: rates of competing processes • ENERGY: excited states energies & redox potentials Rin ∼ 1.8 nm
  • 10. 10/37 • Key photophysics • Organization in space, time and energy • Equilibrium Statistical model • Dynamics of the energy transfer • Recap of FGR • Adsorption • Foster energy transfer • Propensity matrix model • Numerical approach Dendrimers for light harvesting
  • 11. Photophysics_Organization in space 11/37 • C = coordination number of the core • z = coordination number at each node • (z-1) = branching • g = number of generations • n= n-th generation ∈ [1,g] • Ω 𝑛 = 𝐶 𝑍 − 1 𝑛−1 = nodes in the nth generation 0 1 2 3 4g=
  • 12. Photophysics_Organization in time & energy 12/37 Tb 3+ TIME • Ultrafast (ps) energy transfer between generations • Mean free passage time (MFPT, 𝜏 ) as a quality index ENERGY • E*(n-1) ≤ E* (n) • …and a lot more to come! 
  • 13. Eq. Statistical model 13/37 • Statistical model • Ideal highly symmetric structure • Thermodynamic equilibrium • High number of generations • No mechanism Energy vs geometry (entropy) 𝜏 = 𝜏 (𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙𝑠, 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦, 𝑇, 𝑟𝑎𝑡𝑒𝑠)
  • 14. Eq. Statistical model_Geometry vs Energy 14/37 kup kup kdown E* • Geometry (entropy) and Energy compete in defining the direction of energy transfer • Energetic funnel E* n0 1 2 3 .... g ∆ 𝜀 𝑈 𝑈 kout kin • Geometrically induced bias 𝑘 𝑜𝑢𝑡 𝑘𝑖𝑛 = 𝑧 − 1 𝑘 𝑢𝑝 𝐾 𝑑𝑜𝑤𝑛
  • 15. Eq. Statistical model_Statistical ensambles 15/37 Fixed variables Partition Function Probability distribution Bridge equation Equilibrium condition Isothermal Isobaric 𝑁, 𝑇, 𝑃 𝑍 = 𝑖 𝑒−𝛽(𝐸 𝑖−𝑝𝑉 𝑖) 𝑃 = 1 𝑍 𝑒−𝛽(𝐸 𝑖−𝑝𝑉 𝑖) 𝐺 = −𝐾 𝐵T ln Z Min G Microcanonical 𝑁, 𝑉, 𝐸 𝑍 = 𝑖 1 𝑃 = 1 𝑍 𝑆 = 𝐾 𝐵 ln 𝑍 MAX S Canonical 𝑁, 𝑇, 𝑉 𝑍 = 𝑖 𝑒−𝛽𝐸 𝑖 𝑃 = 1 𝑍 𝑒−𝛽𝐸 𝑖 𝐹 = −𝐾 𝐵 𝑇 ln 𝑍 Min F Gran Canonical 𝜇, 𝑇, 𝑉 𝑍 = 𝑖 𝑒−𝛽(𝐸 𝑖−𝜇𝑁 𝑖) 𝑃 = 1 𝑍 𝑒−𝛽(𝐸 𝑖−𝜇𝑁 𝑖) 𝑊 = −𝐾 𝐵 𝑇 ln 𝑍 Min W • Fixed number of atoms in the dendrimer • Adiabatic approximation (B.O.) • Fixed temperature • Eq. position of the excitation: 𝑍 𝐹 = 𝐸 − 𝑇𝑆 𝑃 min 𝐹
  • 16. Eq. Statistical model_Geometry vs Energy 16/37 • The Partition Function E* n0 1 2 3 .... g ∆ 𝜀 𝑈 𝑈 Ω 𝑛 = Ω 𝐸 𝑛 = 𝐶 𝑧 − 1 𝑛−1 = nodes in the nth generation = 𝑒−𝛽ε + 𝑛=1 𝑔 𝐶 𝑧 − 1 𝑛−1 𝑒−𝛽(𝜀+Δ+ 𝑛−1 𝑈) 𝑍 = 𝑖 𝑒−𝛽𝐸 𝑖 𝑍 = 𝑒−𝛽ε + 𝐶𝑒−𝛽(𝜀+Δ) 𝑛=1 𝑔 [𝑒ln(𝑧−1)−𝛽𝑈 ] 𝑛−1 = 𝑛=0 𝑔 𝑒−𝛽𝐸 𝑛 Ω(𝐸 𝑛) = 𝑒−𝛽𝐸0 Ω 𝐸0 + 𝑛=1 𝑔 𝑒−𝛽𝐸 𝑛 Ω(𝐸 𝑛) Ω0 = 1 = central node 𝐸 𝑛= 𝜀 + Δ + 𝑛 − 1 𝑈
  • 17. High Temperature: Geometric Bias dominates! Eq. Statistical model_Geometry vs Energy 17/37 𝐾 𝐵 𝑇 < 𝑈 ln(𝑧 − 1) Energy funnel dominates!
  • 18. Eq. Statistical model_ MFPT 18/37 • 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑅𝑒𝑙𝑎𝑡𝑒𝑠 𝐾𝑜𝑢𝑡 𝑎𝑛𝑑 𝑘𝑖𝑛 𝑘 𝑔→1 = 𝜏 −1 kup kup kdown E* kout kin
  • 19. Eq. Statistical model_ MFPT 19/37 𝑘 𝑛→𝑛+1= 𝑘 𝑛+1→𝑛 𝑧 − 1 𝑒−𝛽𝑈 1 𝑍 𝐶 𝑧 − 1 𝑛−1 𝑒−𝛽(𝜀+Δ+ 𝑛−1 𝑈) 𝑘 𝑛→𝑛+1 = 1 𝑍 𝐶 𝑧 − 1 𝑛 𝑒−𝛽(𝜀+Δ+𝑛𝑈) 𝑘 𝑛+1→𝑛 𝑘 𝑜𝑢𝑡= 𝑘𝑖𝑛 𝑧 − 1 𝑒−𝛽𝑈 𝑃𝑛 𝑘 𝑛→𝑛+1 = 𝑃𝑛+1 𝑘 𝑛+1→𝑛 𝑃𝑛 = Ω 𝐸 𝑛 𝑃𝑖 = 1 𝑍 Ω 𝐸 𝑛 𝑒−𝛽𝐸 𝑛 • 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑅𝑒𝑙𝑎𝑡𝑒𝑠 𝐾𝑜𝑢𝑡 𝑎𝑛𝑑 𝑘𝑖𝑛 Geometric bias Energy funnel
  • 20. Bias to the perifery No bias = Ramdom walk Bias to the trap 𝐾 𝐵 𝑇 > 𝑈 ln(𝑧 − 1) 𝐾 𝐵 𝑇 = 𝑈 ln(𝑧 − 1) 𝐾 𝐵 𝑇 < 𝑈 ln(𝑧 − 1) 𝑘𝑖𝑛 < 𝑘 𝑜𝑢𝑡 𝑘𝑖𝑛 = 𝑘 𝑜𝑢𝑡 𝑘𝑖𝑛 > 𝑘 𝑜𝑢𝑡 𝜏 ∝ 𝑒 𝑔 𝜏 ∝ 𝑔2 𝜏 ∝ 𝑔 Eq. Statistical model_ MFPT 20/37 • 𝑘 𝑜𝑢𝑡, 𝑘𝑖𝑛 𝑘 𝑔→1 = 𝜏 −1 𝑈 𝐾 𝐵 𝑇 MFPT g
  • 21. Dynamics of energy transfer 21/37 • Statistical model → Guidelines: • Harvesting efficiency (up to 80%) • Key parameters • Working regimes • Dynamics of E.T. → Follow the motion of the excitation • No need to assume Equilibrium • Propensity matrix model • Involved photopysical mechanisms ABS RET • Absorption: σ 𝐷𝑒𝑛~ 𝑁 𝜎 𝑎𝑏𝑠 • Foster resonant energy transfer (RET)FGR
  • 22. FGR_ABS and RET 22/37 • Time dependent 1th order perturbative theory • Transition rate between two states under a perturbation U(t) 𝑘𝑖→𝑓 = 2 𝜋 ℏ 𝑓 𝑈 𝑡 = 0 𝑖 2δ(𝐸𝑓 − 𝐸𝑖) ABS RET
  • 23. FGR_ABS: 𝐸𝑖 + ℎ𝑣 → 𝐸𝑓 23/37 𝑘𝑖→𝑓 = 2 𝜋 ℏ 𝑓 𝑈 𝑡 = 0 𝑖 2 δ(𝐸𝑓 − 𝐸𝑖) 𝑘𝑖→𝑓 ∝ 𝜓 𝑓 𝜇 𝜓𝑖 2 𝑣 𝑓|𝑣𝑖 2 𝑆𝑓|𝑆𝑖 2 + 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + ⋯ 𝑈(0) = Σ𝑖 𝑞𝑖 𝑉 𝑟𝑖 ≈ Σ𝑖 𝑞𝑖[𝑉 0 + 𝑟𝑖 𝛻𝑉 + ⋯ ] ≈ E Σ𝑖 𝑞𝑖 𝑟𝑖 ≈ E( 𝜇 + 𝜇 𝑁) 𝑘𝑖→𝑓 ∝ 𝑓 𝜇 𝑖 2 + 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + ⋯
  • 24. FGR_RET: 𝐴 + 𝐷∗ → 𝐴∗ + 𝐷 24/37 𝑘𝑖→𝑓 = 2 𝜋 ℏ 𝐴∗ 𝐷 𝑈 𝑡 = 0 𝐷∗ 𝐴 2 δ(𝐸𝑓 − 𝐸𝑖) 𝑘𝑖→𝑓 ∝ 𝑘2 𝜀𝑅6 𝐴∗ 𝐷 𝜇 𝐴 𝜇 𝐷 𝐷∗ 𝐴 2 𝑈 0 = 𝜇 𝐴 ∙ 𝐸 𝐷 = 𝜇 𝐴 𝜇 𝐷 4𝜋𝜀 𝑅3 cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin(𝜃2) cos 𝜑 Orientational factor k ∝ 𝑘2 𝜀𝑅6 𝐷 𝜇 𝐷 𝐷∗ 2 𝐴∗ 𝜇 𝐴 𝐴 2 ∝ ABS rate of A ∝ Fluorescence rate of D ∝ 𝜎𝐴 𝑤 ∝ 𝑘 𝑓,𝐷 𝑤3 For a single frequency 𝑤 Einstain coefficients
  • 25. FGR_RET: 𝐴 + 𝐷∗ → 𝐴∗ + 𝐷 25/37 • For a single frequency 𝑤 𝑘𝑖→𝑓 ∝ 𝑘2 𝜀𝑅6 𝐷 𝜇 𝐷 𝐷∗ 2 𝐴∗ 𝜇 𝐴 𝐴 2 ∝ 𝑘2 𝜀𝑅6 𝑘 𝑓,𝐷 𝜎𝐴 1 𝑤4 ∝ 𝑘2 𝜀𝑅6 𝜙 𝑓,𝐷 𝜏 𝐷 𝜎𝐴 1 𝑤4 𝑘 𝑓,𝐷 = 𝜙 𝑓,𝐷 𝜏 𝐷 • RET over all the spectrum 𝑘𝑖→𝑓 ∝ 𝑘2 𝜀𝑅6 𝜏 𝐷 0 ∞ 𝜙 𝑓,𝐷 𝑤 𝜎𝐴(𝑤) 𝑑𝑤 𝑤4 Spectral Overlap ( 𝐽𝑖→𝑓) ← Energy Funnel + Stoke shift • Ensure the harvesting behavior
  • 26. Harvesting_Spectral overlap ← Energy Funnel + Stoke Shift 26/37 = = = • Without Energy Funnel: 𝑈 = 0 E* n0 1 2 3 .... g ∆ 𝜀 Abs Fluo • With Energy Funnel: 𝑈 ≠ 0 E* n0 1 2 3 .... g 𝜀 Abs Fluo E*∆ 𝑈 𝑈
  • 27. Harvesting_Spectral overlap ← Energy Funnel + Stoke Shift 27/37 • Relative directional efficiency (𝜖) kup kup kdown kout kin 𝑘 𝑢𝑝 ≈ 𝑘 𝑛→𝑛+1 1 ∝ 𝑘2 𝜀𝑅6 𝜏 𝐷,𝑛 𝐽 𝑛→𝑛+1 𝑘 𝑑𝑜𝑤𝑛 ≈ 𝑘 𝑛+1→𝑛 1 ∝ 𝑘2 𝜀𝑅6 𝜏 𝐷,𝑛+1 𝐽 𝑛+1→𝑛 ÷ 𝜖 = 𝑘 𝑑𝑜𝑤𝑛 𝑘 𝑢𝑝 = 𝜏 𝐷,𝑛 𝜏 𝐷,𝑛+1 𝐽 𝑛+1→𝑛 𝐽 𝑛→𝑛+1 Without Energy Funnel 𝜖 = 1 Random Walk With Energy Funnel 𝜖 > 1 Biased search
  • 28. Dynamics of energy transfer 28/37 Dynamics of E.T. → Follow the motion of the excitation • Foster resonant energy transfer • Propensity matrix model • Introduction • 1g Dendrimer • 2g Dendrimer
  • 29. Propensity Matrix Model (PMM) 29/37 • Propensity matrix model • Ideal highly symmetric structure • RET only among adjacent chromophores • Few physically meaningful parameters • Straightforward to complicate at will
  • 30. 𝑆𝑡: State vector at time 𝑡 Propensity Matrix Model (PMM) 30/37 • Time discretized in intervals Δ𝑡 • The energy migration is followed over all the dendrimer for each Δt 𝑆1 𝑆2 ⋮ 𝑆 𝑛 𝑆0 𝑡+Δ𝑡 = 𝐶1→1 𝐶2→1 … 𝐶0→1 𝐶1→2 𝐶2→2 … 𝐶0→2 ⋮ 𝐶1→𝑛 𝐶1→0 ⋮ 𝐶2→𝑛 𝐶2→0 𝐶𝑖→𝑗 ⋯ ⋯ ⋮ 𝐶 𝑛→𝑛 𝐶0→0 𝑆1 𝑆2 ⋮ 𝑆 𝑛 𝑆0 𝑡 𝑆𝑡+Δ𝑡 𝐶: Propensity matrix Propensity 𝐶𝑖→𝑗: Probability of E.T. 𝑖 → 𝑗 in time Δ𝑡 • Operating 𝐶 n-times → Exitation flow over 𝑡, 𝑡 + 𝑛Δ𝑡 𝑆𝑡+𝑛Δ𝑡 = 𝐶 𝑛 𝑆𝑡
  • 31. 𝑓 𝑎𝑎𝜖−1 PMM_1g Dendrimer 31/37 𝑆1 𝑆2 𝑆3 𝑆0 𝑡+Δ𝑡 = 1 − 2𝑓 − 𝑎 𝑓 𝑓 𝑎 𝑓 1 − 2𝑓 − 𝑎 𝑓 𝑎 𝑓 𝑓 1 − 2𝑓 − 𝑎 𝑎 𝑎𝜖−1 𝑎𝜖−1 𝑎𝜖−1 1 − 3𝑎𝜖−1 − 𝛾 𝑆1 𝑆2 𝑆3 𝑆0 𝑡 𝛾 𝑎 0.2 𝜖 0 𝛾 0 𝑎 0.2 𝜖 50 𝛾 0 𝑎 0.2 𝜖 50 𝛾 0.2
  • 32. PMM_2g Dendrimer 32/37 𝑓 𝑎 𝑎𝜖−1 𝛾 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆0 𝑡+Δ𝑡 = 1 − 2𝑓 − 𝑎 𝑓 0 0 0 𝑓 𝑎 0 0 0 ⋯ 𝑓 0 0 0 𝑓 1 − 2𝑓 − 𝑎 0 0 𝑎 0 𝑎𝜖−1 𝑎𝜖−1 0 0 0 0 1 − 2𝑓 − 𝑎 − 2 𝑎𝜖−1 𝑓 𝑓 𝑎 ⋯ 0 0 0 0 𝑎𝜖−1 𝑎𝜖−1 𝑓 𝑓 1 − 2𝑓 − 𝑎 − 2 𝑎𝜖−1 𝑎 0 0 0 0 0 0 𝑎𝜖−1 𝑎𝜖−1 𝑎𝜖−1 1 − 3𝑎𝜖−1 − 𝛾 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆0 𝑡 G2 G1 Trap
  • 33. PMM_2g Dendrimer 33/37 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆0 𝑡+Δ𝑡 = 1 − 2𝑓2 − 𝑎21 𝑓2 0 0 0 𝑓2 𝑎21 0 0 0 ⋯ 𝑓2 0 0 0 𝑓2 1 − 2𝑓2 − 𝑎21 0 0 𝑎21 0 𝑎21 𝜖21 −1 𝑎21 𝜖21 −1 0 0 0 0 1 − 2𝑓1 − 𝑎10 − 2𝑎21 𝜖21 −1 𝑓1 𝑓1 𝑎10 ⋯ 0 0 0 0 𝑎21 𝜖21 −1 𝑎21 𝜖21 −1 𝑓1 𝑓1 1 − 2𝑓1 − 𝑎10 − 2𝑎21 𝜖21 −1 𝑎10 0 0 0 0 0 0 𝑎10 𝜖10 −1 𝑎10 𝜖10 −1 𝑎10 𝜖10 −1 1 − 3𝑎10 𝜖10 −1 − 𝛾 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆0 𝑡 G2 G1 Trap
  • 34. Propensity Matrix Model (PMM) 34/37 • FAILS for: • Large systems • Long linkers • Soft linkers • Low steric hindrance • Highly symmetric 𝐶 • 𝑘 𝑅𝐸𝑇,𝑛 ; 𝜖 𝑛 , 𝛾 • Propensity matrix model • Ideal highly symmetric structure • RET only among adjacent chromophores • 3D Folding and geometrical distortion
  • 35. Dynamics of energy transfer 35/37 PHOTOPYSICS Equilibrium statistical model Propensity matrix model Numerical multiscale approach Linear E.T. • Fundamental understanding • Explore key parameters • Design principles Address the specific dendrimer • Realism • Time, money, effort, skills…
  • 36. Numerical approach 36/37 Single Cromophore Dendrimer DFT • Ψ𝑞 → 𝜇 𝑞 • E 𝑞 MC MD Semiempirical CG • Structure • Ψ𝑞 𝑡0 𝑖 Coarse grained graph • 𝐻 𝑑𝑑(t) Q.M. Propagator algoritm Ψi 𝑡 = Ψi 𝑡0 𝑒 − 𝑖 ℏ 𝐻 𝑑𝑑(t) 𝑡 𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑛) ∝ Σ𝑖∈𝑛 Ψi 𝑡 2 Ψ𝑔𝑠 Ψ𝑒𝑥 ≈ Ψi 𝑡0 1 − 1 2 𝑖 𝐻 𝑑𝑑Δ𝑡 1 + 1 2 𝑖𝐻 𝑑𝑑Δ𝑡
  • 37. Non Linear effects 37/37 • Dendrimer structure → Exceptoinal 𝜎 𝑇𝑃𝐴 • Direct TPA ∝ 𝑁 • Cooperative pooling ∝ 𝑁2 • Accretive pooling 𝑧 > 4 𝑁 RET
  • 38. Bibliography • Balzani et al., Photochemical convertion of solar energy, ChemSusChem 2008, 1, 26 –58 • Balzani et al., Harvesting sunlight by artificial supramolecular antennae, Solar Energy Materials and Solar Cells 38 (J995) 159-173 • Balzani et al., Designing light harvesting antennas by luminescent dendrimers, NewJ. Chem., 2011, 35 • Balzani et al., Forward (singlet–singlet) and backward (triplet–triplet) energy transfer in a dendrimer with peripheral naphthalene units anda benzophenone core, Photochem. Photobiol. Sci. , 2004, 898-905 • Scholes et al., Lessons from nature about solar light harvesting, Nature chemistry 2011, 3 • Scholes, Andrews, Resonance energy transfer: Beyond the limits, Laser Photonics Rev. 5, 114–123 (2011) • Klafter et al., Geometric versus Energetic Competition in Light Harvesting by Dendrimers, J. Phys. Chem. B 1998, 102, 1662-1664 • Klafter et al., Dendrimers as Controlled Artificial Energy Antennae, J. Am. Chem. Soc. 1997, 119, 6197-6198 • Astuc et al., Dendrimers designed for functions, Chem. Rev. 2010, 110, 1857–1959 • Andrews, Energy flow in dendrimers: An adjacency matrix representation, Chemical Physics Letters 433 (2006) 239–243 • Andrews, Light harvesting in dendrimer materials: Designer photophysics and electrodynamics, Journal of Materials Research 2012 , 27(4), pp. 627–638 • Andrews et al., Development of the energy flow in light-harvesting dendrimers, The Journal of Chemical Physics 127,2007 • Press, The Art of Scientific Computing, second edition • Mansfield et Klushin. Monte Carlo Studies of Dendrimer Macromolecules, Macromolecules 1993, 26, 4262-4268

Hinweis der Redaktion

  1. General picture Structure as a central point Topic -> photochem In particular, keeping LH in mind
  2. go through structure <-> ET General level whitout accounting for specific constituents Equilibrium -> SM Dynamics -> PMM Finally a taste of a complete numerical study