SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
Simple Energy Balance Climate Models:
Literature Review and Analytic Techniques
Gerard Trimberger
due: March 10th, 2016
One of the simplest types of climate models are the energy balance models,
similar to the one created by M.I. Budyko in 1969 [2]. These types of models
attempt to predict the latitudinal temperature distribution, based on the idea
that the energy the Earth receives from the Suns radiation must balance the
radiation the earth is losing to space by reemission at its temperature T. They
also include a concept, known as the albedo effect, which takes into account
the reflection of the solar radiation off of the surface due to clouds, ice, snow,
etc. The ice-albedo feedback mechanism is of particular interest to climate
scientists because it serves to amplify any relatively small changes in solar ra-
diation. [13]
Problem Description
The issue of climate change is a widely debated topic that often arises in fields outside of the
scientific community. Most people accept the notion that the Earths climate is ever-changing,
and goes through very specific periods of transitory behavior. The most important question that
people usually ask is whether or not recent human activity has a direct impact on the trends that
we have observed. This question becomes significantly important when it comes to designing
1
conservation policies that require individuals, communities, businesses, governments, or nations
to follow a specific set of rules. If the policy makers are going to decide on a solution that is
best for all, as they should, although many dont, it is of utmost importance to understand the
complete picture of the arguments being presented. Obviously a large petroleum company does
not want to cut back its production, or be required to install specific regulatory inhibitors on the
basis of some article on science-fiction. While at the same time, we are all inhabitants of this
Pale Blue Dot, as Carl Sagan would call it, and therefore it is our moral responsibility to prevent
the destruction of our world by any man-made technology. Just as I think most would agree that
nuclear destruction of our planets ecosystem would be a moral failure, ignoring the blatant signs
of our own impacts on climate change would also qualify as a failure to act. Therefore, it is my
goal to review the current scientific literature on the topic of climate change and apply some of
the mathematic techniques that I have studied in this class, to create a simple mechanistic model
that provides some mathematical backing to the theory of climate change. By investigating
what has been done, concerning this particular problem, I hope to clarify some of the confusion
surrounding the climate change debacle and also provide myself with some of the knowledge
required to formulate my own mathematically sound argument regarding the issue.
I am going to focus my analysis on a specific type of climate model, often called simple
energy-balance climate models. As the name suggests, these models are rooted in Kirchhoff’s
Law of Thermal Radiation and Stefan-Boltzmann’s Law, relating temperature to black body
radiation . I will briefly discuss the empirical bases for any other proposed mechanisms that do
not follow directly from classical physics. [2]
My goal is to follow the trail of breadcrumbs back to the fundamental sources of informa-
tion. I have found various papers that link their models back to this Budyko paper, but I want to
keep following the trail back to the fundamental evidence being presented. Therefore the over-
all goal of this literature review/solution analysis, is not to present some novel climate change
2
model, but to instead give a complete introduction into the specifics of each of the papers in-
volved in creating these types of climate models, and also to introduce some simple techniques
on how to solve these system and produce scientifically relevant results.
The issue of climate change and how accurately it is modeled has extreme economic, politic,
social, and individual significancee. A study done by Cook et. al in 2013 suggested that approx-
imated 97% of scientists agree that climate change is real [4]. So my question then becomes
what are they all basing their data on? What if they are wrong, or missing some fundamental
assumption/simplification made at the very beginning that discards all further information.
[4]
As a good scientist, it is always good to go back to the beginning and build the model
from the ground up. Similarly, it is pretty obvious that environmental changes affect everyone!
Conclusions made from models can have huge impact on the conservation efforts required/ not
in order to preserve life, the way we know it, on this planet. We dont have anywhere else to
go at this time. The results of these climate models may Require companies and governments
world-wide to implement HUGE policy changes that in turn will cost copious amount of money,
time, and effort to fix. Is this all necessary? Or are we impeding future technological advances
by halting the current methods that we use for production of energy? Just as in conservation
biology, it is important to figure out who the big players are and how they affect the system.
If you focus your conservation efforts on the non-optimal step/stage, then you are inefficiently
utilizing your already limited resources. In this situation an accurate climate model could aid in
3
such decision-making processes.
If potentially every living in this planet is at danger of experiencing some of the most dra-
matic climate adjustments, isnt it our responsibility as the educated elite to ensure that everyone
in our country understands the consequences on our actions when they decide whether or not
to support the election of and decisions made by political figures? In order to reap the benefits
living in a democratic society, we must utilize our skills as mathematicians, engineers, and sci-
entists to objectively educate the masses on our logic-based predictions concerning the state of
our world, given the currently observed trends.
Background
[8]
4
Palioclimatology, or the study of ancient climates, provides us with a way to study the climate
change of the past. Bowen mentions several different classical climatic indicators that he places
into two exclusive categories: biological (fossils, coral reefs) and inorganic (evaporates, sed-
imentary deposits, morphological evidence). Specifically for this particular problem, we are
interested differentiating between hot and cold climates. He then explains how each method
has inherent flaws and introduces a more modern climatic indicator, utilizing the isotopes of
oxygen. Oxygen is made up of three stable isotopes, O16
, O17
, and O18
. [1] Urey first presented
on this phenomenon in 1948 [14]. Later it was discovered that the relative abundance of oxygen
isotopes would depend in part on the temperature of the water during the time marine fossils
were depositing calcium carbonate, creating a water-carbonate equilibrium [15] [11] . This
created a geologic thermometer that could be used to predict the ancient climate of the earth.
From this information we can deduce that the earth goes through cycles of warming and cooling
and has been doing so for as long as we can record. This is a key factor to the climate model,
because it requires shows a correlation between temperature and atmospheric composition.
[2]
Humphreys presents a relationship be-
tween a change in atmospheric transparency,
due to recent volcanic activity, and the cor-
responding variation in direct radiation from
the sun [7]. Based on these observations, as
well as examining the data collected by the
Main Geophysical Observatory on monthly
temperature fluctuation between the years of
1881 and 1960, Budyko presented in his 1963
book, available only in Russian, an empirical
5
formula to categorize the outgoing radiation:
I = a + BT + (a1 + B1T)n
where, I - outgoing radiation, T is temperature at the earth’s surface, and n - ’cloudiness’ (in
fractions of a unit). This empircal formula was based on data from 260 stations around the
world. The value of the coefficients were postulated as a = 14.0; B = 0.14; a1 = 3.0; B1 =
0.10 [3]. This forms the first part of Budyko’s climate model.
[9]
The second portion of Budyko’s model is based on the heat balance of the earth-atmosphere
system presented by [9]. In this particular paper they explore the ’albedo’ effect, which in short
states that surfaces of the earth covered in snow/ice reflect more incoming solar radiation than
areas without such ground covering. This ’albedo’ parameter is denoted, α. For mean annual
conditions,
Q(1 − α) − I = A
[12]
where A is loss/gain of heat as a result of atmo-
sphere/hydrosphere circulation, Q is solar radiation
coming to the outer boundary of the atmosphere, and
again α - captures ’albedo’ effect. Budyko 1969 and
North 1975 both modeled the absorption function, 1−α
(shown to the right), with the simplification of setting a2 = 0, thereby modeling ’ice-covered’
and ’ice-free’ regions [2] [12].
6
Simplifications
The first assumption that is made to simplify the model, is to assume that the incoming solar
radiation at the top of the earth’s atmosphere can be modeled as a function of latitude. By
definition, latitude ranges from 0o
at the equator to 90o
at the poles. Therefore, the total rate of
[6]
energy input from solar radiation can be written as,
Qs(y), where y = sin(θ) and θ is latitude (0 → 90o
).
Assuming that s(y), the ’latitudinal distribution func-
tion’ is normalized so that its integral from 0 to 1 is
= 1, we can solve for the total solar energy input by
integrating over the surface of the earth and setting this
quantity equal to the area of the circular disk of the
earth that intercepts the incoming solar flux [13] [12].
By including the ’albedo’ parameter, introduced
originally in the Budyko model, we obtain a sim-
ilar expression for the amount of energy absorbed by the earth per unit area:
Qs(y)(1 − α(y))
[12]
where, y = sin(θ), θ again representing latitude. A sec-
ond simplification from the Budyko model that we will
make is to assume that it is always clear weather, i.e. no
’cloudiness’ factor. Therefore, the empirical formula to
categorize outgoing radiation, i.e. the reemission of en-
ergy from earth into space can be written as:
I = a + BT
where in this particular case, the empirically chosen pa-
7
rameter values are a = 202 and B = 1.90, described
below [2]. It is important to note that the difference be-
tween solar reflection and outward radiation. Solar reflection does not change the wavelength
of the light because the light simply bounces off of the ’reflective’ surface. Conversely, earthly
[8]
emission involves a change in wavelength, from ultraviolet to infrared, which occurs because
earth’s surface molecules absorb the incoming light and re-emit it at a lower frequency (IR).
Again, using Stefan-Boltzmann’s Law we can assume
I(y) = σT4
which states that the rate of total energy radiated per unit surface area is proportional to the
fourth power of the ’black body’s’ temperature. Due to the fact that the earth is not a black body,
8
the calculations become difficult, therefore we must simplify by taking a linear approximation
around 0o
:
I(y) = a + B(T − T0)
where T0 = 0o
C or 273o
K.
[5]
Graves, Lee, and North applied such model to a 10-year data set of surface temperature
versus ’Outgoing Longwave Radiation’ (OLR). They used this linearizion to solve for particular
values for the coefficients above, a = 202 and B = 1.90 [5]. In order to simplify the ’albedo’
effect we will made the simplification similar to Budyko’s and set an albedo constant for ’ice-
9
covered’ and ’ice-free’ regions, setting the ’ice-line’ to the average between the two,
α(y) =



αcovered = 0.62 y > yice
αfree = 0.32 y < yice
αedge = (αcovered + αfree)/2 = 0.47 y = yice
where T(yice) = Tc = −10o
C. This is based on the idea that −10o
C is a good estimate for the
temperature at which glaciers can persist, slightly below freezing [2] [13].
[2]
Finally, we will discuss the sim-
plifications made on the transport
mechanism. In order to accurately
model circulation patterns present
in the earth’s atmosphere-ocean sys-
tem, a complex dynamical system
would need to be designed. More
modern models have taken this ap-
proach to improve their accuracy,
however that is beyond the scope of
my project. I wish to model transport using the simple model that Budyko proposed, by lumping
all of the process into a single ’relaxation’ term:
A = β(T − Tp)
where β is an empirical parameter, which measures the efficiency of the model in transporting
energy polewards, and Tp is the planetary mean temperature [2] [13]. Based on satellite mea-
surement of the solar constant, a commonly accepted value for β = 1.6B, where by was also
found empirically by Graves, Lee, and North [5].
10
Mathematical Model
Following all of the simplifications made in the previous steps, we can now construct our model
equation. Given the title of this particular class of climate models, i.e. ’Energy-balance,’ it is
importantly to explicitly state what this means. In words, the rate of the change of the earth’s
surface temperature should be equal to the net solar absorption minus outward radiation, plus
that from the transport mechanism:
R
∂T
∂t
= F(T)
F(T) = Qs(y)(1 − α(y)) − I(y) + D(y)
Noting that,
1
0
s(y)dy = 1
α(y) =



αcovered = 0.62 y > yice
αfree = 0.32 y < yice
αedge = (αcovered + αfree)/2 = 0.47 y = yice
I(y) = a + B(T − T0)
D(y) = −β(T − Tp)
Therefore in order to solve this system analytically, we must break the piecewise functions
into the 3 corresponding states: ’ice-free globe,’ ’ice-covered globe,’ and ’partially ice-covered
globe.’ The relevant albedo ratios are given as α(y) (above) [2] [13]. Making one final sim-
plication, that the average weather patterns seen in Northern Hemisphere would replicate the
patterns observed in the Southern Hemisphere, we notice that the problem becomes symmet-
ric about the equator. Therefore, the global mean temperature of the planet, Tp, becomes the
average mean temperature of the hemisphere:
Tp =
1
0
T(y)dy
11
and the governing heat balance equation for the hemisphere is simplified to:
R
d
dt
= Q(1 − αmean) − a − βTp
where αmean represents the average albedo effect for each of the different earth states (i.e. the
normalized integral of albedo values for a particular ice line, yice [2] [13]:
αmean = αcovered + (αfree − αcovered)yice[1 − 0.241(y2
ice − 1)]
Solution of the Mathematical Problem
As usual, we are interested in the equilibrium solution to the system, therefore we set F(T∗
) =
0:
0 = Qs(y)(1 − α(y)) − (a + BT∗
) + β(T∗
p − T∗
)
When we do this for the hemispheric simplification, we can obtain a value for steady state global
temperature mean, based on the calculated αmean parameter:
T∗
p = [Q(1 − αmean) − a]/B
Therefore, we can plug this back into the first equation and solve for T∗
(y):
T∗
(y) = [βT∗
p + Qs(y)(1 − α(y)) − a]/(B + β)
To determine the location of the ice-line yice, we can assume T = Tc at y = yice:
Tc =
Q
B + β
[s(yice)(1 − α(yice)) +
β
B
(1 − αmean)] −
a
B
At this point we can solve the problem for each of the three states described above [13].
12
Results/Discussion
For the ’ice-free globe,’ we set α(y) = α1 = 0.32 for all y. By including the parameter values
previously discussed and by utilizing the definition of ’ice-free’ as T∗
(ypoles = 1) > Tc, we can
calculate the predicted global average temperature:
T∗
p = [343(0.68) − 202]/1.9 = 16o
C
Using a similar argument for the ’ice-covered globe,’ except setting α(y) = α2 = 0.62 for all y
and remembering ’ice-covered’ means that T∗
(yequator = 0) > Tc, we can calculate the global
average temperature for this scenario:
T∗
p = [343(0.38) − 202]/1.9 = −38o
C
The solution to the problem with ’partially ice-covered globe’ is simply a combination of the
previous two solutions. Instead of assuming a constant α value for all y, we would assume the
’ice-covered,’ α2, for regions > yice and the ’ice-free,’ α1, for regions < yice. For the region
exactly at y = yice, we could assume α = (α1 + α2)/2 as shown above [2] [13].
The calculations for the stability of these regions goes beyond the scope of this project but
is mentioned in Cahalan and North (1979), as well as Budyko (1972). I did not investigate these
particular arguments for my literature review.
Improvement
This leads well into future improvements for this project. I would definitely want to do a lit-
erature review of the above mentioned scientific articles to better understand the processes by
which these groups ’solved’ the temperature equilibrium stability. My main focus was to work
backwards to formulate the argument from ground up as to why the Budyko 1969 model con-
sistently appears as a reference for most of the more ’modern’ energy-balance climate models.
13
Now the task would be to work the other way. To determine how the Budyko 1969 model can
be expanded on or modified in order to produce more accurate results.
One common critique that I noticed regarding this particular model was the type of transport
mechanism utilized. Budyko 1969, as well as the simplification presented by Tung, models
the temperature transport system (i.e. the atmosphere and hydrosphere systems) as a simple
’relaxation’ term [2] [13]:
D(y) = β(Tp − T)
This was part of the reason that this particular model was chosen by Tung as a prime teaching
tool. At the same time the error in the simplification can create significant issues when relating
the model predictions to disaster-prevention policies. Therefore, another possible direction for
improvement would be to do literature search/review for different temperature transport mech-
anisms.
[10]
14
When investigating the most recent climate models, it becomes very clear that this is an
extremely interdisciplinary field of study. The table above shows just some of the systems
that the more recent models attempt to include. Each of these individual mechanistic-based
models are often the work interdisciplinary groups themselves. When it is coupled all together
it combines some of the top names in science, with the most complex computer simulation
techniques to provide some insight into the possible effects of our behavior on global climate
change, and this is just the mechanism of climate change! Most models do not even begin to
correlate the effects of human behavior with the corresponding influence it is having on the
problem. In this way the problem becomes more complex every day and it is up to panels, such
as IPCC, to sift through the data and observations to come up with an accurate climate change
model that most can agree on.
Conclusions
Overall, this was a very exciting project. I was able to work backwards, constantly asking the
question ”Why?, to uncover some of the fundamental assumptions (empirical or more mecha-
nistic) that are required to design simple energy-balance climate models. I focused the majority
of my research on the Budyko 1969 climate model because I felt that it has withstood the test of
time, in the sense that it is still being discussed today, despite it very obviously lack of complex-
ity. I think that this shows that it is still work investigating, because many of the fundamental
assumptions made in more modern models follows a similar train of thought. Obviously, the
equations derived and the systems generated are more complex, but more often than not they are
derived with similar processes in mind. I hope to apply the information that I have learned re-
garding techniques used in both model design, as well as solution generation, to future problems
with similar design constraints. Although I was not able to answer the big question of whether
or not global warming is scientifically relevant, I was able to broaden my overall understanding.
15
References
[1] Robert Brown. Paleotemperature Analysis: Methods in Geochemistry and Geophysics.
1966.
[2] M. I. Budyko. The effect of solar radiation variations on the climate of the earth. Tellus,
21(5):611–619, 1969.
[3] MI Budyko et al. Atlas of the heat balance of the earth. Academy of Sciences, Moscow,
69, 1963.
[4] John Cook, Dana Nuccitelli, Sarah A Green, Mark Richardson, Brbel Winkler, Rob Paint-
ing, Robert Way, Peter Jacobs, and Andrew Skuce. Quantifying the consensus on an-
thropogenic global warming in the scientific literature. Environmental Research Letters,
8(2):024024, 2013.
[5] Charles E Graves, Wan-Ho Lee, and Gerald R North. New parameterizations and sensi-
tivities for simple climate models. Journal of geophysical research, 98(D3):5025–5036,
1993.
[6] Isaac M. Held and Max J. Suarez. Simple albedo feedback models of the icecaps. Tellus,
26(6):613–629, 1974.
[7] William Jackson Humphreys. Physics of the Airs, 2nd Ed. Franklin Institute of the state
of Pennsylvania, 1929.
[8] Richard S. Lindzen. Some coolness concerning global warming. Bull. Amer. Meteor. Soc.,
71(3):288 – 299, 1990.
[9] Syukuro Manabe and Richard T Wetherald. Thermal equilibrium of the atmosphere with
a given distribution of relative humidity. 1967.
16
[10] many contributors. Climate Change 2013: The Physical Science Basis. Intergovernmental
Panel on Climate Change, 2013.
[11] W.G. Mook. Paleotemperatures and chlorinities from stable carbon and oxygen isotopes
in shell carbonate. Palaeogeography, Palaeoclimatology, Palaeoecology, 9(4):245 – 263,
1971.
[12] Gerald R. North. Theory of energy-balance climate models. J. Atmos. Sci., 32(11):2033 –
2043, 1975.
[13] K. K. Tung. Topics in Mathematical Modeling. Princeton University Press, 2007.
[14] Harold C. Urey. Oxygen isotopes in nature and in the laboratory. Science, 108(2810):489–
496, 1948.
[15] Harold Clayton Urey, Heinz A Lowenstam, Samuel Epstein, and Charles R McKinney.
Measurement of paleotemperatures and temperatures of the upper cretaceous of england,
denmark, and the southeastern united states. Geological Society of America Bulletin,
62(4):399–416, 1951.
17

Weitere ähnliche Inhalte

Was ist angesagt?

Climate change and tourism
Climate change and tourism Climate change and tourism
Climate change and tourism
Anochi.com.
 
Global Warming An Inconvenient Truth
Global Warming An Inconvenient TruthGlobal Warming An Inconvenient Truth
Global Warming An Inconvenient Truth
Jesse Diaz
 
Climate-related Changes in Tropical-fruit Flowering Phases in Songkhla Provin...
Climate-related Changes in Tropical-fruit Flowering Phases in Songkhla Provin...Climate-related Changes in Tropical-fruit Flowering Phases in Songkhla Provin...
Climate-related Changes in Tropical-fruit Flowering Phases in Songkhla Provin...
Orca Whale
 
Herald1303001 avakyankor
Herald1303001 avakyankorHerald1303001 avakyankor
Herald1303001 avakyankor
econadin
 
UndergradResearch
UndergradResearchUndergradResearch
UndergradResearch
Laura Rook
 
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphereHuman and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
Sérgio Sacani
 

Was ist angesagt? (20)

Steve's presentation at ICCC 2009(Stephen Mc Intyre)
Steve's presentation at ICCC 2009(Stephen Mc Intyre)Steve's presentation at ICCC 2009(Stephen Mc Intyre)
Steve's presentation at ICCC 2009(Stephen Mc Intyre)
 
Development of an Integrated Urban Heat Island Simulation Tool
Development of an Integrated Urban Heat Island Simulation  ToolDevelopment of an Integrated Urban Heat Island Simulation  Tool
Development of an Integrated Urban Heat Island Simulation Tool
 
Utility Policies
Utility PoliciesUtility Policies
Utility Policies
 
DANJ Climate Change
DANJ Climate ChangeDANJ Climate Change
DANJ Climate Change
 
Climate change and tourism
Climate change and tourism Climate change and tourism
Climate change and tourism
 
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
 
Energy and the Polar Environment: A Focus on Middle School
Energy and the Polar Environment: A Focus on Middle SchoolEnergy and the Polar Environment: A Focus on Middle School
Energy and the Polar Environment: A Focus on Middle School
 
Global Warming and the Sudan: Variation of Air Temperature over Sudan and So...
Global Warming and the Sudan: Variation of Air Temperature  over Sudan and So...Global Warming and the Sudan: Variation of Air Temperature  over Sudan and So...
Global Warming and the Sudan: Variation of Air Temperature over Sudan and So...
 
Global Warming and the Polar Regions
Global Warming and the Polar RegionsGlobal Warming and the Polar Regions
Global Warming and the Polar Regions
 
Global Warming An Inconvenient Truth
Global Warming An Inconvenient TruthGlobal Warming An Inconvenient Truth
Global Warming An Inconvenient Truth
 
Climate change
Climate change Climate change
Climate change
 
Climate-related Changes in Tropical-fruit Flowering Phases in Songkhla Provin...
Climate-related Changes in Tropical-fruit Flowering Phases in Songkhla Provin...Climate-related Changes in Tropical-fruit Flowering Phases in Songkhla Provin...
Climate-related Changes in Tropical-fruit Flowering Phases in Songkhla Provin...
 
Burntwood 2013 - Why climate models are the greatest feat of modern science, ...
Burntwood 2013 - Why climate models are the greatest feat of modern science, ...Burntwood 2013 - Why climate models are the greatest feat of modern science, ...
Burntwood 2013 - Why climate models are the greatest feat of modern science, ...
 
Herald1303001 avakyankor
Herald1303001 avakyankorHerald1303001 avakyankor
Herald1303001 avakyankor
 
UndergradResearch
UndergradResearchUndergradResearch
UndergradResearch
 
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphereHuman and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
 
Fundamentals of the Non-Equilibrium Statistical Thermohydrodynamic Theory of ...
Fundamentals of the Non-Equilibrium Statistical Thermohydrodynamic Theory of ...Fundamentals of the Non-Equilibrium Statistical Thermohydrodynamic Theory of ...
Fundamentals of the Non-Equilibrium Statistical Thermohydrodynamic Theory of ...
 
Climate change prediction erring on the side of least drama (gec, 11.2012). L...
Climate change prediction erring on the side of least drama (gec, 11.2012). L...Climate change prediction erring on the side of least drama (gec, 11.2012). L...
Climate change prediction erring on the side of least drama (gec, 11.2012). L...
 
JRC/EU Bias Correction Workshop
JRC/EU Bias Correction WorkshopJRC/EU Bias Correction Workshop
JRC/EU Bias Correction Workshop
 
C041031927
C041031927C041031927
C041031927
 

Ähnlich wie Climate Change Model

SRM Policy Brief
SRM Policy BriefSRM Policy Brief
SRM Policy Brief
Luke Dotto
 
c h a p t e r 2 9The Promises and Perils of Geoenginee.docx
c h a p t e r  2 9The Promises and Perils  of Geoenginee.docxc h a p t e r  2 9The Promises and Perils  of Geoenginee.docx
c h a p t e r 2 9The Promises and Perils of Geoenginee.docx
dewhirstichabod
 
c h a p t e r 2 9The Promises and Perils of Geoenginee.docx
c h a p t e r  2 9The Promises and Perils  of Geoenginee.docxc h a p t e r  2 9The Promises and Perils  of Geoenginee.docx
c h a p t e r 2 9The Promises and Perils of Geoenginee.docx
jasoninnes20
 
The WA must include information (properly cited) from at least one.docx
The WA must include information (properly cited) from at least one.docxThe WA must include information (properly cited) from at least one.docx
The WA must include information (properly cited) from at least one.docx
christalgrieg
 
Since the introduction of co2
Since the introduction of co2Since the introduction of co2
Since the introduction of co2
Attili1996
 

Ähnlich wie Climate Change Model (20)

Middle Range Theory Essay
Middle Range Theory EssayMiddle Range Theory Essay
Middle Range Theory Essay
 
Toward a Climate Literate, Energy Aware, Science Savvy Society
Toward a Climate Literate, Energy Aware, Science Savvy SocietyToward a Climate Literate, Energy Aware, Science Savvy Society
Toward a Climate Literate, Energy Aware, Science Savvy Society
 
Main physical causes of climate change and global warming a general overview
Main physical causes of climate change and global warming   a general overviewMain physical causes of climate change and global warming   a general overview
Main physical causes of climate change and global warming a general overview
 
Climate
ClimateClimate
Climate
 
Cims sesip2010
Cims sesip2010Cims sesip2010
Cims sesip2010
 
Anthropogenic Global Warming A Skeptical Point Of View
Anthropogenic Global Warming  A Skeptical Point Of ViewAnthropogenic Global Warming  A Skeptical Point Of View
Anthropogenic Global Warming A Skeptical Point Of View
 
Climate Change: Addressing the Major Skeptic Arguments
Climate Change: Addressing the Major Skeptic ArgumentsClimate Change: Addressing the Major Skeptic Arguments
Climate Change: Addressing the Major Skeptic Arguments
 
Science Paper: Global warming in the pipeline
Science Paper: Global warming in the pipelineScience Paper: Global warming in the pipeline
Science Paper: Global warming in the pipeline
 
SRM Policy Brief
SRM Policy BriefSRM Policy Brief
SRM Policy Brief
 
Climate Change
Climate ChangeClimate Change
Climate Change
 
Climate models
Climate modelsClimate models
Climate models
 
Climate_change_theories.pdf
Climate_change_theories.pdfClimate_change_theories.pdf
Climate_change_theories.pdf
 
Paris
ParisParis
Paris
 
Climate change essy
Climate change essyClimate change essy
Climate change essy
 
c h a p t e r 2 9The Promises and Perils of Geoenginee.docx
c h a p t e r  2 9The Promises and Perils  of Geoenginee.docxc h a p t e r  2 9The Promises and Perils  of Geoenginee.docx
c h a p t e r 2 9The Promises and Perils of Geoenginee.docx
 
c h a p t e r 2 9The Promises and Perils of Geoenginee.docx
c h a p t e r  2 9The Promises and Perils  of Geoenginee.docxc h a p t e r  2 9The Promises and Perils  of Geoenginee.docx
c h a p t e r 2 9The Promises and Perils of Geoenginee.docx
 
The WA must include information (properly cited) from at least one.docx
The WA must include information (properly cited) from at least one.docxThe WA must include information (properly cited) from at least one.docx
The WA must include information (properly cited) from at least one.docx
 
Tim Palmer, University of Oxford - OECD Workshop on “Climate change, Assumpti...
Tim Palmer, University of Oxford - OECD Workshop on “Climate change, Assumpti...Tim Palmer, University of Oxford - OECD Workshop on “Climate change, Assumpti...
Tim Palmer, University of Oxford - OECD Workshop on “Climate change, Assumpti...
 
General circulation model
General circulation modelGeneral circulation model
General circulation model
 
Since the introduction of co2
Since the introduction of co2Since the introduction of co2
Since the introduction of co2
 

Mehr von Gerard Trimberger (8)

UWUnofficialTranscript
UWUnofficialTranscriptUWUnofficialTranscript
UWUnofficialTranscript
 
Grocery Store Classification Model
Grocery Store Classification ModelGrocery Store Classification Model
Grocery Store Classification Model
 
Optimal Vacation Itinerary Modeling
Optimal Vacation Itinerary ModelingOptimal Vacation Itinerary Modeling
Optimal Vacation Itinerary Modeling
 
Cellular Metabolism Model
Cellular Metabolism ModelCellular Metabolism Model
Cellular Metabolism Model
 
Novel In Vivo Concentration Detector
Novel In Vivo Concentration DetectorNovel In Vivo Concentration Detector
Novel In Vivo Concentration Detector
 
PID Temperature Controller
PID Temperature ControllerPID Temperature Controller
PID Temperature Controller
 
Thermocouples therm diff comsol
Thermocouples therm diff comsolThermocouples therm diff comsol
Thermocouples therm diff comsol
 
Ebola final project paper
Ebola final project paperEbola final project paper
Ebola final project paper
 

Kürzlich hochgeladen

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 

Kürzlich hochgeladen (20)

Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 

Climate Change Model

  • 1. Simple Energy Balance Climate Models: Literature Review and Analytic Techniques Gerard Trimberger due: March 10th, 2016 One of the simplest types of climate models are the energy balance models, similar to the one created by M.I. Budyko in 1969 [2]. These types of models attempt to predict the latitudinal temperature distribution, based on the idea that the energy the Earth receives from the Suns radiation must balance the radiation the earth is losing to space by reemission at its temperature T. They also include a concept, known as the albedo effect, which takes into account the reflection of the solar radiation off of the surface due to clouds, ice, snow, etc. The ice-albedo feedback mechanism is of particular interest to climate scientists because it serves to amplify any relatively small changes in solar ra- diation. [13] Problem Description The issue of climate change is a widely debated topic that often arises in fields outside of the scientific community. Most people accept the notion that the Earths climate is ever-changing, and goes through very specific periods of transitory behavior. The most important question that people usually ask is whether or not recent human activity has a direct impact on the trends that we have observed. This question becomes significantly important when it comes to designing 1
  • 2. conservation policies that require individuals, communities, businesses, governments, or nations to follow a specific set of rules. If the policy makers are going to decide on a solution that is best for all, as they should, although many dont, it is of utmost importance to understand the complete picture of the arguments being presented. Obviously a large petroleum company does not want to cut back its production, or be required to install specific regulatory inhibitors on the basis of some article on science-fiction. While at the same time, we are all inhabitants of this Pale Blue Dot, as Carl Sagan would call it, and therefore it is our moral responsibility to prevent the destruction of our world by any man-made technology. Just as I think most would agree that nuclear destruction of our planets ecosystem would be a moral failure, ignoring the blatant signs of our own impacts on climate change would also qualify as a failure to act. Therefore, it is my goal to review the current scientific literature on the topic of climate change and apply some of the mathematic techniques that I have studied in this class, to create a simple mechanistic model that provides some mathematical backing to the theory of climate change. By investigating what has been done, concerning this particular problem, I hope to clarify some of the confusion surrounding the climate change debacle and also provide myself with some of the knowledge required to formulate my own mathematically sound argument regarding the issue. I am going to focus my analysis on a specific type of climate model, often called simple energy-balance climate models. As the name suggests, these models are rooted in Kirchhoff’s Law of Thermal Radiation and Stefan-Boltzmann’s Law, relating temperature to black body radiation . I will briefly discuss the empirical bases for any other proposed mechanisms that do not follow directly from classical physics. [2] My goal is to follow the trail of breadcrumbs back to the fundamental sources of informa- tion. I have found various papers that link their models back to this Budyko paper, but I want to keep following the trail back to the fundamental evidence being presented. Therefore the over- all goal of this literature review/solution analysis, is not to present some novel climate change 2
  • 3. model, but to instead give a complete introduction into the specifics of each of the papers in- volved in creating these types of climate models, and also to introduce some simple techniques on how to solve these system and produce scientifically relevant results. The issue of climate change and how accurately it is modeled has extreme economic, politic, social, and individual significancee. A study done by Cook et. al in 2013 suggested that approx- imated 97% of scientists agree that climate change is real [4]. So my question then becomes what are they all basing their data on? What if they are wrong, or missing some fundamental assumption/simplification made at the very beginning that discards all further information. [4] As a good scientist, it is always good to go back to the beginning and build the model from the ground up. Similarly, it is pretty obvious that environmental changes affect everyone! Conclusions made from models can have huge impact on the conservation efforts required/ not in order to preserve life, the way we know it, on this planet. We dont have anywhere else to go at this time. The results of these climate models may Require companies and governments world-wide to implement HUGE policy changes that in turn will cost copious amount of money, time, and effort to fix. Is this all necessary? Or are we impeding future technological advances by halting the current methods that we use for production of energy? Just as in conservation biology, it is important to figure out who the big players are and how they affect the system. If you focus your conservation efforts on the non-optimal step/stage, then you are inefficiently utilizing your already limited resources. In this situation an accurate climate model could aid in 3
  • 4. such decision-making processes. If potentially every living in this planet is at danger of experiencing some of the most dra- matic climate adjustments, isnt it our responsibility as the educated elite to ensure that everyone in our country understands the consequences on our actions when they decide whether or not to support the election of and decisions made by political figures? In order to reap the benefits living in a democratic society, we must utilize our skills as mathematicians, engineers, and sci- entists to objectively educate the masses on our logic-based predictions concerning the state of our world, given the currently observed trends. Background [8] 4
  • 5. Palioclimatology, or the study of ancient climates, provides us with a way to study the climate change of the past. Bowen mentions several different classical climatic indicators that he places into two exclusive categories: biological (fossils, coral reefs) and inorganic (evaporates, sed- imentary deposits, morphological evidence). Specifically for this particular problem, we are interested differentiating between hot and cold climates. He then explains how each method has inherent flaws and introduces a more modern climatic indicator, utilizing the isotopes of oxygen. Oxygen is made up of three stable isotopes, O16 , O17 , and O18 . [1] Urey first presented on this phenomenon in 1948 [14]. Later it was discovered that the relative abundance of oxygen isotopes would depend in part on the temperature of the water during the time marine fossils were depositing calcium carbonate, creating a water-carbonate equilibrium [15] [11] . This created a geologic thermometer that could be used to predict the ancient climate of the earth. From this information we can deduce that the earth goes through cycles of warming and cooling and has been doing so for as long as we can record. This is a key factor to the climate model, because it requires shows a correlation between temperature and atmospheric composition. [2] Humphreys presents a relationship be- tween a change in atmospheric transparency, due to recent volcanic activity, and the cor- responding variation in direct radiation from the sun [7]. Based on these observations, as well as examining the data collected by the Main Geophysical Observatory on monthly temperature fluctuation between the years of 1881 and 1960, Budyko presented in his 1963 book, available only in Russian, an empirical 5
  • 6. formula to categorize the outgoing radiation: I = a + BT + (a1 + B1T)n where, I - outgoing radiation, T is temperature at the earth’s surface, and n - ’cloudiness’ (in fractions of a unit). This empircal formula was based on data from 260 stations around the world. The value of the coefficients were postulated as a = 14.0; B = 0.14; a1 = 3.0; B1 = 0.10 [3]. This forms the first part of Budyko’s climate model. [9] The second portion of Budyko’s model is based on the heat balance of the earth-atmosphere system presented by [9]. In this particular paper they explore the ’albedo’ effect, which in short states that surfaces of the earth covered in snow/ice reflect more incoming solar radiation than areas without such ground covering. This ’albedo’ parameter is denoted, α. For mean annual conditions, Q(1 − α) − I = A [12] where A is loss/gain of heat as a result of atmo- sphere/hydrosphere circulation, Q is solar radiation coming to the outer boundary of the atmosphere, and again α - captures ’albedo’ effect. Budyko 1969 and North 1975 both modeled the absorption function, 1−α (shown to the right), with the simplification of setting a2 = 0, thereby modeling ’ice-covered’ and ’ice-free’ regions [2] [12]. 6
  • 7. Simplifications The first assumption that is made to simplify the model, is to assume that the incoming solar radiation at the top of the earth’s atmosphere can be modeled as a function of latitude. By definition, latitude ranges from 0o at the equator to 90o at the poles. Therefore, the total rate of [6] energy input from solar radiation can be written as, Qs(y), where y = sin(θ) and θ is latitude (0 → 90o ). Assuming that s(y), the ’latitudinal distribution func- tion’ is normalized so that its integral from 0 to 1 is = 1, we can solve for the total solar energy input by integrating over the surface of the earth and setting this quantity equal to the area of the circular disk of the earth that intercepts the incoming solar flux [13] [12]. By including the ’albedo’ parameter, introduced originally in the Budyko model, we obtain a sim- ilar expression for the amount of energy absorbed by the earth per unit area: Qs(y)(1 − α(y)) [12] where, y = sin(θ), θ again representing latitude. A sec- ond simplification from the Budyko model that we will make is to assume that it is always clear weather, i.e. no ’cloudiness’ factor. Therefore, the empirical formula to categorize outgoing radiation, i.e. the reemission of en- ergy from earth into space can be written as: I = a + BT where in this particular case, the empirically chosen pa- 7
  • 8. rameter values are a = 202 and B = 1.90, described below [2]. It is important to note that the difference be- tween solar reflection and outward radiation. Solar reflection does not change the wavelength of the light because the light simply bounces off of the ’reflective’ surface. Conversely, earthly [8] emission involves a change in wavelength, from ultraviolet to infrared, which occurs because earth’s surface molecules absorb the incoming light and re-emit it at a lower frequency (IR). Again, using Stefan-Boltzmann’s Law we can assume I(y) = σT4 which states that the rate of total energy radiated per unit surface area is proportional to the fourth power of the ’black body’s’ temperature. Due to the fact that the earth is not a black body, 8
  • 9. the calculations become difficult, therefore we must simplify by taking a linear approximation around 0o : I(y) = a + B(T − T0) where T0 = 0o C or 273o K. [5] Graves, Lee, and North applied such model to a 10-year data set of surface temperature versus ’Outgoing Longwave Radiation’ (OLR). They used this linearizion to solve for particular values for the coefficients above, a = 202 and B = 1.90 [5]. In order to simplify the ’albedo’ effect we will made the simplification similar to Budyko’s and set an albedo constant for ’ice- 9
  • 10. covered’ and ’ice-free’ regions, setting the ’ice-line’ to the average between the two, α(y) =    αcovered = 0.62 y > yice αfree = 0.32 y < yice αedge = (αcovered + αfree)/2 = 0.47 y = yice where T(yice) = Tc = −10o C. This is based on the idea that −10o C is a good estimate for the temperature at which glaciers can persist, slightly below freezing [2] [13]. [2] Finally, we will discuss the sim- plifications made on the transport mechanism. In order to accurately model circulation patterns present in the earth’s atmosphere-ocean sys- tem, a complex dynamical system would need to be designed. More modern models have taken this ap- proach to improve their accuracy, however that is beyond the scope of my project. I wish to model transport using the simple model that Budyko proposed, by lumping all of the process into a single ’relaxation’ term: A = β(T − Tp) where β is an empirical parameter, which measures the efficiency of the model in transporting energy polewards, and Tp is the planetary mean temperature [2] [13]. Based on satellite mea- surement of the solar constant, a commonly accepted value for β = 1.6B, where by was also found empirically by Graves, Lee, and North [5]. 10
  • 11. Mathematical Model Following all of the simplifications made in the previous steps, we can now construct our model equation. Given the title of this particular class of climate models, i.e. ’Energy-balance,’ it is importantly to explicitly state what this means. In words, the rate of the change of the earth’s surface temperature should be equal to the net solar absorption minus outward radiation, plus that from the transport mechanism: R ∂T ∂t = F(T) F(T) = Qs(y)(1 − α(y)) − I(y) + D(y) Noting that, 1 0 s(y)dy = 1 α(y) =    αcovered = 0.62 y > yice αfree = 0.32 y < yice αedge = (αcovered + αfree)/2 = 0.47 y = yice I(y) = a + B(T − T0) D(y) = −β(T − Tp) Therefore in order to solve this system analytically, we must break the piecewise functions into the 3 corresponding states: ’ice-free globe,’ ’ice-covered globe,’ and ’partially ice-covered globe.’ The relevant albedo ratios are given as α(y) (above) [2] [13]. Making one final sim- plication, that the average weather patterns seen in Northern Hemisphere would replicate the patterns observed in the Southern Hemisphere, we notice that the problem becomes symmet- ric about the equator. Therefore, the global mean temperature of the planet, Tp, becomes the average mean temperature of the hemisphere: Tp = 1 0 T(y)dy 11
  • 12. and the governing heat balance equation for the hemisphere is simplified to: R d dt = Q(1 − αmean) − a − βTp where αmean represents the average albedo effect for each of the different earth states (i.e. the normalized integral of albedo values for a particular ice line, yice [2] [13]: αmean = αcovered + (αfree − αcovered)yice[1 − 0.241(y2 ice − 1)] Solution of the Mathematical Problem As usual, we are interested in the equilibrium solution to the system, therefore we set F(T∗ ) = 0: 0 = Qs(y)(1 − α(y)) − (a + BT∗ ) + β(T∗ p − T∗ ) When we do this for the hemispheric simplification, we can obtain a value for steady state global temperature mean, based on the calculated αmean parameter: T∗ p = [Q(1 − αmean) − a]/B Therefore, we can plug this back into the first equation and solve for T∗ (y): T∗ (y) = [βT∗ p + Qs(y)(1 − α(y)) − a]/(B + β) To determine the location of the ice-line yice, we can assume T = Tc at y = yice: Tc = Q B + β [s(yice)(1 − α(yice)) + β B (1 − αmean)] − a B At this point we can solve the problem for each of the three states described above [13]. 12
  • 13. Results/Discussion For the ’ice-free globe,’ we set α(y) = α1 = 0.32 for all y. By including the parameter values previously discussed and by utilizing the definition of ’ice-free’ as T∗ (ypoles = 1) > Tc, we can calculate the predicted global average temperature: T∗ p = [343(0.68) − 202]/1.9 = 16o C Using a similar argument for the ’ice-covered globe,’ except setting α(y) = α2 = 0.62 for all y and remembering ’ice-covered’ means that T∗ (yequator = 0) > Tc, we can calculate the global average temperature for this scenario: T∗ p = [343(0.38) − 202]/1.9 = −38o C The solution to the problem with ’partially ice-covered globe’ is simply a combination of the previous two solutions. Instead of assuming a constant α value for all y, we would assume the ’ice-covered,’ α2, for regions > yice and the ’ice-free,’ α1, for regions < yice. For the region exactly at y = yice, we could assume α = (α1 + α2)/2 as shown above [2] [13]. The calculations for the stability of these regions goes beyond the scope of this project but is mentioned in Cahalan and North (1979), as well as Budyko (1972). I did not investigate these particular arguments for my literature review. Improvement This leads well into future improvements for this project. I would definitely want to do a lit- erature review of the above mentioned scientific articles to better understand the processes by which these groups ’solved’ the temperature equilibrium stability. My main focus was to work backwards to formulate the argument from ground up as to why the Budyko 1969 model con- sistently appears as a reference for most of the more ’modern’ energy-balance climate models. 13
  • 14. Now the task would be to work the other way. To determine how the Budyko 1969 model can be expanded on or modified in order to produce more accurate results. One common critique that I noticed regarding this particular model was the type of transport mechanism utilized. Budyko 1969, as well as the simplification presented by Tung, models the temperature transport system (i.e. the atmosphere and hydrosphere systems) as a simple ’relaxation’ term [2] [13]: D(y) = β(Tp − T) This was part of the reason that this particular model was chosen by Tung as a prime teaching tool. At the same time the error in the simplification can create significant issues when relating the model predictions to disaster-prevention policies. Therefore, another possible direction for improvement would be to do literature search/review for different temperature transport mech- anisms. [10] 14
  • 15. When investigating the most recent climate models, it becomes very clear that this is an extremely interdisciplinary field of study. The table above shows just some of the systems that the more recent models attempt to include. Each of these individual mechanistic-based models are often the work interdisciplinary groups themselves. When it is coupled all together it combines some of the top names in science, with the most complex computer simulation techniques to provide some insight into the possible effects of our behavior on global climate change, and this is just the mechanism of climate change! Most models do not even begin to correlate the effects of human behavior with the corresponding influence it is having on the problem. In this way the problem becomes more complex every day and it is up to panels, such as IPCC, to sift through the data and observations to come up with an accurate climate change model that most can agree on. Conclusions Overall, this was a very exciting project. I was able to work backwards, constantly asking the question ”Why?, to uncover some of the fundamental assumptions (empirical or more mecha- nistic) that are required to design simple energy-balance climate models. I focused the majority of my research on the Budyko 1969 climate model because I felt that it has withstood the test of time, in the sense that it is still being discussed today, despite it very obviously lack of complex- ity. I think that this shows that it is still work investigating, because many of the fundamental assumptions made in more modern models follows a similar train of thought. Obviously, the equations derived and the systems generated are more complex, but more often than not they are derived with similar processes in mind. I hope to apply the information that I have learned re- garding techniques used in both model design, as well as solution generation, to future problems with similar design constraints. Although I was not able to answer the big question of whether or not global warming is scientifically relevant, I was able to broaden my overall understanding. 15
  • 16. References [1] Robert Brown. Paleotemperature Analysis: Methods in Geochemistry and Geophysics. 1966. [2] M. I. Budyko. The effect of solar radiation variations on the climate of the earth. Tellus, 21(5):611–619, 1969. [3] MI Budyko et al. Atlas of the heat balance of the earth. Academy of Sciences, Moscow, 69, 1963. [4] John Cook, Dana Nuccitelli, Sarah A Green, Mark Richardson, Brbel Winkler, Rob Paint- ing, Robert Way, Peter Jacobs, and Andrew Skuce. Quantifying the consensus on an- thropogenic global warming in the scientific literature. Environmental Research Letters, 8(2):024024, 2013. [5] Charles E Graves, Wan-Ho Lee, and Gerald R North. New parameterizations and sensi- tivities for simple climate models. Journal of geophysical research, 98(D3):5025–5036, 1993. [6] Isaac M. Held and Max J. Suarez. Simple albedo feedback models of the icecaps. Tellus, 26(6):613–629, 1974. [7] William Jackson Humphreys. Physics of the Airs, 2nd Ed. Franklin Institute of the state of Pennsylvania, 1929. [8] Richard S. Lindzen. Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71(3):288 – 299, 1990. [9] Syukuro Manabe and Richard T Wetherald. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. 1967. 16
  • 17. [10] many contributors. Climate Change 2013: The Physical Science Basis. Intergovernmental Panel on Climate Change, 2013. [11] W.G. Mook. Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate. Palaeogeography, Palaeoclimatology, Palaeoecology, 9(4):245 – 263, 1971. [12] Gerald R. North. Theory of energy-balance climate models. J. Atmos. Sci., 32(11):2033 – 2043, 1975. [13] K. K. Tung. Topics in Mathematical Modeling. Princeton University Press, 2007. [14] Harold C. Urey. Oxygen isotopes in nature and in the laboratory. Science, 108(2810):489– 496, 1948. [15] Harold Clayton Urey, Heinz A Lowenstam, Samuel Epstein, and Charles R McKinney. Measurement of paleotemperatures and temperatures of the upper cretaceous of england, denmark, and the southeastern united states. Geological Society of America Bulletin, 62(4):399–416, 1951. 17