SlideShare ist ein Scribd-Unternehmen logo
1 von 16
Downloaden Sie, um offline zu lesen
UNIVERSIDAD AGRARIA DEL ECUADOR.
FACULTAD DE INGENIERIA EN
COMPUTACIÓN E INFORMÁTICA
CARPETA DE MANTENIMIENTO Y
EMSAMBLAJE DE COMPUTADORAS
TEMA:





PARTES DE LA FUENTE DE PODER
VOLTAJES DE LA FUENTE DE PODER
CABLES Y CONECTORES
CONCEPTOS DE LOS COMPONENTES DE LA FUENTE DE PODER

ALUMNO:
FREDDY ANDRES VERDESOTO QUEVEDO

CURSO:
SEGUNDO “B”

CATEDRATICO:
ING. ARIEL PORTILLA

AÑO LECTIVO.
2013 --------------------------------------------- 2014
¿QUE ES LA FUENTE DE PODER?
Es una parte del ordenador que recibe la
energía a través de los tomacorrientes,
esa energía que se recibe se llama
tensión alterna, se encuentra medida en
110 voltios o 220 voltios, es decir lo
máximo a que puede llegar, esta energía
es inestable, la fuente de poder estabiliza
la tensión alterna y la transforma a tensión
continua, esta tensión es estable y son
bajos, se miden en 3 voltios, 5 voltios, 12
voltios.
Básicamente una fuente de poder es un reductor de tensión eléctrica (voltaje).
Muchos circuitos necesitan para su funcionamiento, una fuente de poder o alimentación de corriente
continua (C.C.), pero lo que normalmente se encuentra es alimentación de corriente alterna (C.A.).
Para lograr obtener corriente continua, la entrada de corriente alterna debe seguir un proceso de
conversión.
TIENEN UNOS TIPOS DE TENSIÓN:

Tensión continua o directa

Tención alterna

CONECTORES
La mayoría de los conectores de hoy son conectores de llave. Los conectores de llave están
diseñados para inserción una sola dirección. Cada parte del conector tiene un cable de color que
conduce un voltaje diferente. Se usan diferentes conectores para conectar componentes
específicos y varias ubicaciones en la motherboard: Un conector Molex es un conector de llave que
se enchufa a una unidad óptica o un disco duro.



Un conector Berg es un conector de llave que se enchufa a una unidad de disquete. Un
conector Berg es más pequeño que un conector Molex.
Para conectar la motherboard, se usa un conector ranurado de 20 ó 24 pines. El conector
ranurado de 24 pines tiene dos filas de 12 pines y el conector ranurado de 20 pines tiene
dos filas de 10 pines.




Un conector de alimentación auxiliar de 4 pines a 8 pines tiene dos filas de dos a cuatro
pines y suministra energía a todas las áreas de la motherboard. El conector de
alimentación auxiliar de 4 pines a 8 pines tiene la misma forma que el conector de
alimentación principal, pero es más pequeño.
Las fuentes de energía estándar antiguas usaban dos conectores llamados P8 y P9 para
conectarse a la motherboard. El P8 y el P9 eran conectores sin llave. Podían instalarse al
revés, lo cual implicaba daños potenciales a la motherboard o la fuente de energía. La
instalación requería que los conectores estuvieran alineados con los cables negros juntos
en el medio.
NOMBRE DE LOS CONECTORES DE LA FUENTE DE PODER

MOLEX D
Este conector esta compuesto por 4 pines (contactos), estos molex D deben ir conectados al disco
duro, cd-room, cd-rw, dvd-room, dvd-rw

MOLEX PLANO
Es aquel que da energía al floppy es decir a las
disqueteras, este conector está compuesto por 4 pines y
es más pequeño que el molex d.
FUENTE DE ALIMENTACION ATX

CARACTERÍSTICAS FUENTE DE PODER SEGÚN SU CLASE
CARACTERÍSTICAS GENERALES DE LA FUENTE ATX

Es de encendido digital, es decir, tiene un pulsador que al activarse regresa a su estado inicial, sin
embargo ya generó la función deseada de encender ó apagar.
Algunos modelos integran un interruptor trasero para evitar consumo innecesario de energía
eléctrico durante el estado de reposo "Stand By". Este tipo de fuentes se integran desde los equipos
con microprocesador Intel® Pentium MMX hasta los equipos con los mas modernos
microprocesadores.
Es una fuente que se queda en "Stand By" ó en estado de espera, por lo que consumen electricidad
aún cuando el equipo este "apagado", lo que también le da la capacidad de ser manipulada con
software.
1.- Ventilador: expulsa el aire caliente del interior de la
fuente y del gabinete, para mantener frescos los circuitos.
2.- Interruptor de seguridad: permite encender la fuente de
manera mecánica.
3.- Conector de alimentación: recibe el cable de corriente
desde el enchufe doméstico.
4.- Selector de voltaje: permite seleccionar el voltaje
americano de 127V ó el europeo de 240V.
5.- Conector SATA: utilizado para alimentar los discos
duros y las unidades ópticas tipos SATA.
6.- Conector de 4 terminales: utilizado para alimentar de manera directa al microprocesador.
7.- Conector ATX: alimenta de electricidad a la tarjeta principal.
8.- Conector de 4 terminales IDE: utilizado para alimentar los discos duros y las unidades ópticas.
9.- Conector de 4 terminales FD: alimenta las disqueteras.
CONECTORES DE LA FUENTE ATX PINOUT

Conector

Tipo MOLEX

Dispositivos
Disqueteras de 5.25",
Unidades ópticas de
5.25" ATAPI y discos
duros de 3.5" IDE

Imagen de conector

Esquema

Líneas de alimentación
1.- Red +5V (Alimentación +5
Volts)
2.- Black GND (Tierra)
3.- Black GND (Tierra)
4.- Yellow +12V (Alimentación +
12Volts)
1.- Red +5V (Alimentación +5
Volts)

Tipo BERG
Disqueteras de 3.5"

2.- Black GND (Tierra)
3.- Black GND (Tierra)

Tipo SATA /
SATA 2

Discos duros 3.5"
SATA / SATA 2

I

Conector ATX
versión 1
(20 terminales +
4)

interconecta la fuente
ATX con la tarjeta
principal
(Motherboard)

4.- Yellow +12V (Alimentación +
12Volts)
1.- V33 (3.3 Volts)
9.- V5
(5 Volts)
2.- V33 (3.3 Volts)
10.GND (tierra)
3.- V33 (3.3 Volts)
11.Reserved (reservado)
4.- GND (tierra) 12.- GND
(tierra)
5.- GND (tierra) 13.- V12 (12
Volts)
6.- GND (tierra) 14.- V12 (12
Volts)
7.- V5 (5 Volts) 15.- V12 (12
Volts)
8.-V5 (5 Volts)
1. Naranja (+3.3V)
11.
Naranja (+3.3V)
2. Naranja (+3.3V)
12.
Azul (-12 V)
3. Negro (Tierra) 13. Negro
(Tierra)
4. Rojo (+5 Volts) 14. Verde
(Power On)
5. Negro (Tierra) 15. Negro
(Tierra)
6. Rojo (+5 Volts) 16. Negro
(Tierra)
7. Negro (Tierra) 17. Negro
(Tierra)
8. Gris (Power Good)
18.
Blanco (-5V)
9. Purpura (+5VSB)
19.
Rojo (+5 Volts)
10. Amarillo (+12V)
20.
Rojo (+5 Volts)
1. Naranja (+3.3v)

3.
Negro (Tierra)
2. Amarillo (+12V)
4.
Rojo (+5V)
1. Naranja (+3.3V)
13.
Naranja (+3.3V)
2. Naranja (+3.3V)
14.
Azul (-12 V)
3. Negro (Tierra) 15. Negro
(Tierra)
4. Rojo (+5 Volts) 16. Verde
(Power On)
5. Negro (Tierra) 17. Negro
(Tierra)
6. Rojo (+5 Volts) 18. Negro
(Tierra)
7. Negro (Tierra) 19 Negro
(Tierra)
8. Gris (Power Good)
20
Blanco (-5V)
9. Purpura (+5VSB)
21.
Rojo (+5 Volts)
10. Amarillo (+12V)
22.
Rojo (+5 Volts)
11. Amarillo (+12V)
23.
Rojo (+5 Volts)
12. Naranja (+3.3V)
24.
Negro (Tierra)

I

Conector ATX
versión 2
(24 terminales)

interconecta la fuente
ATX y la tarjeta
principal
(Motherboard)

Conector para
procesador de 4
terminales

Alimenta a los
procesadores
modernos

Conector PCIe
(6 y 8
terminales)

Alimenta
directamente las
tarjetas de video tipo
PCIe

1. Negro (Tierra) 3. Amarillo
(+12V)
2. Negro (Tierra) 4. Amarillo
(+12V)
1.- Negro (Tierra) 5.- Amarillo
(+12V)
2.- Negro (Tierra) 6.- Amarillo
(+12V)
3.- Negro (Tierra) 7.- Amarillo
(+12V)
4.- Negro (Tierra) 8.- Amarillo
(+12V)

Potencia de la fuente ATX:
Las fuentes ATX comerciales tienen Wattajes de: 300 Watts (W), 350 W, 400 W, 480 W, 500 W, 630
W, 1200 W y hasta 1350 W. Repasando algunos términos de electricidad, recordemos que la
electricidad no es otra cosa mas que electrones circulando a través de un medio conductor.
La fuente ATX es muy similar a la AT, pero tiene una serie de diferencias, tanto en su
funcionamiento como en los voltajes entregados a la placa madre. La fuente ATX consta en realidad
de dos partes: una fuente principal, que corresponde a la vieja fuente AT (con algunos agregados), y
una auxiliar.
Ejemplo: si una fuente ATX indica que es de 400 W entonces:
El Wattaje = Voltaje X Corriente, W = V X A
Sabemos que el voltaje es de 127 V y tenemos los Watts, solo despejamos la corriente.
A=W/V

,

A = 400 W / 127 V ,

A = 3.4
Entonces lo que interesa es la cantidad de corriente que puede suministrar la fuente, porque a
mayor cantidad de corriente, habrá mayor potencia y podrá alimentar una mayor cantidad de
dispositivos. En este caso es de 3.4 Amperes.
FUNCIONAMIENTO DE UNA FUENTE ATX
1.- Transformación: el voltaje de la línea doméstica se reduce de 127 Volts a aproximadamente 12
Volts ó 5 V. Utiliza un elemento electrónico llamado bobina reductora.

2.- Rectificación: se transforma el voltaje de corriente alterna en voltaje de corriente directa, esto lo
hace dejando pasar solo los valores positivos de la onda (se genera corriente continua), por medio
de elementos electrónicos llamados diodos.

3.- Filtrado: esta le da calidad a la corriente continua y suaviza el voltaje, por medio de elementos
electrónicos llamados capacitores.

4.- Estabilización: el voltaje ya suavizado se le da la forma lineal que utilizan los dispositivos. Se
usa un elemento electrónico especial llamado circuito integrado. Esta fase es la que entrega la
energía necesaria la computadora.

OTROS ASPECTOS PARA TENER EN CUENTA
Corriente alterna
La corriente alterna (como su nombre lo indica) circula por durante un tiempo en un sentido y
después en sentido opuesto, volviéndose a repetir el mismo proceso en forma constante.
Este tipo de corriente es la que nos llega a nuestras casas y la usamos para alimentar la TV, el
equipo de sonido, la lavadora, la refrigeradora, etc.
La corriente continua (cc)
Es el resultado de el flujo de electrones (carga negativa) por un conductor (alambre de cobre casi
siempre), que va del terminal negativo al terminal positivo de la batería (circula en una sola
dirección) , pasando por una carga. Un foco / bombillo en este caso.
Transformación.
Este paso es en el que se consigue reducir la tensión de entrada a la fuente (220v o 125v) que son
los que nos otorga la red eléctrica. Esta parte del proceso de transformación, como bien indica su
nombre, se realiza con un transformador en bobina. La salida de este proceso generará de 5 a 12
voltios.
Rectificación.
La corriente que nos ofrece la compañía eléctrica es alterna, esto quiere decir, que sufre variaciones
en su línea de tiempo, con variaciones, nos referimos a variaciones de voltajes, por tanto, la tensión
es variable, no siempre es la misma. Eso lógicamente, no nos podría servir para alimentar a los
componentes de un PC, ya que imaginemos que si le estamos dando 12 voltios con corriente
alterna a un disco duro, lógicamente no funcionará ya que al ser variable, no estaríamos
ofreciéndole los 12 voltios constantes. Lo que se intenta con esta fase, es pasar de corriente alterna
a corriente continua, a través de un componente que se llama puente rectificador o de Graetz. Con
esto se logra que el voltaje no baje de 0 voltios, y siempre se mantenga por encima de esta cifra.
Filtrado
Ahora ya, disponemos de corriente continua, que es lo que nos interesaba, no obstante, aun no nos
sirve de nada, porque no es constante, y no nos serviría para alimentar a ningún circuito. Lo que se
hace en esta fase de filtrado, es aplanar al máximo la señal, para que no hayan oscilaciones, se
consigue con uno o varios condensadores, que retienen la corriente y la dejan pasar lentamente
para suavizar la señal, así se logra el efecto deseado.
Estabilización
Ya tenemos una señal continua bastante decente, casi del todo plana, ahora solo nos falta
estabilizarla por completo, para que cuando aumenta o descienda la señal de entrada a la fuente, no
afecte a la salida de la misma. Esto se consigue con un regulador.
IDENTIFICACIÓN DE LOS CABLES Y NIVELES DE VOLTAJES
Entonces, el valor del primer pico de corriente estará comprendido entre los dos valores anteriores.
Tras este primer pico de corriente se irán sucediendo otros muchos (o sea, deforma repetitiva) pero
estos últimos no llegarán a alcanzar el valor de corriente del primero si se respeta lo indicado más
arriba. De hecho, si se eligió correctamente el valor del condensador de filtro, serán de un valor
mucho menor que el primero.
La fuente de alimentación simple con rectificador de doble onda con transformador con secundario
dividido:
En esta fuente se usa un transformador con doble secundario o dividido. El secundario se comporta
en este caso como un divisor de tensión inductivo, de tal forma que tomando el punto central como
referencia de potenciales se tendrá encada extremo ondas senoidales iguales pero desfasadas 180º
una respecto la otra. Este hecho se aprovecha para montar dos rectificadores de media onda, uno
en cada extremo del secundario. la tensión rectificada de ambos rectificadores se suma sobre la
carga, produciendo la rectificación de doble onda sobre ella. Su esquema es el siguiente: La gráfica
con sus tensiones en cada punto es la mostrada en la figura:
La onda azul es la correspondiente a la tensión de salida de la fuente. En este caso suponemos
también conectada una resistencia de carga. Por otro lado, la sondas Roja y verde
corresponden a la tensión entregada por cada extremo del secundario del transformador. Se
puede apreciar perfectamente el desfase de180º al que haciamos referencia antes. En esta
fuente los diodos deben soportar una tensión inversa máxima de dos veces la tensión máxima
de cada parte del transformador. Así, si el transformador es de 12+12V en su secundario (esta
es la forma de expresar el hecho de que el secundario está dividido, siendo en este caso cada
parte del mismo de 12Veficaces) los diodos deberán aguantar una tensión inversa de unos 34V
como mínimo. En cuanto a la corriente máxima de pico que pueda tener que llegar a soportar
uno de los diodos (recordemos, el primer pico de carga del condensador, que en este caso
puede circular por un diodo o por el otro, y no hay forma de saber, a priori, por cuál) su cálculo
es idéntico al caso del rectificador de mediaonda. El condensador se calculará de la misma
forma que en el rectificador de mediaonda, pero teniendo en cuenta que la frecuencia con la
que éste se carga y descarga es doble que en dicho rectificador, o sea, tendremos que tomar
una frecuencia de valor 100Hz. Por esto último, para conseguir tensiones de rizado similares al
caso de media onda necesitaremos condensadores de la mitad de capacidad para el
rectificador de doble onda.
La fuente de alimentación simple con rectificador de doble onda con puente de diodos (puente
de Graetz): Este rectificador de doble onda es muy usado ya que elimina la necesidad de tener
que emplear transformadores con secundario dividido (más voluminosos y pesados). El
esquema de una fuente de alimentación simple que use este tipo de rectificador es el siguiente:

El puente consigue reconducir el paso de la corriente eléctrica haciendo que encada semiciclo
de la tensión del secundario del transformador siempre circule por la carga en el mismo sentido
(de eso trata la retificación).La tensión inversa máxima que ha de soportar cada diodo del puente
rectificador es tan sólo igual al valor de tensión máxima entregado por el secundario
deltransformador. En cuanto a la corriente de pico máxima por cada diodo decir quees
aproximádamente la misma que en el caso del rectificador de doble onda contransformador con
secundario dividido.El condensador se cálcula de la forma ya vista.
La fuente de alimentación simple simétrica con rectificador de doble ondacon puente de diodos:
Es posible conseguir una fuente de alimentación simple de este tipo si se emplea un
transformador con secundario dividido:

CONCEPTOS DE LOS COMPONENTES
TRANSFORMADOR
Se denomina transformador a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un
circuito eléctrico de corriente alterna, manteniendo la potencia. La potencia que ingresa al equipo, en el
caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las
máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño y tamaño, entre
otros factores.
DIODOS
Un diodo es un componente electrónico de dos terminales que permite la circulación de la corriente
eléctrica a través de él en un solo sentido.

RESISTENCIA
Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico
cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones. Cualquier
dispositivo o consumidor conectado a un circuito eléctrico representa en sí una carga, resistencia u
obstáculo para la circulación de la corriente eléctrica.

FILTRO
Un filtro eléctrico o filtro electrónico es un elemento que discrimina una determinada frecuencia o gama de
frecuencias de una señal eléctrica que pasa a través de él, pudiendo modificar tanto su amplitud como su
fase
CAPACITOR
Un condensador (en inglés, capacitor, nombre por el cual se le conoce frecuentemente en el ámbito de la
electrónica y otras ramas de la física aplicada), es un dispositivo pasivo, utilizado en electricidad y
electrónica, capaz de almacenar energía sustentando un campo eléctrico. Está formado por un par de
superficies conductoras, generalmente en forma de láminas o placas, en situación de influencia total (esto
es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra) separadas por un
material dieléctrico o por el vacío. Las placas, sometidas a una diferencia de potencial, adquieren una
determinada carga eléctrica, positiva en una de ellas y negativa en la otra, siendo nula la variación de
carga total.

FUSIBLE
Dispositivo, constituido por un filamento con bajo punto de fusión. El fusible se intercala en un punto de
una instalación eléctrica para que, por efecto Joule, se funda cuando la intensidad de corriente supere un
determinado valor, ya sea por un cortocircuito o por un exceso de carga, que pudiera poner en peligro la
integridad de la instalación con el subsiguiente peligro de incendio o destrucción de elementos.

INTEGRADOS
En la electrónica, un circuito integrado es una combinación de elementos de un circuito que están
miniaturizados y que forman parte de un mismo chip o soporte. La noción, por lo tanto, también se utiliza
como sinónimo de chip o microchip.
El circuito integrado está elaborado con un material semiconductor, sobre el cual se fabrican los circuitos
electrónicos a través de la fotolitografía. Estos circuitos, que ocupan unos pocos milímetros, se encuentran
protegidos por un encapsulado con conductores metálicos que permiten establecer la conexión entre dicha
pastilla de material semiconductor y el circuito impreso.
Existen varios tipos de circuitos integrados. Entre los más avanzados y populares puede mencionarse a los
microprocesadores, que se utilizan para controlar desde computadoras hasta teléfonos móviles y
electrodomésticos.

TRANSITORES
El transistor es un dispositivo electrónico semiconductor utilizado para producir una señal de salida en
respuesta a otra señal de entrada. Cumple funciones de amplificador, oscilador, conmutador o rectificador.
El término transistor es la contracción en inglés de transfer resistor (resistencia de transferencia).
Actualmente se encuentran prácticamente en todos los aparatos electrónicos de uso diario: radios,
televisores, reproductores de audio y video, relojes de cuarzo, computadoras, lámparas fluorescentes,
tomógrafos, teléfonos celulares, etc.

Weitere ähnliche Inhalte

Was ist angesagt?

Cuestionario mtto preventivo pc sistemas - resuelto
Cuestionario mtto preventivo pc   sistemas - resueltoCuestionario mtto preventivo pc   sistemas - resuelto
Cuestionario mtto preventivo pc sistemas - resuelto
DuvanCASAS
 
Cuestionario de la fuente de poder
Cuestionario de la fuente de poderCuestionario de la fuente de poder
Cuestionario de la fuente de poder
Alex Tomarema
 
Exposicion De La Fuente De Poder
Exposicion De La Fuente De PoderExposicion De La Fuente De Poder
Exposicion De La Fuente De Poder
alzate123
 

Was ist angesagt? (20)

FUENTE DE PODER DE UN PC
FUENTE DE PODER DE UN PCFUENTE DE PODER DE UN PC
FUENTE DE PODER DE UN PC
 
Cuestionario mtto preventivo pc sistemas - resuelto
Cuestionario mtto preventivo pc   sistemas - resueltoCuestionario mtto preventivo pc   sistemas - resuelto
Cuestionario mtto preventivo pc sistemas - resuelto
 
Fuentes de Poder - Arquitectura de PC
Fuentes de Poder - Arquitectura de PCFuentes de Poder - Arquitectura de PC
Fuentes de Poder - Arquitectura de PC
 
Fuentes De Poder Y Sus Caracteristicas
Fuentes De Poder Y Sus CaracteristicasFuentes De Poder Y Sus Caracteristicas
Fuentes De Poder Y Sus Caracteristicas
 
FUENTE DE PODER
FUENTE DE PODERFUENTE DE PODER
FUENTE DE PODER
 
Fuente
FuenteFuente
Fuente
 
Cuestionario de la fuente de poder
Cuestionario de la fuente de poderCuestionario de la fuente de poder
Cuestionario de la fuente de poder
 
Fuente de poder
Fuente de poderFuente de poder
Fuente de poder
 
Modelo osi
Modelo   osiModelo   osi
Modelo osi
 
Taller de reparacion y ensamblaje de pc
Taller de reparacion y ensamblaje de pcTaller de reparacion y ensamblaje de pc
Taller de reparacion y ensamblaje de pc
 
Exposicion De La Fuente De Poder
Exposicion De La Fuente De PoderExposicion De La Fuente De Poder
Exposicion De La Fuente De Poder
 
Fuentes de poder
Fuentes de poder Fuentes de poder
Fuentes de poder
 
Las fuentes de poder
Las fuentes de poderLas fuentes de poder
Las fuentes de poder
 
Presentacion del bios
Presentacion del biosPresentacion del bios
Presentacion del bios
 
cuestionario de cable estructurado
cuestionario de cable estructuradocuestionario de cable estructurado
cuestionario de cable estructurado
 
Trabajo fuente de poder
Trabajo fuente de poderTrabajo fuente de poder
Trabajo fuente de poder
 
2 Fuente de alimentacion practica
2 Fuente de alimentacion practica2 Fuente de alimentacion practica
2 Fuente de alimentacion practica
 
Que es la fuente de poder
Que es la fuente de poderQue es la fuente de poder
Que es la fuente de poder
 
Tipos de fuentes de poder
Tipos de fuentes de poderTipos de fuentes de poder
Tipos de fuentes de poder
 
Ensamble de Computadoras
Ensamble de ComputadorasEnsamble de Computadoras
Ensamble de Computadoras
 

Andere mochten auch

Voltajes de salida de la fuente de poder
Voltajes de salida de la fuente de poderVoltajes de salida de la fuente de poder
Voltajes de salida de la fuente de poder
Hamid Rujana Quintero
 
Tarjeta madre
Tarjeta madreTarjeta madre
Tarjeta madre
ianst
 
Fuente de poder y sus voltajes
Fuente de poder y sus voltajesFuente de poder y sus voltajes
Fuente de poder y sus voltajes
LinaMorales26
 
Taller mantenimeinto
Taller mantenimeintoTaller mantenimeinto
Taller mantenimeinto
leonardog07
 
Comandos básicos para la terminal de ubuntu
Comandos básicos para la terminal de ubuntuComandos básicos para la terminal de ubuntu
Comandos básicos para la terminal de ubuntu
Monchitocm Cuemtz
 
Fuente de Alimentación Lineal
Fuente de Alimentación LinealFuente de Alimentación Lineal
Fuente de Alimentación Lineal
Jomicast
 
Afiche la computadora y sus partes y el teclado (modificado)
Afiche la computadora y sus partes y el teclado (modificado)Afiche la computadora y sus partes y el teclado (modificado)
Afiche la computadora y sus partes y el teclado (modificado)
Xaymara-b
 
Cuestionario de informatica contestado
Cuestionario de informatica contestadoCuestionario de informatica contestado
Cuestionario de informatica contestado
valegis
 
Puertos Y Conectores De Un Pc
Puertos Y Conectores De Un PcPuertos Y Conectores De Un Pc
Puertos Y Conectores De Un Pc
Fabio Valencia
 
Guía n°2 educ tecnológica_lvl_séptimo básico
Guía n°2 educ tecnológica_lvl_séptimo básicoGuía n°2 educ tecnológica_lvl_séptimo básico
Guía n°2 educ tecnológica_lvl_séptimo básico
yanez_1964
 

Andere mochten auch (20)

Voltajes de salida de la fuente de poder
Voltajes de salida de la fuente de poderVoltajes de salida de la fuente de poder
Voltajes de salida de la fuente de poder
 
Cables y conectores
Cables y conectoresCables y conectores
Cables y conectores
 
Tarjeta madre
Tarjeta madreTarjeta madre
Tarjeta madre
 
Fuentes de poder
Fuentes de poderFuentes de poder
Fuentes de poder
 
Fuente de poder y sus voltajes
Fuente de poder y sus voltajesFuente de poder y sus voltajes
Fuente de poder y sus voltajes
 
Aprendizaje cooperativo - Tema el computador y sus partes
Aprendizaje cooperativo   - Tema el computador y sus partes Aprendizaje cooperativo   - Tema el computador y sus partes
Aprendizaje cooperativo - Tema el computador y sus partes
 
05 hardware
05 hardware05 hardware
05 hardware
 
Trabajo fuente de poder
Trabajo fuente de poderTrabajo fuente de poder
Trabajo fuente de poder
 
Taller mantenimeinto
Taller mantenimeintoTaller mantenimeinto
Taller mantenimeinto
 
Comandos básicos para la terminal de ubuntu
Comandos básicos para la terminal de ubuntuComandos básicos para la terminal de ubuntu
Comandos básicos para la terminal de ubuntu
 
Partes del teclado
Partes del tecladoPartes del teclado
Partes del teclado
 
Electronica basica y fuentes de poder ----
Electronica basica y fuentes de poder ----Electronica basica y fuentes de poder ----
Electronica basica y fuentes de poder ----
 
Fuente de Alimentación Lineal
Fuente de Alimentación LinealFuente de Alimentación Lineal
Fuente de Alimentación Lineal
 
El computador y sus Partes
El computador  y sus PartesEl computador  y sus Partes
El computador y sus Partes
 
Afiche la computadora y sus partes y el teclado (modificado)
Afiche la computadora y sus partes y el teclado (modificado)Afiche la computadora y sus partes y el teclado (modificado)
Afiche la computadora y sus partes y el teclado (modificado)
 
Tecnología - Historia del computador
Tecnología - Historia del computador Tecnología - Historia del computador
Tecnología - Historia del computador
 
Cuestionario de informatica contestado
Cuestionario de informatica contestadoCuestionario de informatica contestado
Cuestionario de informatica contestado
 
Cuestionario informatica general
Cuestionario informatica generalCuestionario informatica general
Cuestionario informatica general
 
Puertos Y Conectores De Un Pc
Puertos Y Conectores De Un PcPuertos Y Conectores De Un Pc
Puertos Y Conectores De Un Pc
 
Guía n°2 educ tecnológica_lvl_séptimo básico
Guía n°2 educ tecnológica_lvl_séptimo básicoGuía n°2 educ tecnológica_lvl_séptimo básico
Guía n°2 educ tecnológica_lvl_séptimo básico
 

Ähnlich wie partes de la fuente de poder

Características generales de la fuente atx y at
Características generales de la fuente atx y atCaracterísticas generales de la fuente atx y at
Características generales de la fuente atx y at
Diana Bohorquez
 
Características generales de la fuente atx y at
Características generales de la fuente atx y atCaracterísticas generales de la fuente atx y at
Características generales de la fuente atx y at
Diana Bohorquez
 

Ähnlich wie partes de la fuente de poder (20)

Características generales de la fuente atx y at
Características generales de la fuente atx y atCaracterísticas generales de la fuente atx y at
Características generales de la fuente atx y at
 
Características generales de la fuente atx y at
Características generales de la fuente atx y atCaracterísticas generales de la fuente atx y at
Características generales de la fuente atx y at
 
Caractersticasgeneralesdelafuenteatxyat 111014183243-phpapp02
Caractersticasgeneralesdelafuenteatxyat 111014183243-phpapp02Caractersticasgeneralesdelafuenteatxyat 111014183243-phpapp02
Caractersticasgeneralesdelafuenteatxyat 111014183243-phpapp02
 
Trabajo de wilson
Trabajo de wilsonTrabajo de wilson
Trabajo de wilson
 
Trabajo de wilson
Trabajo de wilsonTrabajo de wilson
Trabajo de wilson
 
Trabajo de wilson
Trabajo de wilsonTrabajo de wilson
Trabajo de wilson
 
Trabajo de wilson
Trabajo de wilsonTrabajo de wilson
Trabajo de wilson
 
Trabajo de wilson
Trabajo de wilsonTrabajo de wilson
Trabajo de wilson
 
Fuentes de poder
Fuentes de poderFuentes de poder
Fuentes de poder
 
Fuentes de poder
Fuentes de poderFuentes de poder
Fuentes de poder
 
Fuentes de poder
Fuentes de poderFuentes de poder
Fuentes de poder
 
La fuente de poder
La fuente de poderLa fuente de poder
La fuente de poder
 
La fuente de poder
La fuente de poderLa fuente de poder
La fuente de poder
 
Fuente+de+poder
 Fuente+de+poder Fuente+de+poder
Fuente+de+poder
 
Fuentes de _poder
Fuentes de _poderFuentes de _poder
Fuentes de _poder
 
Fuente de poder
Fuente de poderFuente de poder
Fuente de poder
 
2 fuentesdepoderodealimentacin-120210055159-phpapp02
2 fuentesdepoderodealimentacin-120210055159-phpapp022 fuentesdepoderodealimentacin-120210055159-phpapp02
2 fuentesdepoderodealimentacin-120210055159-phpapp02
 
Fuente de poder
Fuente de poderFuente de poder
Fuente de poder
 
Partes internas de un computador, Yoly Parra
Partes internas de un computador, Yoly ParraPartes internas de un computador, Yoly Parra
Partes internas de un computador, Yoly Parra
 
Fuentes de poder y gabinetes
Fuentes de poder y gabinetesFuentes de poder y gabinetes
Fuentes de poder y gabinetes
 

partes de la fuente de poder

  • 1. UNIVERSIDAD AGRARIA DEL ECUADOR. FACULTAD DE INGENIERIA EN COMPUTACIÓN E INFORMÁTICA CARPETA DE MANTENIMIENTO Y EMSAMBLAJE DE COMPUTADORAS TEMA:     PARTES DE LA FUENTE DE PODER VOLTAJES DE LA FUENTE DE PODER CABLES Y CONECTORES CONCEPTOS DE LOS COMPONENTES DE LA FUENTE DE PODER ALUMNO: FREDDY ANDRES VERDESOTO QUEVEDO CURSO: SEGUNDO “B” CATEDRATICO: ING. ARIEL PORTILLA AÑO LECTIVO. 2013 --------------------------------------------- 2014
  • 2. ¿QUE ES LA FUENTE DE PODER? Es una parte del ordenador que recibe la energía a través de los tomacorrientes, esa energía que se recibe se llama tensión alterna, se encuentra medida en 110 voltios o 220 voltios, es decir lo máximo a que puede llegar, esta energía es inestable, la fuente de poder estabiliza la tensión alterna y la transforma a tensión continua, esta tensión es estable y son bajos, se miden en 3 voltios, 5 voltios, 12 voltios. Básicamente una fuente de poder es un reductor de tensión eléctrica (voltaje). Muchos circuitos necesitan para su funcionamiento, una fuente de poder o alimentación de corriente continua (C.C.), pero lo que normalmente se encuentra es alimentación de corriente alterna (C.A.). Para lograr obtener corriente continua, la entrada de corriente alterna debe seguir un proceso de conversión. TIENEN UNOS TIPOS DE TENSIÓN: Tensión continua o directa Tención alterna CONECTORES La mayoría de los conectores de hoy son conectores de llave. Los conectores de llave están diseñados para inserción una sola dirección. Cada parte del conector tiene un cable de color que conduce un voltaje diferente. Se usan diferentes conectores para conectar componentes específicos y varias ubicaciones en la motherboard: Un conector Molex es un conector de llave que se enchufa a una unidad óptica o un disco duro.   Un conector Berg es un conector de llave que se enchufa a una unidad de disquete. Un conector Berg es más pequeño que un conector Molex. Para conectar la motherboard, se usa un conector ranurado de 20 ó 24 pines. El conector ranurado de 24 pines tiene dos filas de 12 pines y el conector ranurado de 20 pines tiene dos filas de 10 pines.
  • 3.   Un conector de alimentación auxiliar de 4 pines a 8 pines tiene dos filas de dos a cuatro pines y suministra energía a todas las áreas de la motherboard. El conector de alimentación auxiliar de 4 pines a 8 pines tiene la misma forma que el conector de alimentación principal, pero es más pequeño. Las fuentes de energía estándar antiguas usaban dos conectores llamados P8 y P9 para conectarse a la motherboard. El P8 y el P9 eran conectores sin llave. Podían instalarse al revés, lo cual implicaba daños potenciales a la motherboard o la fuente de energía. La instalación requería que los conectores estuvieran alineados con los cables negros juntos en el medio. NOMBRE DE LOS CONECTORES DE LA FUENTE DE PODER MOLEX D Este conector esta compuesto por 4 pines (contactos), estos molex D deben ir conectados al disco duro, cd-room, cd-rw, dvd-room, dvd-rw MOLEX PLANO Es aquel que da energía al floppy es decir a las disqueteras, este conector está compuesto por 4 pines y es más pequeño que el molex d.
  • 4. FUENTE DE ALIMENTACION ATX CARACTERÍSTICAS FUENTE DE PODER SEGÚN SU CLASE CARACTERÍSTICAS GENERALES DE LA FUENTE ATX Es de encendido digital, es decir, tiene un pulsador que al activarse regresa a su estado inicial, sin embargo ya generó la función deseada de encender ó apagar. Algunos modelos integran un interruptor trasero para evitar consumo innecesario de energía eléctrico durante el estado de reposo "Stand By". Este tipo de fuentes se integran desde los equipos con microprocesador Intel® Pentium MMX hasta los equipos con los mas modernos microprocesadores. Es una fuente que se queda en "Stand By" ó en estado de espera, por lo que consumen electricidad aún cuando el equipo este "apagado", lo que también le da la capacidad de ser manipulada con software. 1.- Ventilador: expulsa el aire caliente del interior de la fuente y del gabinete, para mantener frescos los circuitos. 2.- Interruptor de seguridad: permite encender la fuente de manera mecánica. 3.- Conector de alimentación: recibe el cable de corriente desde el enchufe doméstico. 4.- Selector de voltaje: permite seleccionar el voltaje americano de 127V ó el europeo de 240V. 5.- Conector SATA: utilizado para alimentar los discos duros y las unidades ópticas tipos SATA.
  • 5. 6.- Conector de 4 terminales: utilizado para alimentar de manera directa al microprocesador. 7.- Conector ATX: alimenta de electricidad a la tarjeta principal. 8.- Conector de 4 terminales IDE: utilizado para alimentar los discos duros y las unidades ópticas. 9.- Conector de 4 terminales FD: alimenta las disqueteras. CONECTORES DE LA FUENTE ATX PINOUT Conector Tipo MOLEX Dispositivos Disqueteras de 5.25", Unidades ópticas de 5.25" ATAPI y discos duros de 3.5" IDE Imagen de conector Esquema Líneas de alimentación 1.- Red +5V (Alimentación +5 Volts) 2.- Black GND (Tierra) 3.- Black GND (Tierra) 4.- Yellow +12V (Alimentación + 12Volts) 1.- Red +5V (Alimentación +5 Volts) Tipo BERG Disqueteras de 3.5" 2.- Black GND (Tierra) 3.- Black GND (Tierra) Tipo SATA / SATA 2 Discos duros 3.5" SATA / SATA 2 I Conector ATX versión 1 (20 terminales + 4) interconecta la fuente ATX con la tarjeta principal (Motherboard) 4.- Yellow +12V (Alimentación + 12Volts) 1.- V33 (3.3 Volts) 9.- V5 (5 Volts) 2.- V33 (3.3 Volts) 10.GND (tierra) 3.- V33 (3.3 Volts) 11.Reserved (reservado) 4.- GND (tierra) 12.- GND (tierra) 5.- GND (tierra) 13.- V12 (12 Volts) 6.- GND (tierra) 14.- V12 (12 Volts) 7.- V5 (5 Volts) 15.- V12 (12 Volts) 8.-V5 (5 Volts) 1. Naranja (+3.3V) 11. Naranja (+3.3V) 2. Naranja (+3.3V) 12. Azul (-12 V) 3. Negro (Tierra) 13. Negro (Tierra) 4. Rojo (+5 Volts) 14. Verde (Power On) 5. Negro (Tierra) 15. Negro (Tierra) 6. Rojo (+5 Volts) 16. Negro (Tierra) 7. Negro (Tierra) 17. Negro (Tierra) 8. Gris (Power Good) 18. Blanco (-5V) 9. Purpura (+5VSB) 19. Rojo (+5 Volts) 10. Amarillo (+12V) 20. Rojo (+5 Volts) 1. Naranja (+3.3v) 3.
  • 6. Negro (Tierra) 2. Amarillo (+12V) 4. Rojo (+5V) 1. Naranja (+3.3V) 13. Naranja (+3.3V) 2. Naranja (+3.3V) 14. Azul (-12 V) 3. Negro (Tierra) 15. Negro (Tierra) 4. Rojo (+5 Volts) 16. Verde (Power On) 5. Negro (Tierra) 17. Negro (Tierra) 6. Rojo (+5 Volts) 18. Negro (Tierra) 7. Negro (Tierra) 19 Negro (Tierra) 8. Gris (Power Good) 20 Blanco (-5V) 9. Purpura (+5VSB) 21. Rojo (+5 Volts) 10. Amarillo (+12V) 22. Rojo (+5 Volts) 11. Amarillo (+12V) 23. Rojo (+5 Volts) 12. Naranja (+3.3V) 24. Negro (Tierra) I Conector ATX versión 2 (24 terminales) interconecta la fuente ATX y la tarjeta principal (Motherboard) Conector para procesador de 4 terminales Alimenta a los procesadores modernos Conector PCIe (6 y 8 terminales) Alimenta directamente las tarjetas de video tipo PCIe 1. Negro (Tierra) 3. Amarillo (+12V) 2. Negro (Tierra) 4. Amarillo (+12V) 1.- Negro (Tierra) 5.- Amarillo (+12V) 2.- Negro (Tierra) 6.- Amarillo (+12V) 3.- Negro (Tierra) 7.- Amarillo (+12V) 4.- Negro (Tierra) 8.- Amarillo (+12V) Potencia de la fuente ATX: Las fuentes ATX comerciales tienen Wattajes de: 300 Watts (W), 350 W, 400 W, 480 W, 500 W, 630 W, 1200 W y hasta 1350 W. Repasando algunos términos de electricidad, recordemos que la electricidad no es otra cosa mas que electrones circulando a través de un medio conductor. La fuente ATX es muy similar a la AT, pero tiene una serie de diferencias, tanto en su funcionamiento como en los voltajes entregados a la placa madre. La fuente ATX consta en realidad de dos partes: una fuente principal, que corresponde a la vieja fuente AT (con algunos agregados), y una auxiliar. Ejemplo: si una fuente ATX indica que es de 400 W entonces: El Wattaje = Voltaje X Corriente, W = V X A Sabemos que el voltaje es de 127 V y tenemos los Watts, solo despejamos la corriente. A=W/V , A = 400 W / 127 V , A = 3.4
  • 7. Entonces lo que interesa es la cantidad de corriente que puede suministrar la fuente, porque a mayor cantidad de corriente, habrá mayor potencia y podrá alimentar una mayor cantidad de dispositivos. En este caso es de 3.4 Amperes. FUNCIONAMIENTO DE UNA FUENTE ATX 1.- Transformación: el voltaje de la línea doméstica se reduce de 127 Volts a aproximadamente 12 Volts ó 5 V. Utiliza un elemento electrónico llamado bobina reductora. 2.- Rectificación: se transforma el voltaje de corriente alterna en voltaje de corriente directa, esto lo hace dejando pasar solo los valores positivos de la onda (se genera corriente continua), por medio de elementos electrónicos llamados diodos. 3.- Filtrado: esta le da calidad a la corriente continua y suaviza el voltaje, por medio de elementos electrónicos llamados capacitores. 4.- Estabilización: el voltaje ya suavizado se le da la forma lineal que utilizan los dispositivos. Se usa un elemento electrónico especial llamado circuito integrado. Esta fase es la que entrega la energía necesaria la computadora. OTROS ASPECTOS PARA TENER EN CUENTA Corriente alterna La corriente alterna (como su nombre lo indica) circula por durante un tiempo en un sentido y después en sentido opuesto, volviéndose a repetir el mismo proceso en forma constante. Este tipo de corriente es la que nos llega a nuestras casas y la usamos para alimentar la TV, el equipo de sonido, la lavadora, la refrigeradora, etc. La corriente continua (cc)
  • 8. Es el resultado de el flujo de electrones (carga negativa) por un conductor (alambre de cobre casi siempre), que va del terminal negativo al terminal positivo de la batería (circula en una sola dirección) , pasando por una carga. Un foco / bombillo en este caso. Transformación. Este paso es en el que se consigue reducir la tensión de entrada a la fuente (220v o 125v) que son los que nos otorga la red eléctrica. Esta parte del proceso de transformación, como bien indica su nombre, se realiza con un transformador en bobina. La salida de este proceso generará de 5 a 12 voltios. Rectificación. La corriente que nos ofrece la compañía eléctrica es alterna, esto quiere decir, que sufre variaciones en su línea de tiempo, con variaciones, nos referimos a variaciones de voltajes, por tanto, la tensión es variable, no siempre es la misma. Eso lógicamente, no nos podría servir para alimentar a los componentes de un PC, ya que imaginemos que si le estamos dando 12 voltios con corriente alterna a un disco duro, lógicamente no funcionará ya que al ser variable, no estaríamos ofreciéndole los 12 voltios constantes. Lo que se intenta con esta fase, es pasar de corriente alterna a corriente continua, a través de un componente que se llama puente rectificador o de Graetz. Con esto se logra que el voltaje no baje de 0 voltios, y siempre se mantenga por encima de esta cifra. Filtrado Ahora ya, disponemos de corriente continua, que es lo que nos interesaba, no obstante, aun no nos sirve de nada, porque no es constante, y no nos serviría para alimentar a ningún circuito. Lo que se hace en esta fase de filtrado, es aplanar al máximo la señal, para que no hayan oscilaciones, se consigue con uno o varios condensadores, que retienen la corriente y la dejan pasar lentamente para suavizar la señal, así se logra el efecto deseado. Estabilización Ya tenemos una señal continua bastante decente, casi del todo plana, ahora solo nos falta estabilizarla por completo, para que cuando aumenta o descienda la señal de entrada a la fuente, no afecte a la salida de la misma. Esto se consigue con un regulador.
  • 9. IDENTIFICACIÓN DE LOS CABLES Y NIVELES DE VOLTAJES
  • 10. Entonces, el valor del primer pico de corriente estará comprendido entre los dos valores anteriores. Tras este primer pico de corriente se irán sucediendo otros muchos (o sea, deforma repetitiva) pero estos últimos no llegarán a alcanzar el valor de corriente del primero si se respeta lo indicado más arriba. De hecho, si se eligió correctamente el valor del condensador de filtro, serán de un valor mucho menor que el primero. La fuente de alimentación simple con rectificador de doble onda con transformador con secundario dividido: En esta fuente se usa un transformador con doble secundario o dividido. El secundario se comporta en este caso como un divisor de tensión inductivo, de tal forma que tomando el punto central como referencia de potenciales se tendrá encada extremo ondas senoidales iguales pero desfasadas 180º una respecto la otra. Este hecho se aprovecha para montar dos rectificadores de media onda, uno en cada extremo del secundario. la tensión rectificada de ambos rectificadores se suma sobre la carga, produciendo la rectificación de doble onda sobre ella. Su esquema es el siguiente: La gráfica con sus tensiones en cada punto es la mostrada en la figura:
  • 11. La onda azul es la correspondiente a la tensión de salida de la fuente. En este caso suponemos también conectada una resistencia de carga. Por otro lado, la sondas Roja y verde corresponden a la tensión entregada por cada extremo del secundario del transformador. Se puede apreciar perfectamente el desfase de180º al que haciamos referencia antes. En esta fuente los diodos deben soportar una tensión inversa máxima de dos veces la tensión máxima de cada parte del transformador. Así, si el transformador es de 12+12V en su secundario (esta es la forma de expresar el hecho de que el secundario está dividido, siendo en este caso cada parte del mismo de 12Veficaces) los diodos deberán aguantar una tensión inversa de unos 34V como mínimo. En cuanto a la corriente máxima de pico que pueda tener que llegar a soportar uno de los diodos (recordemos, el primer pico de carga del condensador, que en este caso puede circular por un diodo o por el otro, y no hay forma de saber, a priori, por cuál) su cálculo es idéntico al caso del rectificador de mediaonda. El condensador se calculará de la misma forma que en el rectificador de mediaonda, pero teniendo en cuenta que la frecuencia con la que éste se carga y descarga es doble que en dicho rectificador, o sea, tendremos que tomar una frecuencia de valor 100Hz. Por esto último, para conseguir tensiones de rizado similares al caso de media onda necesitaremos condensadores de la mitad de capacidad para el rectificador de doble onda. La fuente de alimentación simple con rectificador de doble onda con puente de diodos (puente de Graetz): Este rectificador de doble onda es muy usado ya que elimina la necesidad de tener
  • 12. que emplear transformadores con secundario dividido (más voluminosos y pesados). El esquema de una fuente de alimentación simple que use este tipo de rectificador es el siguiente: El puente consigue reconducir el paso de la corriente eléctrica haciendo que encada semiciclo de la tensión del secundario del transformador siempre circule por la carga en el mismo sentido (de eso trata la retificación).La tensión inversa máxima que ha de soportar cada diodo del puente rectificador es tan sólo igual al valor de tensión máxima entregado por el secundario deltransformador. En cuanto a la corriente de pico máxima por cada diodo decir quees aproximádamente la misma que en el caso del rectificador de doble onda contransformador con secundario dividido.El condensador se cálcula de la forma ya vista. La fuente de alimentación simple simétrica con rectificador de doble ondacon puente de diodos:
  • 13. Es posible conseguir una fuente de alimentación simple de este tipo si se emplea un transformador con secundario dividido: CONCEPTOS DE LOS COMPONENTES TRANSFORMADOR Se denomina transformador a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la potencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño y tamaño, entre otros factores.
  • 14. DIODOS Un diodo es un componente electrónico de dos terminales que permite la circulación de la corriente eléctrica a través de él en un solo sentido. RESISTENCIA Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones. Cualquier dispositivo o consumidor conectado a un circuito eléctrico representa en sí una carga, resistencia u obstáculo para la circulación de la corriente eléctrica. FILTRO Un filtro eléctrico o filtro electrónico es un elemento que discrimina una determinada frecuencia o gama de frecuencias de una señal eléctrica que pasa a través de él, pudiendo modificar tanto su amplitud como su fase
  • 15. CAPACITOR Un condensador (en inglés, capacitor, nombre por el cual se le conoce frecuentemente en el ámbito de la electrónica y otras ramas de la física aplicada), es un dispositivo pasivo, utilizado en electricidad y electrónica, capaz de almacenar energía sustentando un campo eléctrico. Está formado por un par de superficies conductoras, generalmente en forma de láminas o placas, en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra) separadas por un material dieléctrico o por el vacío. Las placas, sometidas a una diferencia de potencial, adquieren una determinada carga eléctrica, positiva en una de ellas y negativa en la otra, siendo nula la variación de carga total. FUSIBLE Dispositivo, constituido por un filamento con bajo punto de fusión. El fusible se intercala en un punto de una instalación eléctrica para que, por efecto Joule, se funda cuando la intensidad de corriente supere un determinado valor, ya sea por un cortocircuito o por un exceso de carga, que pudiera poner en peligro la integridad de la instalación con el subsiguiente peligro de incendio o destrucción de elementos. INTEGRADOS En la electrónica, un circuito integrado es una combinación de elementos de un circuito que están miniaturizados y que forman parte de un mismo chip o soporte. La noción, por lo tanto, también se utiliza como sinónimo de chip o microchip. El circuito integrado está elaborado con un material semiconductor, sobre el cual se fabrican los circuitos electrónicos a través de la fotolitografía. Estos circuitos, que ocupan unos pocos milímetros, se encuentran
  • 16. protegidos por un encapsulado con conductores metálicos que permiten establecer la conexión entre dicha pastilla de material semiconductor y el circuito impreso. Existen varios tipos de circuitos integrados. Entre los más avanzados y populares puede mencionarse a los microprocesadores, que se utilizan para controlar desde computadoras hasta teléfonos móviles y electrodomésticos. TRANSITORES El transistor es un dispositivo electrónico semiconductor utilizado para producir una señal de salida en respuesta a otra señal de entrada. Cumple funciones de amplificador, oscilador, conmutador o rectificador. El término transistor es la contracción en inglés de transfer resistor (resistencia de transferencia). Actualmente se encuentran prácticamente en todos los aparatos electrónicos de uso diario: radios, televisores, reproductores de audio y video, relojes de cuarzo, computadoras, lámparas fluorescentes, tomógrafos, teléfonos celulares, etc.