SlideShare ist ein Scribd-Unternehmen logo
1 von 57
Downloaden Sie, um offline zu lesen
On Approximating the Smallest Enclosing
Bregman Balls
Frank Nielsen1

Richard Nock2

1 Sony

Computer Science Laboratories, Inc.
Fundamental Research Laboratory
Frank.Nielsen@acm.org
2 University

of Antilles-Guyanne
DSI-GRIMAAG
Richard.Nock@martinique.univ-ag.fr

March 2006

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Smallest Enclosing Balls
Problem
Given S = {s1 , ..., sn }, compute a simplified description, called
the center, that fits well S (i.e., summarizes S).
Two optimization criteria:
M IN AVG Find a center c∗ which minimizes the average
distortion w.r.t S: c∗ = argminc i d(c, si ).
M IN M AX Find a center c∗ which minimizes the maximal
distortion w.r.t S: c∗ = argminc maxi d(c, si ).
Investigated in Applied Mathematics:
Computational geometry (1-center problem),
Computational statistics (1-point estimator),
Machine learning (1-class classification),
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Smallest Enclosing Balls in Computational Geometry
Distortion measure d(·, ·) is the geometric distance:
Euclidean distance L2 .
c∗ is the circumcenter of S for M IN M AX,
Squared Euclidean distance L2 .
2
c∗ is the centroid of S for M IN AVG (→ k -means),
Euclidean distance L2 .
c∗ is the Fermat-Weber point for M IN AVG.

Centroid
M IN AVG L2
2

Circumcenter
M IN M AX L2

F. Nielsen and R. Nock

Fermat-Weber
M IN AVG L2

On Approximating the Smallest Enclosing Bregman Balls
Core-sets for M IN M AX Ball
˘
→ Introduced by Badoiu and Clarkson [BC’02]
Approximating M IN M AX [BC’02]: ||c − c∗ || ≤ r ∗
A -approximation for the M IN M AX ball can be found in O( dn )
2
time using algorithm BC. [for point/ball sets]
Algorithm BC(S, T )
Input: S = {s1 , s2 , ..., sn }
Output: Circumcenter c such that ||c − c∗ || ≤
Choose at random c ∈ S
for t = 1, 2, ..., T do
Find furthest point
s ← arg maxs ∈S c − s
Update circumcenter
t
1
c ← t+1 c + t+1 s

r∗
√
T

2

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Initialization

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 1

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 2

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 3

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 4

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 5

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 6

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 7

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 8

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 9

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Summary
After 10 iterations, we visualize the ball traces and the core-set.

Ball traces

Core-set

Core-set’s size is independent of the dimension d.
(depends only on 1 )
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Distortions: Bregman Divergences
Definition
Bregman divergences are parameterized (F ) families of
distortions.
Let F : X −→ R, such that F is strictly convex and differentiable
on int(X ), for a convex domain X ⊆ Rd .
Bregman divergence DF :
DF (x, y) = F (x) − F (y) − x − y,

F

·, ·

:
:

F (y)

.

gradient operator of F
Inner product (dot product)
(→ DF is the tail of a Taylor expansion of F )

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Visualizing F and DF
F (·)

DF (x, y)
x − y,

y

F (y)

x

DF (x, y) = F (x) − F (y) − x − y,

F (y)

.

(→ DF is the tail of a Taylor expansion of F )
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Bregman Balls
Two Bregman balls:
Bc,r = {x ∈ X : DF ( c , x) ≤ r }, Bc,r = {x ∈ X : DF (x, c ) ≤ r }

Euclidean Ball: Bc,r = {x ∈ X : x − c
(r : squared radius.

L2 :
2

2
2

≤ r } = Bc,r

Bregman divergence F (x) =

d
i=1

xi2 )

Lemma [NN’05]
The smallest enclosing Bregman ball Bc∗ ,r ∗ of S is unique.
Theorem [BMDG’04]
The M IN AVG Ball for Bregman divergences is the centroid .
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Applying BC for divergences yields poor result

−→ design a tailored algorithm for divergences.

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Bregman BC Algorithm
BBC generalizes BC to Bregman divergences
(analysis in [NN’05]).
Algorithm BBC(S, T )
Choose at random c ∈ S
for t = 1, 2, ..., T do
Furthest point w.r.t. DF
s ← arg maxs ∈S DF (c, s )
Circumcenter update
t
1
c ← −1 t+1 F (c) + t+1
F

F (s)

Observations
BBC(L2 ) is BC.
2
DF (c, x) is convex in c but not necessarily the ball’s
boundary ∂Bc,r
(depends on x given c; see Itakura-Saito ball).
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Initialization
d

DF (p, q) =

(
i=1

pi
p
− log i − 1), [F (x) = −
qi
qi

F. Nielsen and R. Nock

d

log xi ]
i=1

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 1

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 2

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 3

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 4

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 5

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 6

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 7

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 8

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 9

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC(Itakura-Saito): Summary

n = 100 points (d = 2)

Sampling Ball

All iterations

F. Nielsen and R. Nock

Core-set

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Initialization
d

DF (p, q) =
i=1

p
(pi log i − pi + qi ), [F (x) = −
qi

F. Nielsen and R. Nock

d

xi log xi ]
i=1

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 1

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 2

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 3

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 4

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 5

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 6

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 7

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 8

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 9

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC(Kullbach-Leibler): Summary

n = 100, d = 2.

Sampling Ball

All iterations

F. Nielsen and R. Nock

Core-set

On Approximating the Smallest Enclosing Bregman Balls
Fitting Bregman Balls
For a same dataset (drawn from a 2D Gaussian distribution)
Euclidean ball (L2 ),
2
Itakura-Saito ball,
Kullbach-Leibler ball (as known as Information ball).

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 1

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 2

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 3

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 4

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 5

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 6

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 7

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 8

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 9

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: After 10 iterations

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
Experiments with BBC
Kullbach-Leibler ball, 100 runs
(n = 1000, T = 200 on the plane: d = 2)
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
0

20

40

60

∗

80 100 120 140 160 180 200

∗

Plain curves (BBC): DF (c ,c)+DF (c,c ) .
2
Dashed curves: Upperbound ||c − c∗ || from [BC’02]:

F. Nielsen and R. Nock

1
T

for L2 .
2

On Approximating the Smallest Enclosing Bregman Balls
Bregman divergences ↔ Functional averages

Bijection (core-sets) [NN’05]
F (s)

DF (c, s)

cj (1 ≤ j ≤ d)

Rd
I

Pd

L2 norm
2
Pd
2
j=1 (cj − sj )

Arithmetic mean
Pm
i=1 αi si,j

(I +,∗ )d
R
/ d-simplex

Pd

Information/Kullbach-Leibler divergence
Pd
j=1 cj log(cj /sj ) − cj + sj

Geometric mean
Qm αi
i=1 si,j

(I +,∗ )d
R

−

Rd
I

sT Cov−1 s
p ∈ N {0, 1}
I

Itakura-Saito divergence
Pd
j=1 (cj /sj ) − log(cj /sj ) − 1
Mahalanobis divergence
(c − s)T Cov−1 (c − s)

Harmonic mean
P
1/ m (αi /si,j )
i=1
Arithmetic mean
Pm
i=1 αi si,j
Weighted power mean

Domain

R d /I +
I
R

2
j=1 sj

d

j=1 sj

Pd
j=1

(1/p)

log sj − sj
log sj

Pd

p
j=1 sj

Pd

p
c
j
j=1 p

(p−1)s

+

p

p
j

p−1

− cj sj

 Pm

i=1



p−1 1/(p−1)

αi si,j

Bregman divergences ↔ Family of exponential distributions
[BMDG’04].

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
References

˘
[BC’02] M. Badoiu and K. L. Clarkson, Core-sets for balls,
Manuscript, 2002.
(M IN M AX core-set and (1 + )-approximation)
[NN’04] F. Nielsen and R. Nock, Approximating Smallest
Enclosing Balls, ICCSA 2004.
(Survey on M IN M AX)
[BMDG’04] A. Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh,
Clustering with Bregman Divergences, SDM 2004.
(Bregman divergences and k-means)
[NN’05] R. Nock and F. Nielsen, Fitting the Smallest
Enclosing Bregman Ball, ECML 2005.
(Bregman Balls)

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Linux R and Windows R codes
Available from our Web pages:
http://www.csl.sony.co.jp/person/nielsen/
BregmanBall/
http://www.univ-ag.fr/∼rnock/BregmanBall/

Command line executable: cluster
-h
-B

display this help
choose Bregman divergence
(0: Itakura-Saito, 1: Euclidean, 2: Kullbach-Leibler (simplex), 3: Kullbach-Leibler (general), 4: Csiszar)

-d
-n
-k
-g

dimension
number of points
number of theoretical clusters
type of clusters
(0: Gaussian, 1: Ring Gaussian, 2: Uniform, 3: Gaussian with small σ, 4: Uniform Bregman)

-S
...

number of runs
...
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls

Weitere ähnliche Inhalte

Kürzlich hochgeladen

Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Peter Udo Diehl
 

Kürzlich hochgeladen (20)

Connecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAKConnecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAK
 
AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101
 
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
 
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
 
Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara Laskowska
 
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya HalderCustom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
 
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdfSimplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
 
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and Planning
 
Enterprise Knowledge Graphs - Data Summit 2024
Enterprise Knowledge Graphs - Data Summit 2024Enterprise Knowledge Graphs - Data Summit 2024
Enterprise Knowledge Graphs - Data Summit 2024
 
Intro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджераIntro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджера
 
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
 
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
 
Designing for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at ComcastDesigning for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at Comcast
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
 
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
 
Buy Epson EcoTank L3210 Colour Printer Online.pptx
Buy Epson EcoTank L3210 Colour Printer Online.pptxBuy Epson EcoTank L3210 Colour Printer Online.pptx
Buy Epson EcoTank L3210 Colour Printer Online.pptx
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
 

Empfohlen

How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 

Empfohlen (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

On Approximating the Smallest Enclosing Bregman Balls

  • 1. On Approximating the Smallest Enclosing Bregman Balls Frank Nielsen1 Richard Nock2 1 Sony Computer Science Laboratories, Inc. Fundamental Research Laboratory Frank.Nielsen@acm.org 2 University of Antilles-Guyanne DSI-GRIMAAG Richard.Nock@martinique.univ-ag.fr March 2006 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 2. Smallest Enclosing Balls Problem Given S = {s1 , ..., sn }, compute a simplified description, called the center, that fits well S (i.e., summarizes S). Two optimization criteria: M IN AVG Find a center c∗ which minimizes the average distortion w.r.t S: c∗ = argminc i d(c, si ). M IN M AX Find a center c∗ which minimizes the maximal distortion w.r.t S: c∗ = argminc maxi d(c, si ). Investigated in Applied Mathematics: Computational geometry (1-center problem), Computational statistics (1-point estimator), Machine learning (1-class classification), F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 3. Smallest Enclosing Balls in Computational Geometry Distortion measure d(·, ·) is the geometric distance: Euclidean distance L2 . c∗ is the circumcenter of S for M IN M AX, Squared Euclidean distance L2 . 2 c∗ is the centroid of S for M IN AVG (→ k -means), Euclidean distance L2 . c∗ is the Fermat-Weber point for M IN AVG. Centroid M IN AVG L2 2 Circumcenter M IN M AX L2 F. Nielsen and R. Nock Fermat-Weber M IN AVG L2 On Approximating the Smallest Enclosing Bregman Balls
  • 4. Core-sets for M IN M AX Ball ˘ → Introduced by Badoiu and Clarkson [BC’02] Approximating M IN M AX [BC’02]: ||c − c∗ || ≤ r ∗ A -approximation for the M IN M AX ball can be found in O( dn ) 2 time using algorithm BC. [for point/ball sets] Algorithm BC(S, T ) Input: S = {s1 , s2 , ..., sn } Output: Circumcenter c such that ||c − c∗ || ≤ Choose at random c ∈ S for t = 1, 2, ..., T do Find furthest point s ← arg maxs ∈S c − s Update circumcenter t 1 c ← t+1 c + t+1 s r∗ √ T 2 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 5. Demo Algorithm BC: Initialization F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 6. Demo Algorithm BC: Iteration 1 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 7. Demo Algorithm BC: Iteration 2 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 8. Demo Algorithm BC: Iteration 3 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 9. Demo Algorithm BC: Iteration 4 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 10. Demo Algorithm BC: Iteration 5 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 11. Demo Algorithm BC: Iteration 6 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 12. Demo Algorithm BC: Iteration 7 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 13. Demo Algorithm BC: Iteration 8 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 14. Demo Algorithm BC: Iteration 9 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 15. Demo Algorithm BC: Summary After 10 iterations, we visualize the ball traces and the core-set. Ball traces Core-set Core-set’s size is independent of the dimension d. (depends only on 1 ) F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 16. Distortions: Bregman Divergences Definition Bregman divergences are parameterized (F ) families of distortions. Let F : X −→ R, such that F is strictly convex and differentiable on int(X ), for a convex domain X ⊆ Rd . Bregman divergence DF : DF (x, y) = F (x) − F (y) − x − y, F ·, · : : F (y) . gradient operator of F Inner product (dot product) (→ DF is the tail of a Taylor expansion of F ) F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 17. Visualizing F and DF F (·) DF (x, y) x − y, y F (y) x DF (x, y) = F (x) − F (y) − x − y, F (y) . (→ DF is the tail of a Taylor expansion of F ) F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 18. Bregman Balls Two Bregman balls: Bc,r = {x ∈ X : DF ( c , x) ≤ r }, Bc,r = {x ∈ X : DF (x, c ) ≤ r } Euclidean Ball: Bc,r = {x ∈ X : x − c (r : squared radius. L2 : 2 2 2 ≤ r } = Bc,r Bregman divergence F (x) = d i=1 xi2 ) Lemma [NN’05] The smallest enclosing Bregman ball Bc∗ ,r ∗ of S is unique. Theorem [BMDG’04] The M IN AVG Ball for Bregman divergences is the centroid . F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 19. Applying BC for divergences yields poor result −→ design a tailored algorithm for divergences. F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 20. Bregman BC Algorithm BBC generalizes BC to Bregman divergences (analysis in [NN’05]). Algorithm BBC(S, T ) Choose at random c ∈ S for t = 1, 2, ..., T do Furthest point w.r.t. DF s ← arg maxs ∈S DF (c, s ) Circumcenter update t 1 c ← −1 t+1 F (c) + t+1 F F (s) Observations BBC(L2 ) is BC. 2 DF (c, x) is convex in c but not necessarily the ball’s boundary ∂Bc,r (depends on x given c; see Itakura-Saito ball). F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 21. Demo BBC (Itakura-Saito): Initialization d DF (p, q) = ( i=1 pi p − log i − 1), [F (x) = − qi qi F. Nielsen and R. Nock d log xi ] i=1 On Approximating the Smallest Enclosing Bregman Balls
  • 22. Demo BBC (Itakura-Saito): Iteration 1 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 23. Demo BBC (Itakura-Saito): Iteration 2 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 24. Demo BBC (Itakura-Saito): Iteration 3 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 25. Demo BBC (Itakura-Saito): Iteration 4 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 26. Demo BBC (Itakura-Saito): Iteration 5 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 27. Demo BBC (Itakura-Saito): Iteration 6 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 28. Demo BBC (Itakura-Saito): Iteration 7 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 29. Demo BBC (Itakura-Saito): Iteration 8 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 30. Demo BBC (Itakura-Saito): Iteration 9 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 31. Demo BBC(Itakura-Saito): Summary n = 100 points (d = 2) Sampling Ball All iterations F. Nielsen and R. Nock Core-set On Approximating the Smallest Enclosing Bregman Balls
  • 32. Demo BBC (Kullbach-Leibler): Initialization d DF (p, q) = i=1 p (pi log i − pi + qi ), [F (x) = − qi F. Nielsen and R. Nock d xi log xi ] i=1 On Approximating the Smallest Enclosing Bregman Balls
  • 33. Demo BBC (Kullbach-Leibler): Iteration 1 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 34. Demo BBC (Kullbach-Leibler): Iteration 2 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 35. Demo BBC (Kullbach-Leibler): Iteration 3 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 36. Demo BBC (Kullbach-Leibler): Iteration 4 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 37. Demo BBC (Kullbach-Leibler): Iteration 5 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 38. Demo BBC (Kullbach-Leibler): Iteration 6 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 39. Demo BBC (Kullbach-Leibler): Iteration 7 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 40. Demo BBC (Kullbach-Leibler): Iteration 8 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 41. Demo BBC (Kullbach-Leibler): Iteration 9 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 42. Demo BBC(Kullbach-Leibler): Summary n = 100, d = 2. Sampling Ball All iterations F. Nielsen and R. Nock Core-set On Approximating the Smallest Enclosing Bregman Balls
  • 43. Fitting Bregman Balls For a same dataset (drawn from a 2D Gaussian distribution) Euclidean ball (L2 ), 2 Itakura-Saito ball, Kullbach-Leibler ball (as known as Information ball). Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 44. BBC: Iteration 1 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 45. BBC: Iteration 2 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 46. BBC: Iteration 3 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 47. BBC: Iteration 4 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 48. BBC: Iteration 5 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 49. BBC: Iteration 6 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 50. BBC: Iteration 7 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 51. BBC: Iteration 8 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 52. BBC: Iteration 9 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 53. BBC: After 10 iterations Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 54. Experiments with BBC Kullbach-Leibler ball, 100 runs (n = 1000, T = 200 on the plane: d = 2) 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 20 40 60 ∗ 80 100 120 140 160 180 200 ∗ Plain curves (BBC): DF (c ,c)+DF (c,c ) . 2 Dashed curves: Upperbound ||c − c∗ || from [BC’02]: F. Nielsen and R. Nock 1 T for L2 . 2 On Approximating the Smallest Enclosing Bregman Balls
  • 55. Bregman divergences ↔ Functional averages Bijection (core-sets) [NN’05] F (s) DF (c, s) cj (1 ≤ j ≤ d) Rd I Pd L2 norm 2 Pd 2 j=1 (cj − sj ) Arithmetic mean Pm i=1 αi si,j (I +,∗ )d R / d-simplex Pd Information/Kullbach-Leibler divergence Pd j=1 cj log(cj /sj ) − cj + sj Geometric mean Qm αi i=1 si,j (I +,∗ )d R − Rd I sT Cov−1 s p ∈ N {0, 1} I Itakura-Saito divergence Pd j=1 (cj /sj ) − log(cj /sj ) − 1 Mahalanobis divergence (c − s)T Cov−1 (c − s) Harmonic mean P 1/ m (αi /si,j ) i=1 Arithmetic mean Pm i=1 αi si,j Weighted power mean Domain R d /I + I R 2 j=1 sj d j=1 sj Pd j=1 (1/p) log sj − sj log sj Pd p j=1 sj Pd p c j j=1 p (p−1)s + p p j p−1 − cj sj Pm i=1 p−1 1/(p−1) αi si,j Bregman divergences ↔ Family of exponential distributions [BMDG’04]. F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 56. References ˘ [BC’02] M. Badoiu and K. L. Clarkson, Core-sets for balls, Manuscript, 2002. (M IN M AX core-set and (1 + )-approximation) [NN’04] F. Nielsen and R. Nock, Approximating Smallest Enclosing Balls, ICCSA 2004. (Survey on M IN M AX) [BMDG’04] A. Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh, Clustering with Bregman Divergences, SDM 2004. (Bregman divergences and k-means) [NN’05] R. Nock and F. Nielsen, Fitting the Smallest Enclosing Bregman Ball, ECML 2005. (Bregman Balls) F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 57. Linux R and Windows R codes Available from our Web pages: http://www.csl.sony.co.jp/person/nielsen/ BregmanBall/ http://www.univ-ag.fr/∼rnock/BregmanBall/ Command line executable: cluster -h -B display this help choose Bregman divergence (0: Itakura-Saito, 1: Euclidean, 2: Kullbach-Leibler (simplex), 3: Kullbach-Leibler (general), 4: Csiszar) -d -n -k -g dimension number of points number of theoretical clusters type of clusters (0: Gaussian, 1: Ring Gaussian, 2: Uniform, 3: Gaussian with small σ, 4: Uniform Bregman) -S ... number of runs ... F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls