SlideShare ist ein Scribd-Unternehmen logo
1 von 12
Downloaden Sie, um offline zu lesen
INTERCROPPING PRINCIPLES
                                   AND PRODUCTION PRACTICES
                                                        AGRONOMY SYSTEMS GUIDE


 Abstract: Intercropping offers farmers the opportunity to engage nature’s principle of diversity on their farms.
 Spatial arrangements of plants, planting rates, and maturity dates must be considered when planning intercrops.
 Intercrops can be more productive than growing pure stands. Many different intercrop systems are discussed,
 including mixed intercropping, strip cropping, and traditional intercropping arrangements. Pest management
 benefits can also be realized from intercropping due to increased diversity. Harvesting options for intercrops
 include hand harvest, machine harvest for on-farm feed, and animal harvest of the standing crop.

By Preston Sullivan, NCAT Agriculture Specialist
Illustrations by Missy Gocio
Updated August 2003                                                      Table of Contents
                                                             Principles ............................................ 1
                 Principles                                  Pursuing Diversity on the Farm ........... 2
     Sustainable agriculture seeks, at least in prin-        Intercropping Concepts ....................... 3
ciple, to use nature as the model for designing              Intercrop Productivity .......................... 4
agricultural systems. Since nature consistently
integrates her plants and animals into a diverse             Managing Intercrops ........................... 5
landscape, a major tenet of sustainable agricul-             Examples of Intercrop Systems .......... 6
ture is to create and maintain diversity. Nature
is also efficient. There are no waste products in            Escalating Diversity and Stability to a
nature. Outputs from one organism become in-                 Higher Level ........................................ 7
puts for another. One organism dies and becomes              Escalating Diversity and Stability to an
food for other organisms. Since we are model-                Even Higher Level ............................. 10
ing nature, let us first look at some of the prin-
ciples by which nature functions. By understand-             Intercropping for Disease Control ..... 11
ing these principles we can use them to reduce               Adapting Intercropping to Your Farm 11
                                                             References ....................................... 12

                                                           costs and increase profitability, while at the same
                                                           time sustaining our land resource base.
                                                           · Diversity is nature’s design
                                                               When early humans replaced hunting and
                                                           gathering of food with domestication of crops
                                                           and animals, the landscape changed accordingly.
                                                           By producing a limited selection of crop plants
                                                           and animals, humankind has greatly reduced the
                                                           level of biological diversity over much of the
                                                           earth. Annual crop monocultures represent a

ATTRA is the national sustainable agriculture information service operated by the National Center
for Appropriate Technology, through a grant from the Rural Business-Cooperative Service, U.S.
Department of Agriculture. These organizations do not recommend or endorse products, companies,
or individuals. NCAT has offices in Fayetteville, Arkansas (P.O. Box 3657, Fayetteville, AR 72702),
Butte, Montana, and Davis, California.
classic example. In response to this biological        up of many wild species develops. Once a wild
simplification, nature has struggled to restore di-    plant and animal community has reached a high
versity to these landscapes—that is her tendency.      level of diversity, it remains stable for many years.
Our “war” with nature over the tendency to di-             When wild communities are in the early
versity is what we call “weed control” and “pest       stages of development, or when they have lost
management.” Of course we could hardly pro-            diversity due to natural catastrophe or human
duce any crops if we simply allowed our fields         actions, they are prone to major fluctuations, both
to return to natural vegetation, but we can real-      in types of species present and in their numbers.
ize some of the benefits of diversity by planting      Disease outbreaks in plants and animals occur
mixtures of different crops.                           more frequently—as do outbreaks of weed, in-
·   Cooperation is more apparent                       sect, bird, or rodent pests. One good example is
                                                       the grasshopper plagues that follow regional
    than competition                                   weather shifts. Another is the shift in weed spe-
     There is far more cooperation in nature than      cies dominance following a soil disturbance.
competition. Cooperation is typified by mutu-              The more complex and diverse communities
ally beneficial relationships that occur between       become, the fewer the fluctuations in numbers
species within communities. In The Redesigned          of a given species, and the more stable commu-
Forest, ecologist Chris Maser offers a glimpse of      nities tend to be. As the number of species in-
the cooperation inherent in a northern temperate       creases, so does the web of interdependencies.
forest when he describes a relationship that ex-
                                                       In both higher and lower rainfall years, there are
ists among squirrels, fungi, and trees (1). The
                                                       fewer increases in any one species and fewer fluc-
squirrels feed on the fungus, then assist in its
                                                       tuations in the community as a whole (2).
reproduction by dropping fecal pellets contain-
ing viable fungal spores onto the forest floor.
There new fungal colonies establish. Tree feeder
                                                       Pursuing Diversity on the
roots search out the fungi and form a symbiotic                   Farm
association that enables the tree roots to increase
their nutrient uptake. The fungi, in turn, derive           So, then, how can we begin to model our ag-
food from the tree roots. Each benefits from the       ricultural pursuits after some of these natural
other’s presence or actions.                           principles? Can we look for patterns in nature
     If we view competition as the driving force       and imitate them? Some pioneering farmers have
in nature, we fail to see the complex relation-        been able to utilize nature’s principle of diver-
ships and feel compelled to take actions that may      sity to their advantage. Results of their efforts
have unforeseen impacts. The rancher who views         include lower cost of production and higher prof-
coyotes as competitors (for calves and lambs) and      its. Among the practices that promote diversity
kills them out may later find the predator helped      and stability are:
keep rodent populations in check. With the                  Enterprise diversification—Risk reduction
predator gone, rodent numbers explode and              through stability of income and yield are two of
cause more problems than ever before. The same         the reasons people diversify their crop and live-
is true with many insect pests of crops. When          stock systems. Increasing diversity on-farm also
the only food for insects is crops, that is what       reduces costs of pest control and fertilizer, be-
they will eat. With no predator or parasite habi-      cause these costs can be spread out over several
tat present in a pure stand of crop, the pest in-      crop or animal enterprises.
sect could not possibly have it better. If we can
                                                            Crop
                                                            Crop Rotation — Moving from simple mo-
shift our view of nature from a theme of compe-
                                                       noculture to a higher level of diversity begins with
tition to one of collaboration, we can act in ways
                                                       viable crop rotations, which break weed and pest
that yield fewer negative consequences (2).
                                                       life cycles and provide complementary fertiliza-
·   Stability tends to increase with                   tion to crops in sequence with each other.
    increasing diversity                                    Farmscaping—Diversity can be increased by
   If left undisturbed and unplanted, an aban-         providing more habitat for beneficial organisms,
doned crop field will first be colonized by just a     habitats such as borders, windbreaks, and spe-
few species of plants, insects, bacteria, and fungi.   cial plantings for natural enemies of pests. Re-
After several years, a complex community made          quest the ATTRA publication Farmscaping to En-

PAGE 2                                       //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES
hance Biological Control for more information on                   SPATIAL ARRANGEMENT
special plantings for beneficial insects.
                                                           There are at least four basic spatial arrange-
     Intercr
          cropping
     Intercropping—Intercropping is the grow-           ments used in intercropping. Most practical sys-
ing of two or more crops in proximity to pro-           tems are variations of these (3).
mote interaction between them. Much of this
publication focuses on the principles and strate-       ·    Row intercropping—growing two or more
gies of intercropping field crops. A related                 crops at the same time with at least one crop
ATTRA publication, Companion Planting, provides              planted in rows.
more information on intercropping of vegetable
                                                        ·    Strip intercropping—growing two or more
crops.
                                                             crops together in strips wide enough to per-
     Integration—On-farm diversity can be car-               mit separate crop production using machines
ried to an even higher level by integrating ani-             but close enough for the crops to interact.
mals with intercropping. With each increase in
                                                        ·    Mixed intercropping—growing two or more
the level of diversity comes an increase in stabil-
                                                             crops together in no distinct row arrange-
ity. This publication focuses on intercropping and
                                                             ment.
provides a section on integrating livestock with
crops.                                                  ·    Relay intercropping—planting a second crop
                                                             into a standing crop at a time when the stand-
 Intercropping Concepts                                      ing crop is at its reproductive stage but be-
                                                             fore harvesting.
    Most grain-crop mixtures with similar ripen-
ing times cannot be machine-harvested to pro-                           PLANT DENSITY
duce a marketable commodity since few buyers                To optimize plant density, the seeding rate
purchase mixed grains. Because of limited har-          of each crop in the mixture is adjusted below its
vest options with that type of intercropping, farm-     full rate. If full rates of each crop were planted,
ers are left with the options of hand harvesting,       neither would yield well because of intense over-
grazing crops in the field with animals, or har-        crowding. By reducing the seeding rates of each,
vesting the mixture for on-farm animal feed.            the crops have a chance to yield well within the
However, some intercropping schemes allow for           mixture. The challenge comes in knowing how
staggered harvest dates that keep crop species          much to reduce the seeding rates. For example,
separated. One example would be harvesting              if you are planning to grow corn and cowpeas
wheat that has been interplanted with soybeans,         and you want mostly peas and only a little corn,
which are harvested later in the season. Another        it would be easy to achieve this. The corn-seed-
example is planting harvestable strips, also known      ing rate would be drastically cut (by 80% or more)
as strip cropping.                                      and the pea rate would be near normal. The field
    When two or more crops are growing to-              should produce near top yields of peas even from
gether, each must have adequate space to maxi-          the lower planting rate and offer the advantage
mize cooperation and minimize competition be-           of corn plants for the pea vines to run on. If you
tween them. To accom-                                                          wanted equal yields from
plish this, four things
                                                                               both peas and corn, then the
need to be considered:
                                                                               seeding rates would be ad-
                                                                               justed to produce those
   1) spatial arrange-
                                                                               equal yields.
      ment,
                                                                                 MATURITY DATES
   2) plant density,
                                                                                  Planting intercrops that
   3) maturity dates                                                          feature staggered maturity
      of the crops                                                            dates or development peri-
      being grown,                                                            ods takes advantage of
      and                                                                     variations in peak resource
   4) plant architec-                                                         demands for nutrients, wa-
                                            strip cropping                    ter, and sunlight. Having
      ture.


           //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES                                  PAGE 3
one crop mature before its companion crop less-       then know how much additional yield is required
ens the competition between the two crops. An         in the pure stand to equal the amount of yield
aggressive climbing bean may pull down corn or        achieved in the intercrop. The calculated figure
sorghum growing with it and lower the grain           is called the Land Equivalency Ratio (LER). To
yield. Timing the planting of the aggressive bean     calculate an LER, the intercrop yields are divided
may fix the problem if the corn can be harvested      by the pure stand yields for each component crop
before the bean begins to climb. A common prac-       in the intercrop. Then, these two figures are added
tice in the old southern U.S. cotton culture was      together. Here’s the equation for a corn/pea in-
to plant velvet beans or cowpeas into standing        tercrop where the yields from pure corn, pure
corn at last corn cultivation. The corn was planted   peas, and the yields from both corn and peas
on wide 40-inch rows at a low plant population,       growing together in an intercrop are measured.
allowing enough sunlight to reach the peas or
beans. The corn was close enough to maturity
                                                                (intercrop corn / pure corn) +
that the young legumes did not compete. When
                                                              (intercrop pea / pure pea) = LER
the corn was mature, the beans or peas had corn
stalks to climb on. The end result was corn and
beans that would be hand harvested together in             When an LER measures 1.0, it tells us that
the fall. Following corn and pea harvest, cattle      the amount of land required for peas and corn
and hogs would be turned into the field to con-       grown together is the same as that for peas and
sume the crop fodder.                                 corn grown in pure stand (i.e., there was no ad-
    Selecting crops or varieties with different       vantage to intercropping over pure stands). LERs
maturity dates can also assist staggered harvest-     above 1.0 show an advantage to intercropping,
ing and separation of grain commodities. In the       while numbers below 1.0 show a disadvantage
traditional sorghum/pigeonpea intercrop, com-         to intercropping. For example, an LER of 1.25
mon in India, the sorghum dominates the early         tells us that the yield produced in the total inter-
stages of growth and matures in about four            crop would have required 25% more land if
months. Following harvest of the sorghum, the         planted in pure stands. If the LER was 0.75, we
pigeonpea flowers and ripens. The slow-grow-          know the intercrop yield was only 75% of that of
ing pigeonpea has virtually no effect on the sor-     the same amount of land that grew pure stands.
ghum yield (4).                                            In a South Carolina study, researchers planted
           PLANT ARCHITECTURE                         intercrops of southern peas and sweet corn at
                                                      three different corn plant densities (5). The
    Plant architecture is a commonly used strate-
                                                      plantings were on raised beds with flat and wide
gy to allow one member of the mix to capture
                                                      crowns on six-foot centers. In the center of each
sunlight that would not otherwise be available to
                                                      bed was a corn row, with two rows of peas
the others. Widely spaced corn plants growing
                                                      planted 18 inches to either side of the corn row
above an understory of beans and pumpkins is a
                                                      (see Figure 1). The low corn-seeding rate was
classic example.
                                                      6,700 plants per acre, medium corn was 9,500
   Intercrop Productivity                             per acre, and high was 11,900 plants per acre.
                                                      Peas were established at a rate of 31,800 plants
    One of the most important reasons to grow         per acre in all intercrop plots. In the pure pea
two or more crops together is the increase in pro-    stand, each bed had two rows of peas spaced 24
ductivity per unit of land. Researchers have de-      inches apart. Yields of the intercrops and pure
signed a method for assessing intercrop perfor-       stands are shown in Table 1.
mance as compared to pure stand yields. In re-             In this trial there was a yield advantage from
search trials, they grow mixtures and pure stands     intercropping over growing the two crops in pure
in separate plots. Yields from the pure stands,       stands. Pea yields suffered from the increased
and from each separate crop from within the mix-      competition in the higher densities of corn. Some
ture, are measured.                                   practical on-farm guidelines can be drawn to
    From these yields, an assessment of the land      guide seeding-rate choices for a two-crop inter-
requirements per unit of yield can be determined.     crop. To test seeding rates, experiment with three
This information tells them the yield advantage       small plantings of two crops at the following per-
the intercrop has over the pure stand, if any. They   centages of their full seeding rates: 1/3 + 2/3,

PAGE 4                                       //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES
might mature sooner. Corn or sorghum, requir-
  Table 1. Yields of sweet corn and                  ing three months to mature, can be grown with
  southern peas from intercrops (5)                  pigeon pea, requiring 10 months to maturation.
_______________________________________                  John Bowen and Bernard Kratky, researchers
                  Corn      Peas
                                                     and instructors at the University of Hawaii, tell
                (pounds/ (pounds/
                                                     us that there are five distinct aspects to success-
 _Seed_Rates ______________acre)__________
                  acre)             LER
___________________________________________
  _____ ______             _____                     ful multiple cropping. These are:
  Full corn       5600       ***     ***
_______________________________________                  1) detailed planning,
 Full peas       ***     1200     ***
_______________________________________                  2) timely planting of each crop,
 Low corn       4200      800    1.41
_______________________________________                  3) adequate fertilization at the optimal
 Medium corn    4600      800    1.48
_______________________________________                     times,
 High corn      5000      500    1.30
_______________________________________                  4) effective weed and pest control, and
                                                         5) efficient harvesting (6).

1/2 + 1/2, and 2/3 + 1/3. From there, make           Before any fieldwork is begun, adequate plan-
adjustments for future plantings based on the        ning should be done. Planning covers selection
results and your expectations.                       of crop species and appropriate cultivars, water
                                                     availability, plant populations and spacing, labor
     Managing Intercrops                             requirements throughout the season, tillage re-
                                                     quirements, and predicted profitability of the in-
    Many combinations of crops have been grown       tercrop. These and other parameters need to be
or experimented with as mixed or relay inter-        evaluated before spending money on inputs.
crops. Some of these include sunflowers grown            With any crop, seed germination and seed-
with black lentils, wheat with flax, and canola      ling establishment are the most critical phases of
with flax. Other combinations include cucum-         the entire season. A good seedbed is needed to
bers, beans, celery, and chives in China; upland     get a good stand. Delayed planting may reduce
rice, corn, and cassava in Indonesia; and in vari-   yield, since crop development may not coincide
ous parts of the tropics corn and cassava, corn      with the optimal growth periods.
and peanuts, sorghum and millet, and sorghum             Planning fertilization for intercrops can be
and pigeonpeas.                                      challenging, as the full needs of both crops must
    Frequently these cropping combinations in-       be met. Generally, there is little information avail-
volve a short and a tall crop both planted at the    able on how to go about this. One possibility
same time. In many cases the tall crop is har-       would be to ask for soil test results for each crop
vested first. For example, corn grown with a         separately, then formulate a recommendation that
shorter plant would be harvested first, then pea-    will cover the needs of both crops to be grown.
nut or sweet potato would be harvested later.        Such recommendations are generally 10% to 30%
Another pattern would be planting two tall crops     higher than rates for individual crops.
with different growth rates. In relay intercrops,        As with any crop, also accounting for residual
different planting dates are used so that one crop   or carryover fertility from past crops saves money.
                                                     Carryover fertility from intercrops may well be
                                                     lower than that of pure stands because of the
                                                     two crops having different root types and feed-
                                                     ing habits.
                                                         Weed and pest controls in intercrops will
                                                     likely be different from those in pure stands.
                                                     Some disease incidence, such as soybean or mung
                                                     bean rusts, may increase when aggravated with
                                                     high corn populations and overfertilization. Any
                                                     disease or pest that prospers in shady conditions
                                                     could increase under a taller crop such as corn or
       Figure 1. Sweetcorn and southern pea
                                                     sunflowers. In many cases, insect pest popula-
                 planting pattern
                                                     tions are lower when two or more crops are

           //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES                                PAGE 5
grown together. More on pest management will           CORN AND SOYBEAN MIXED INTERCROPS
be found later in this publication.
                                                          Canadian researchers (8) have worked with
    Harvesting of mixed intercrops has been a
                                                      several corn-soybean intercrop seeding rates to
major limitation to their adoption in mechanized
                                                      determine their economic advantages as silage.
farming. As mentioned earlier, if the crops can-
                                                      Pure stands of corn and soybeans were grown
not be harvested by animals, or all together as
                                                      for comparison at 24,000 corn seed per acre and
feed, you’re left with hand harvesting. Some
                                                      200,000 soybean seed per acre. Results showed
crops such as flax and wheat have been harvested
                                                      that intercrops were more cost effective than pure
together and mechanically separated. Any other
                                                      stands over both years the study was conducted.
mechanized harvest efforts must get one crop
                                                      The study featured five experimental intercrop
without damaging the other. One example would
                                                      seeding rates with two planting arrangements
be harvesting wheat over the top of a young stand
                                                      (alternate and within the row). The researchers
of soybeans growing beneath the grain heads. All
                                                      concluded that a planting rate of 16,000 corn seed
intercropping strategies— especially mixed inter-
                                                      per acre (67% of the full corn rate) with 135,000
cropping—require advanced planning and keen
                                                      soybean seed per acre (67% of the full bean rate)
management. Success will likely be the reward
                                                      planted within the same rows along with 53 lbs.
for such efforts.
                                                      of N/acre gave the highest economic returns.
  Examples of Intercrop                               (Note: the planter was set to drop 151,000 seeds
                                                      per acre.) This mixture gave an LER of 1.14 over
         Systems                                      pure stand yields. The crude protein level of the
                                                      intercrop silage was considerably higher than that
    TRADITIONAL CORN-BEAN-SQUASH                      of pure corn silage. A slightly higher yield was
          MIXED INTERCROPS                            achieved from full stands of both corn and beans
                                                      in alternate rows (LER=1.23), but the cost of pro-
    Farmers throughout Central America tradi-         duction was higher, thus offsetting the improved
tionally grow an intercrop of corn, beans, and        yields.
squash. Grown together, these three crops opti-
mize available resources. The corn towers high       CORN AND SORGHUM MIXED INTERCROPS
over the other two crops, and the beans climb up          Frank Cawrse, Jr., of Lebanon, Oregon, inter-
the corn stalks. The squash plants sprawl along      crops forage sorghum into his silage corn. He
the ground, capturing light that filters down        first plants the corn at 28,000 seed per acre, then
through the canopy and shading the ground. The       goes back over the field with a drill with enough
shading discourages weeds from growing.              drop tubes closed off to plant 8 pounds of sor-
    This mixture was compared to the individual      ghum on 32-inch rows in between the corn. He
crops grown separately in a study near Tabasco,      also plants two different maturities of corn, a 95-
Mexico (7). In the study, corn yields were con-      day and a 75-day, to even out the silage mois-
siderably higher in the mixture than in a pure       ture content. He harvests a mix of corn in hard
stand planted at optimum densities. Bean and         dent and soft dent, and sorghum in the milk stage
squash yields suffered                                                            (8).
considerable yield reduc-                                                           STRIP CROPPING
tions when grown in mix-       Table 2. Yields of corn, beans and
ture. In this example if       squash grown alone or in a mixture                  CORN/SOYBEANS/
                               (7)
corn were the most impor- _______________________________________                   SMALL GRAINS
tant crop, it was beneficial                Pure Stand Intercrop                       South     Dakota
to grow it in a mixture                      (pounds/       (pounds/              farmer Tod Intermill
with squash and beans. ___________________________________________
                              _Crop ____________________________________
                               _____           acre)          acre)               plants alternating
The beans and squash                                                              strips of corn, soy-
                               Corn            1096
were just a bonus. The _______________________________________1533                beans, and spring
LER for the whole mixture      Beans            544             98                wheat on his farm (9).
                             _______________________________________
was considerably higher                                                           The strips are six rows
(1.6) than any of the pure     Squash           383             71
                               __________________________________                 wide in a ridge-till
stands. See Table 2 for                                                           system. All the crop
details.                                                                          plantings are adapted

PAGE 6                                      //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES
to existing equipment widths. Regular herbicide        narrow strips (12 to 30 feet wide) offer. The strips
treatments can be applied using a ground sprayer       accommodate the pest management and soil
of strip width. Even the wheat is drilled on ridges,   building advantages of rotations and the yield
using a drill with individual depth gauges on each     boost of border rows. With proper management
opener. Intermill orients his rows east and west       the border effect can pay off; managed improp-
to minimize the shading effects of taller crops        erly, it can cost yield. With oat and corn strips,
like corn. The crops are planted in a wheat–corn–      the early-maturing oats are nearly mature before
soybean pattern, with soybeans on the north side       corn can pose much of a shade and competition
of the corn (Figure 2). This arrangement reduces       problem. The corn can also provide wind pro-
the effect of corn shading often associated with a     tection for the oats. When the oats are harvested,
straight corn-soybean pattern, since the wheat is      more sunlight is available to the corn. In times of
mature before the corn has a chance to shade it.       low moisture, oats may rob the corn border rows
Corn gains the greatest benefit from the addi-         of water. In his field trials, Cruse found a 5%
tional sunlight interception on the outside rows
                                                       increase in oat yields on their borders, while corn
of the corn strip.
                                                       realized a 12 to 15% increase.
                                                            Soybean yields dropped by 10% on their bor-
                                                       der rows, but the yields in the soybean middle
                                                       rows were higher than they would be in a solid
                                                       field, possibly representing a windbreak effect
                                                       (10).
                                                            Some have experimented with a shorter corn
                                                       variety in the border row to minimize shading.
                                                       One farmer tried planting six rows of corn and
                                                       doubling his soybean strips to 12 rows to elimi-
                                                       nate the impact of corn shading on the beans.
  Figure 2. Corn, soybeans, and wheat strip-           This same farmer found that corn strips wider
  cropped
                                                       than eight rows did not provide adequate results.
     Iowa farmer Tom Frantzen strip-crops oats,        Using a 12-row planter, it’s easy to establish the
corn, and soybeans on ridge-till rows. He views        6-row strips by filling the middle six hoppers with
his strips as a crop rotation in one field. His rows   corn and the outer three hoppers with beans.
are oriented generally east and west on the con-       Some farmers plant higher corn populations and
tour. His 1989 strip-crop corn yields were 166         add higher nitrogen rates in the border rows to
bushels per acre, compared to 130 for his farm         take advantage of the extra sunlight exposure.
average. Stripped soybean yields were two bush-        Most farmers agree that strip cropping corn, soy-
els lower than farm average. His oat yields were       beans, and oats works best with ridge-till or no-
109 bushels stripped and 100-bushel farm aver-         till. When the field is tilled, it’s difficult to gauge
age. Tom was not surprised at the increase in          where the rows should go in order to get the
corn yields. The outer strip rows captured more        strips even.
sunlight. His average corn border row yielded
198 bushels per acre next to the soybeans and            Escalating Diversity and
177 bushels next to oats. The soybean yields were
37 bushels, even with the increased shading on
                                                          Stability to a Higher
the border rows. This loss was made up in the                       Level
middle rows with yields of 44 bushels per acre.
Oats showed a 107-bushel yield on the soybean              Ecologists tell us that stable natural systems
side, a 103-bushel yield on the corn side, and 99      are typically diverse, containing many different
bushels in the middle. Tom says the strip inter-       types of plants, arthropods, mammals, birds, and
cropping is no more labor intensive than               microorganisms. In stable systems, serious pest
monocrop fields. His profits were $76 per acre         outbreaks are rare, because natural controls exist
for the stripped fields and $55 for the same crops     to automatically bring populations back into bal-
grown in monoculture. (11).                            ance. Planting crop mixtures, which increase
     Rick Cruse, an Iowa State University agrono-      farmscape biodiversity, can make crop ecosystems
mist, has observed several characteristics that        more stable, and thereby reduce pest problems.

           //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES                                    PAGE 7
There is overwhelming evidence that plant           smother crop to curtail weeds and grasses. The
mixtures support lower numbers of pests than            lupines in the row middles can be tilled in with
do pure stands (11), and there are two schools of       the cultivator later in the season to release more
thought on why this occurs. One suggests that           legume nitrogen.
higher natural enemy populations persist in di-             In the Parramores’ system, all the nitrogen
verse mixtures due to more continuous food              needs of the cotton crop are met with cover crops
sources (nectar, pollen, and prey) and favorable        except for 10 units per acre of starter nitrogen
habitat.                                                and another 15 units applied while spraying her-
    The other thought is that pest insects that feed    bicides. Petiole samples taken every week to
on only one type of plant have greater opportu-         monitor plant nitrogen show that cotton grown
nity to feed, move around in, and breed in pure         with lupines maintains a normal range of tissue
crop stands because their resources are more con-       nitrogen throughout the growing season. The ni-
centrated than they would be in a crop mixture          trogen level in cotton grown solely with fertilizer
(12). Regardless of which reason you accept, the        is very high initially, then subsequently falls back
crops growing together in the mixture comple-           to a lower level. In one comparative year, the
ment one another, resulting in lower pest levels.       cotton grown following lupine produced 96 more
    Intercropping also aids pest control efforts        pounds of lint, with only 25 units of commercial
by reducing the ability of the pest insects to rec-     nitrogen, compared to a field with 125 units of
ognize their host plants. For example, thrips and       nitrogen and no lupines. Additionally, the lu-
white flies are attracted to green plants with a        pine field required less spraying for insects—only
brown (soil) background, ignoring areas where           twice compared to five sprays for the commer-
vegetation cover is complete—including mulched          cial nitrogen field. This reduction saved 60% on
soil (13). Some intercrops have a spatial arrange-      insecticides, amounting to $35 per acre. The re-
ment that produces the complete vegetation cover        duction in need for pesticides is attributed to the
that would be recognized as unfavorable to thrips       large population of beneficial insects generated
and whiteflies. Other insects recognize their host      and sustained in this system. The lupines pro-
plants by smell. Onions planted with carrots            vide food for aphids and thrips, which attract la-
mask the smell of carrots from carrot flies. For        dybugs, big-eyed bugs, and fire ants as preda-
more information on companion planting for in-          tors. When the cotton gets big enough to shade
sect management, request the ATTRA publica-             out the lupines, the beneficial insects move to
tions Farmscaping to Enhance Biological Control and     the cotton rather than migrating from the field.
Companion Planting.                                     The Parramores estimate that improved yields,
    Innovative farmers are paving the way with          combined with cost reductions, are netting them
intercrops and realizing pest management ben-           an additional $184 per acre with the strip tillage
efits as a result. Georgia cotton farmers Wayne         lupine system when compared to the conventional
Parramore and sons reduced their insecticide and        management system.
fertilizer use by growing a lu-                                                        Alfalfa is one of the
pine cover crop ahead of their                                                    best crops for attracting
spring-planted cotton (14).                                                       and retaining beneficial
They started experimenting                                                        insects. This characteris-
with lupines on 100 acres in                                                      tic can be enhanced fur-
1993, and by 1995 were grow-                                                      ther. Strip-cutting alfalfa
ing 1,100 acres of lupines.                                                       (i.e., cutting only half of
Ground preparation for cotton                                                     the crop at any one time,
planting is begun about 10                                                        in alternating strips) main-
days prior to planting by till-                                                   tains two growth stages in
ing 14-inch wide strips into the                                                  the crop; consequently,
lupines. Herbicides are ap-                                                       some beneficial habitat is
plied to the strips at that time,                                                 available at all times. In
and row middles remain un-                                                        some cases alfalfa is mixed
touched. The remaining lu-                                  ©2003www.clipart.com  with another legume and
pines provide a beneficial in-                       lupine                       a grass. Auburn Univer-
sect habitat and also serve as a                                                  sity researcher Mike

PAGE 8                                        //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES
Gayler is just starting research projects using al-      ment of soil-borne diseases, request the ATTRA
falfa as an attractant crop for beneficials. He          publication Sustainable Management of Soilborne
speculates that it will work in the Southeast with       Plant Diseases.
proper management. Other main-season strip                    Texas dryland farmer Ron Gobel intercrops
crops that research suggests will benefit cotton         8-row strips of sesame and cotton for insect con-
crop pest management include cowpeas, sor-               trol benefits. The sesame harbors many benefi-
ghum, corn, and crotalaria (15).                         cial insects, including high populations of lace-
     Dr. Sharad Phatak of the University of Geor-        wings, assassin bugs, and lady beetles. Ron’s
gia has been working with cotton growers in              1995 crop was planted late due to prolonged
Georgia testing a strip-cropping method using            spring rains. He did not use a Bt cotton variety.
annual winter cover crops (16). Planting cotton          Early frost terminated the crop two weeks ear-
into strip-killed crimson clover improves soil           lier than normal, yet he still produced 0.8 bales
health, cuts tillage costs, and allows him to grow       per acre under dryland conditions. His sesame
cotton with no insecticides and only 30 pounds           produced 800 pounds per acre. The 1996 cotton
of nitrogen fertilizer. Working with Phatak,             rows were planted where the sesame rows were
farmer Benny Johnson reportedly saved at least           the previous year, and sesame planted where
$120/acre on his 16-acre test plot with the clover       cotton was before.
system. There were no insect problems in the                  Since Ron sells his cotton for a premium price
test plot, while beet armyworms and whiteflies           in the organic market, he cannot spray any syn-
were infesting nearby cotton and requiring 8 to          thetic insecticides. Consequently, he must rely
12 sprayings to control. Cotton intercropped with        on beneficial insects attracted to his fields by cul-
crimson clover yielded more than three bales of          tural practices and a handful of natural insecti-
lint per acre compared to 1.2 bales of lint per          cides.
acre in the rest of the field (16). Boll counts were          Following the fall harvest, Ron plants annual
30 per plant with crimson clover and 11 without          rye at a low rate of 20 to 40 pounds per acre. The
it. Phatak identified up to 15 different kinds of        rye is tilled in prior to crop planting in the spring.
beneficial insects in these strip-planted plots.         Ron believes the rye helps with soil moisture re-
     Phatak finds that planting crimson clover seed      tention and weed control. During the 1997 crop
at 15 pounds per acre in the fall produces around        year his fields suffered only minimal boll weevil
60 pounds of nitrogen per acre by spring. By             damage. Ron noticed lots of adult bollworm
late spring, beneficial insects are active in the clo-   moths but no worms. The eggs were eaten or
ver. At that time, 6- to 12-inch planting strips of      parasitized by the beneficials.
clover are killed with Roundup™ herbicide. Fif-               Ron’s fields were scouted as part of a boll
teen to 20 days later the strips are lightly tilled      weevil eradication program. The scouts were
and cotton is planted. The clover in the row-            amazed at the lack of worms and the high num-
middles is left growing to maintain beneficial in-       bers of beneficial insects. The cotton crop was
sect habitat. When the clover is past the bloom          sprayed one time with diatomaceous earth im-
stage and less desirable for beneficials, they move      pregnated with natural pyrethrum, which was
readily onto the cotton. Even early-season thrips,       acceptable under the organic standards. The in-
which can be a problem following cover crops,            sect scouts noticed a 70% reduction in adult boll
are limited or prevented by beneficial insects in        weevil population three days after the spray.
this system. The timing coincides with a period          They were so surprised that they placed cages of
when cotton is most vulnerable to insect pests.          20 live weevils in the field to see whether the
Following cotton defoliation, the beneficials hi-        spray was working. The next day, 45% of those
bernate in adjacent non-crop areas.                      weevils were dead. The entomologists specu-
     Phatak points out that switching to a whole-        lated that the weevils were getting enough of the
farm focus while reducing off-farm inputs is not         diatomaceous earth on their leg joints to cut their
simple. It requires planning, management, and            exoskeletons, allowing the pyrethrum to kill
several years to implement on a large scale. It is       them.
just as important to increase and maintain organic            In a scientific study, Mississippi researchers
matter, which stimulates beneficial soil microor-        interplanted 24 rows of cotton with 4 rows of
ganisms. Eventually a “living soil” will keep            sesame to study the intercrop’s effects on tobacco
harmful nematodes and soilborne fungi under              budworms and bollworms (Heliothis spp.).
control (16). For more information on manage-            Throughout the growing season, larvae numbers

            //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES                                    PAGE 9
were much higher in the sesame than on the cot-       ver. Not all the pastures have water sources for
ton until late August, indicating the worm’s pref-    the animals, so water is moved on a trailer tank
erence for sesame. Following a large summer           when necessary. The animals are moved daily in
rain at a time when the sesame was reaching           a planned grazing system during rapid plant
maturity, the Heliothis adults became more at-        growth and much more slowly, up to five days
tracted to the cotton. The researchers noted that     on a paddock, during slow plant growth.
sesame’s attractiveness to Heliothis and sesame’s         Some of the paddocks are planted with mix-
ability to harbor high numbers of beneficial in-      tures of either winter or summer forage or grain
sects made it useful in a cotton pest management      crops. An intercrop of cereal grain, fava beans,
program (17).                                         and Canadian field peas is planted for winter
                                                      grain, each crop at 1/3 normal seeding rate. The
 Escalating Diversity and                             grain mixture is combine-harvested to make en-
                                                      ergy and protein supplement feed as needed.
   Stability to an Even                               After harvest, the animals are turned into the
       Higher Level                                   paddock to glean what’s left. For summer feed,
                                                      a mixture of milo planted on 18-inch rows is in-
    The diversity created by intercropping can be     tercropped with a row of black-eyed peas planted
enhanced even further by integrating livestock        six inches to either side of each sorghum row,
(single or mixed species) into the cropping plan      using a drill with partitions in the seedbox. The
as harvesters. Allowing animals to harvest feed       milo provides a trellis for the pea vines to run on
crops in the field puts gain on animals at the cost   (Figure 3). The milo/black-eyed mixture requires
of crop production—considerably less than the         no herbicide. Before peas and milo were grown
purchase price of the grain. If you think about it,   together, the milo pure stand would be plagued
feed grains cost a lot less when they’re not run      with whiteflies and green bugs. Mixing the two
through a $150,000 combine or hauled 1000 miles       crops together ended the pest problem. Cow-
across the country.                                   peas have extrafloral nectaries that attract lots of
    Grazing animals and other livestock can be        beneficial insects.
managed on croplands to reduce costs, increase        This could ex-
income, and increase diversity. There are ways        plain the absence
of incorporating animals into cropping without        of pest insects in
the farmer getting into animal husbandry or own-      the mixture. The
ership directly. Collaboration with neighbors who     milo/pea mix-
own animals will benefit both croppers and live-      ture is harvested
stock owners. Grazing or hogging-off of corn          by setting the
residue is one example where a cost can be turned     combine to cut at
into a profit. The animals replace the $6 per acre    the height of the
stalk mowing cost and produce income in ani-          milo heads. This
mal gains.                                            yields a milo to          Figure 3. Cowpeas and
    Shasta College provides a unique demonstra-       bean ratio of             milo growing together
tion of integrating livestock with intercrops.        2:1—ideal for
Shasta is a two-year community college located        feed.
in Redding, California, that offers associate de-         The college animal herd consists of 20 sows
grees in several branches of agriculture. Stan        that farrow on pasture, 35 head of cattle, 50 sheep,
Gorden (18) heads the college’s holistic resource     and 30 laying hens that all range together. The
laboratory, where students get hands-on experi-       hens are with the herd during the day and roost
ence with ranching and farming (19). Stan and         in a nearby eggmobile at night. Gorden selects
his students have taken intercropping to a high       breeds and genetics to fit this system, as opposed
level of efficiency. They run hogs, sheep, cattle,    to selecting breeds for maximum production and
and chickens together over 42 small paddocks of       adapting a system to match the animal. The ani-
various forages and crops growing on 100 acres        mals benefit one another. The sheep learn to stay
of college-owned land. One paddock is a pump-         close to the middle of the herd to avoid preda-
kin patch, another a garlic and carrot patch. Some    tors, which are fended off by the hogs. The cattle
are planted in alfalfa or mixes of grasses and clo-   learn that the hogs know how to break the pump-

PAGE 10                                      //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES
kins open, so they stick close and get some too.        over the 1987 figure. During that same time the
The hogs eat the cow and sheep droppings and            soil organic matter has increased from 1.7% to
benefit from the predigestion. The hens scav-           3.2 % (18).
enge wasted seeds from the various crops. There
are three different kinds of hens, each of which               Intercropping for
lays eggs of a different color. The eggs are mar-
keted as rainbow eggs, with each dozen contain-
                                                                Disease Control
ing four white, four blue, and four brown eggs.             Under direction of an international team of
The chickens also scratch apart cattle dung pats        scientists, farmers in China’s Yunnan province
searching for insects, thus destroying cattle para-     made some simple changes in their rice produc-
sites.                                                  tion methods (20). They changed from planting
     Gorden says that developing and maintain-          their typical pure stand of a single rice variety to
ing this high level of diversity has required cre-      planting a mixture of two different rice varieties.
ativity, selection criteria, constant monitoring, and   Their primary reason for trying this new tech-
re-examining traditional beliefs. By challenging        nique was to reduce the incidence of rice blast,
long-held beliefs, Bill and his students discov-        the main disease of rice. The technique was so
ered that hogs do not need standard farrowing           successful at reducing blast disease that the farm-
crates and that sheep and cattle are compatible         ers were able to abandon chemical fungicides
grazers. Animals and crops are selected and culled      they had been using. The biodiversity effect is
according to their ability to adapt to this com-        apparent here in that if one variety of a crop is
plex system. Shasta College has one of the larg-        susceptible to a disease, the denser the stand,
est heritage hog herds in the country. The hogs         the worse the disease can spread. If susceptible
have been fitted with humane nose rings to pre-         plants are separated by non-host plants that can
vent rooting. Also, hog breeds are selected that        act as a physical barrier to the disease, the sus-
don’t root up the ground nor eat the baby lambs         ceptible variety will suffer less disease infection.
when they are born. The sows farrow on pas-             Rice blast moves from plant to plant via airborne
ture with only a single bale of hay for bedding.        spores. These spores can be blocked by a row of
Hogs are not vaccinated, nor are needle teeth re-       a resistant variety. In this on-farm study, the
moved or other detailing done. Sows generally           rice was harvested by hand. Separating the vari-
wean 12 pigs with no supplemental feed. The             eties was easily done during harvest, since one
only purchased input is some nitrogen and phos-         variety towered above the other.
phorus fertilizer applied to the pastures. The
pigs are only touched twice; once to castrate and          Adapting Intercropping
once to wean. As with the hogs, the cattle and
sheep are selected to prosper on grass. Preda-                 to Your Farm
tors are not controlled in any way. Any animal              Intercropping has been important in the U.S.
that gets killed by wandering off is naturally se-      and other countries and continues to be an im-
lected out of the herd.                                 portant practice in developing nations. In tradi-
     The sheep/hog/cow mix provides much bet-           tional systems, intercropping evolved through
ter utilization of forage than single species graz-     many centuries of trial and error. To have per-
ing. Since the animals do most of the harvesting,       sisted, intercropping had to have merit biologi-
less fossil fuel and labor-hours are expended.          cally, environmentally, economically, and socio-
There are no pens to wash and no manure to              logically. To gain acceptance, any agricultural
deal with. The herd is controlled using an elec-        practice must provide advantages over other
tric fence charged up to 8,000 volts to hold the        available options in the eyes of the practitioner .
sheep.                                                  Many of the impediments to adoption of new
     Before the 100-acre crop/animal integration        strategies or practices of diversification are so-
project began in 1987, the College’s agriculture        ciological (Will I look foolish to my neighbors?
resource laboratory was costing $8,000 per year.        Will I fail?) and financial (What are the risks?
That was the first year the resource laboratory         What is the profit potential?) rather than techno-
started managing holistically. By 1996, the re-         logical.
source lab’s income was up $12,000, and expenses            Farmers have generally regarded intercrop-
were down $10,000—rendering a $14,000 profit            ping as a technique that reduces risks in crop

            //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES                                 PAGE 11
production; if one member of an intercrop fails,            (ed.). Multiple Cropping Systems.
the other survives and compensates in yield to              Macmillan Company, New York. 383 p.
some extent, allowing the farmer an acceptable        13.   Ecological Agriculture Projects. Mixing Crop
harvest. Pest levels are often lowered in inter-            Species. McGill University, Macdonald
crops, as the diversity of plants hampers move-             Campus. http://www.eap.mcgill.ca/
ment of certain pest insects and in some cases              CSI_2.htm
encourages beneficial insect populations.             14.   Dirnerger, J.M. 1995. The bottom line
                                                            matters—you can laugh at him on the way to
              References                                    the bank. National Conservation Tillage
                                                            Digest. October–November. p. 20–23.
1.    Maser, Chris. 1990. The Redesigned Forest.
      Stoddart, Toronto, Canada. 224 p.               15.   Rincon-Vitova. No date. Product Informa-
                                                            tion: Biological Control Solutions for Cotton
2.    Savory, Allan. 1998. Holistic Manage-
                                                            Pests. Rincon-Vitova Insectaries, Inc. Oak
      ment—A New Framework for Decision-
                                                            View, CA. 6 p.
      Making. 2nd edition. Island Press. Covelo,
      CA. 550 p.                                      16.   Yancey, Cecil Jr. 1994. Covers challenge
                                                            cotton chemicals. The New Farm. February.
3.    Grossman, Joel, and William Quarles. 1993.
                                                            p. 20–23.
      Strip intercropping for biological control.
      IPM Practitioner. April. p. 1–11.               17.   Laster, M.L., and R.E. Furr. 1972. Heliothis
                                                            populations in cotton-sesame interplantings.
4.    Willy, R.W., et al. 1983. Intercropping
                                                            Journal of Economic Entomology. Vol. 65,
      studies with annual crops. In: Better Crops
                                                            No. 5. p. 1524–1525.
      for Food, CIBA Foundation Symposium 97.
      Pitman, London, UK.                             18.   Stan Gorden
                                                            Department of Agriculture and Natural
5.    Francis, R., and D.R. Decoteau. 1993. Devel-
                                                            Resources
      oping an effective southernpea and sweet
                                                            Shasta College
      corn intercrop system. Hort Technology.
                                                            PO Box 496006
      Vol. 3, No. 2. p. 178–184.
                                                            Redding, CA 96049-6006
6.    Bowen, John F., and Bernard A. Kratky. 1986.          530-225-4687
      Successful multiple cropping requires                 Email: sgorden@shastacollege.edu
      superior management skills. Agribusiness              Web: http://www.shastacollege.edu
      Worldwide. November/December. p. 22–30.
                                                      19.   Richardson, Pat. 1997. Polyculture makes
7.    Amador, M.F. 1980. Behavior of three                  the most of biodiversity. HRM of Texas
      species (corn, beans, squash) in polyculture          Newsletter. Summer. p. 5, 7.
      in Chontalpa, Tabasco, Mexico. CSAT,
                                                      20.   Wolfe, Martin S. 2000. Crop strength
      Cardenas, Tabasco, Mexico.
                                                            through diversity. Nature. August. p. 681–
8.    Martin, Ralph, Don Smith, and Harvey                  682.
      Voldeng. 1987. Intercropping corn and
      soybeans. Sustainable Farming. REAP             By Preston Sullivan, NCAT Agriculture
      Canada. McGill University, Macdonald            Specialist
      Campus. http://www.eap.mcgill.ca/
9.    Anon. 1987. Intercropping bolsters silage       Edited by Paul Williams
      yields. Hay and Forage Grower. August. p.       Formatted by Gail Hardy
      29.
                                                      Updated August 2003
10.   Tonneson, Lon, and Jim Houtsma. 1991.
                                                                                               IP135/8
      Adding new wrinkles to alternate strips. The
      Farmer. September 7. p. 8–9.                      The electronic version of Intercropping
11.   Anon. 1990. Strip intercropping offers low-
                                                        Principles and Production Practices is
      input way to boost yields. Sensible Agricul-      located at:
      ture. May. p. 7–8.                                HTML
                                                        http://attra.ncat.org/attra-pub/intercrop.html
12.   Altieri, M.A., and M. Leibman. 1994. Insect,
                                                        PDF
      weed, and plant disease management in
      multiple cropping systems. In Francis, C.A.       http://attra.ncat.org/attra-pub/PDF/
                                                        intercrop.pdf

PAGE 12                                       //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES

Weitere ähnliche Inhalte

Was ist angesagt?

final assignment of evo
final assignment of evofinal assignment of evo
final assignment of evo
Kanwal Asif
 
Maryland sheep news Winter 2015 issueLO
Maryland sheep news Winter 2015 issueLOMaryland sheep news Winter 2015 issueLO
Maryland sheep news Winter 2015 issueLO
Martha Polkey
 

Was ist angesagt? (20)

Conception and Engineering of Cropping Systems: How to integrate ecological ...
Conception and Engineering of Cropping Systems:  How to integrate ecological ...Conception and Engineering of Cropping Systems:  How to integrate ecological ...
Conception and Engineering of Cropping Systems: How to integrate ecological ...
 
The measurement of biodiversity
 The measurement of biodiversity The measurement of biodiversity
The measurement of biodiversity
 
Swaminathan
SwaminathanSwaminathan
Swaminathan
 
Species diversity
Species diversitySpecies diversity
Species diversity
 
Lotka volterra model of competition
Lotka volterra model of competitionLotka volterra model of competition
Lotka volterra model of competition
 
Livestock and Pastoralists
Livestock and PastoralistsLivestock and Pastoralists
Livestock and Pastoralists
 
final assignment of evo
final assignment of evofinal assignment of evo
final assignment of evo
 
community structure and food web
community structure and food webcommunity structure and food web
community structure and food web
 
Agri 720 david doc
Agri 720 david docAgri 720 david doc
Agri 720 david doc
 
Populations
PopulationsPopulations
Populations
 
poster50: Learning Agrobiodiversity the importance of agricultural biodiversi...
poster50: Learning Agrobiodiversity the importance of agricultural biodiversi...poster50: Learning Agrobiodiversity the importance of agricultural biodiversi...
poster50: Learning Agrobiodiversity the importance of agricultural biodiversi...
 
Maryland sheep news Winter 2015 issueLO
Maryland sheep news Winter 2015 issueLOMaryland sheep news Winter 2015 issueLO
Maryland sheep news Winter 2015 issueLO
 
Lecture 11 biodiversity
Lecture 11 biodiversityLecture 11 biodiversity
Lecture 11 biodiversity
 
Measurment of biodiversity surendra patel
Measurment of biodiversity surendra patelMeasurment of biodiversity surendra patel
Measurment of biodiversity surendra patel
 
Agrobiodiversity, farmers´rights and agroforestry
Agrobiodiversity, farmers´rights and agroforestryAgrobiodiversity, farmers´rights and agroforestry
Agrobiodiversity, farmers´rights and agroforestry
 
Community Agrobiodiversity Conservation for Food Security and Sustainable Li...
Community Agrobiodiversity Conservation for  Food Security and Sustainable Li...Community Agrobiodiversity Conservation for  Food Security and Sustainable Li...
Community Agrobiodiversity Conservation for Food Security and Sustainable Li...
 
Ecological indices report 2222222
Ecological indices report 2222222Ecological indices report 2222222
Ecological indices report 2222222
 
Agricultural biodiversity
Agricultural biodiversityAgricultural biodiversity
Agricultural biodiversity
 
Ecological Farming: Agriculture Drought-Resistant Agriculture
Ecological Farming: Agriculture Drought-Resistant AgricultureEcological Farming: Agriculture Drought-Resistant Agriculture
Ecological Farming: Agriculture Drought-Resistant Agriculture
 
Biology 205 11
Biology 205 11Biology 205 11
Biology 205 11
 

Ähnlich wie Intercropping Principles and Production Practices - Attra

9761254 food-security-home scale-permaculture
9761254 food-security-home scale-permaculture9761254 food-security-home scale-permaculture
9761254 food-security-home scale-permaculture
Ngaire Taylor
 

Ähnlich wie Intercropping Principles and Production Practices - Attra (20)

Intercropping Principles and Production Practices
Intercropping Principles and Production PracticesIntercropping Principles and Production Practices
Intercropping Principles and Production Practices
 
Principles of Sustainable Weed Management for Croplands
Principles of Sustainable Weed Management for CroplandsPrinciples of Sustainable Weed Management for Croplands
Principles of Sustainable Weed Management for Croplands
 
Principles of Sustainable Weed Management for Croplands
Principles of Sustainable Weed Management for CroplandsPrinciples of Sustainable Weed Management for Croplands
Principles of Sustainable Weed Management for Croplands
 
9761254 food-security-home scale-permaculture
9761254 food-security-home scale-permaculture9761254 food-security-home scale-permaculture
9761254 food-security-home scale-permaculture
 
Farmscaping to Enhance Biological Control
Farmscaping to Enhance Biological ControlFarmscaping to Enhance Biological Control
Farmscaping to Enhance Biological Control
 
Farmscaping to Enhance Biological Control
Farmscaping to Enhance Biological ControlFarmscaping to Enhance Biological Control
Farmscaping to Enhance Biological Control
 
Farmscaping to Enhance Biological Control
Farmscaping to Enhance Biological ControlFarmscaping to Enhance Biological Control
Farmscaping to Enhance Biological Control
 
Farmscaping to Enhance Biological Control
Farmscaping to Enhance Biological Control Farmscaping to Enhance Biological Control
Farmscaping to Enhance Biological Control
 
Sustainable Management of Soil-borne Plant Diseases
Sustainable Management of Soil-borne Plant DiseasesSustainable Management of Soil-borne Plant Diseases
Sustainable Management of Soil-borne Plant Diseases
 
CULTURAL CONTROL of insect pest
CULTURAL CONTROL of insect pestCULTURAL CONTROL of insect pest
CULTURAL CONTROL of insect pest
 
insects wild life.pdf
insects wild life.pdfinsects wild life.pdf
insects wild life.pdf
 
Agroforestry Overview
Agroforestry OverviewAgroforestry Overview
Agroforestry Overview
 
AGRICULTURAL ECOSYSTEM AND THER OUTLINE.pptx
AGRICULTURAL ECOSYSTEM AND THER OUTLINE.pptxAGRICULTURAL ECOSYSTEM AND THER OUTLINE.pptx
AGRICULTURAL ECOSYSTEM AND THER OUTLINE.pptx
 
A Brief Overview of Nutrient Cycling in Pastures
A Brief Overview of Nutrient Cycling in PasturesA Brief Overview of Nutrient Cycling in Pastures
A Brief Overview of Nutrient Cycling in Pastures
 
A Brief Overview of Nutrient Cycling in Pastures
A Brief Overview of Nutrient Cycling in PasturesA Brief Overview of Nutrient Cycling in Pastures
A Brief Overview of Nutrient Cycling in Pastures
 
A Brief Overview of Nutrient Cycling in Pastures
A Brief Overview of Nutrient Cycling in PasturesA Brief Overview of Nutrient Cycling in Pastures
A Brief Overview of Nutrient Cycling in Pastures
 
Integrated farming
 Integrated farming Integrated farming
Integrated farming
 
Palta 2016 Thoughts on Sustainable ecological systems
Palta 2016 Thoughts on Sustainable ecological systemsPalta 2016 Thoughts on Sustainable ecological systems
Palta 2016 Thoughts on Sustainable ecological systems
 
Food Security & Home-Scale Permaculture (For Health & Wellbeing)
Food Security & Home-Scale Permaculture (For Health & Wellbeing)Food Security & Home-Scale Permaculture (For Health & Wellbeing)
Food Security & Home-Scale Permaculture (For Health & Wellbeing)
 
Sustainable Management of Soil-borne Plant Diseases
Sustainable Management of Soil-borne Plant DiseasesSustainable Management of Soil-borne Plant Diseases
Sustainable Management of Soil-borne Plant Diseases
 

Mehr von Fawn85w

Mehr von Fawn85w (20)

Garden Insect Pest Management in the Home Vegetable Garden - Auburn University
Garden Insect Pest Management in the Home Vegetable Garden - Auburn UniversityGarden Insect Pest Management in the Home Vegetable Garden - Auburn University
Garden Insect Pest Management in the Home Vegetable Garden - Auburn University
 
Good Companions: The Science Behind Companion Planting
Good Companions: The Science Behind Companion PlantingGood Companions: The Science Behind Companion Planting
Good Companions: The Science Behind Companion Planting
 
Good Food Project Organic Gardens by Food Bank of Central Louisiana
Good Food Project Organic Gardens by Food Bank of Central LouisianaGood Food Project Organic Gardens by Food Bank of Central Louisiana
Good Food Project Organic Gardens by Food Bank of Central Louisiana
 
Green Roofs for Urban Agriculture - University of East London
Green Roofs for Urban Agriculture - University of East LondonGreen Roofs for Urban Agriculture - University of East London
Green Roofs for Urban Agriculture - University of East London
 
Greenhouses and Season Extenders for Vegetable Gardening - Fairbanks, Alaska
Greenhouses and Season Extenders for Vegetable Gardening - Fairbanks, AlaskaGreenhouses and Season Extenders for Vegetable Gardening - Fairbanks, Alaska
Greenhouses and Season Extenders for Vegetable Gardening - Fairbanks, Alaska
 
Grow Biointensive Farming and Gardening a Sustainable Agricultural System - N...
Grow Biointensive Farming and Gardening a Sustainable Agricultural System - N...Grow Biointensive Farming and Gardening a Sustainable Agricultural System - N...
Grow Biointensive Farming and Gardening a Sustainable Agricultural System - N...
 
Grow Lexington: Community Garden Resource Manual
Grow Lexington: Community Garden Resource ManualGrow Lexington: Community Garden Resource Manual
Grow Lexington: Community Garden Resource Manual
 
Grow Your Own Food: The Joys of Community Gardening - Goinggreen
Grow Your Own Food: The Joys of Community Gardening - GoinggreenGrow Your Own Food: The Joys of Community Gardening - Goinggreen
Grow Your Own Food: The Joys of Community Gardening - Goinggreen
 
Growing Flowers, Herbs and Companion Plants - Master Gardeners, Grant Count, ...
Growing Flowers, Herbs and Companion Plants - Master Gardeners, Grant Count, ...Growing Flowers, Herbs and Companion Plants - Master Gardeners, Grant Count, ...
Growing Flowers, Herbs and Companion Plants - Master Gardeners, Grant Count, ...
 
Growing Guide: Making the Most of Your Raised Bed Garden
Growing Guide: Making the Most of Your Raised Bed GardenGrowing Guide: Making the Most of Your Raised Bed Garden
Growing Guide: Making the Most of Your Raised Bed Garden
 
Growing Together with Rochester Roots - New York
Growing Together with Rochester Roots - New YorkGrowing Together with Rochester Roots - New York
Growing Together with Rochester Roots - New York
 
Growing Vegetables in Containers - Utah State University
Growing Vegetables in Containers - Utah State UniversityGrowing Vegetables in Containers - Utah State University
Growing Vegetables in Containers - Utah State University
 
Growing Vegetables in School - Royal Horticultural Society
Growing Vegetables in School - Royal Horticultural SocietyGrowing Vegetables in School - Royal Horticultural Society
Growing Vegetables in School - Royal Horticultural Society
 
Guide to Companion Vegetable Planting - Berkeley, California
Guide to Companion Vegetable Planting - Berkeley, CaliforniaGuide to Companion Vegetable Planting - Berkeley, California
Guide to Companion Vegetable Planting - Berkeley, California
 
Guide to Companion Vegetable Planting - East Bay, California
Guide to Companion Vegetable Planting - East Bay, California Guide to Companion Vegetable Planting - East Bay, California
Guide to Companion Vegetable Planting - East Bay, California
 
Guide to Growing Your Favorite Vegetables - Use
Guide to Growing Your Favorite Vegetables - UseGuide to Growing Your Favorite Vegetables - Use
Guide to Growing Your Favorite Vegetables - Use
 
Herb Planting and Useful Plants - Organic Gardening for Primary Schools
Herb Planting and Useful Plants - Organic Gardening for Primary SchoolsHerb Planting and Useful Plants - Organic Gardening for Primary Schools
Herb Planting and Useful Plants - Organic Gardening for Primary Schools
 
Herbs as Companion Plants - Glenside, Pennsylvania
Herbs as Companion Plants - Glenside, PennsylvaniaHerbs as Companion Plants - Glenside, Pennsylvania
Herbs as Companion Plants - Glenside, Pennsylvania
 
Home Vegetable Garden Variety Recommendations for Utah - Utah State University
Home Vegetable Garden Variety Recommendations for Utah - Utah State UniversityHome Vegetable Garden Variety Recommendations for Utah - Utah State University
Home Vegetable Garden Variety Recommendations for Utah - Utah State University
 
How the Sun Can Cool
How the Sun Can CoolHow the Sun Can Cool
How the Sun Can Cool
 

Kürzlich hochgeladen

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Kürzlich hochgeladen (20)

ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 

Intercropping Principles and Production Practices - Attra

  • 1. INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES AGRONOMY SYSTEMS GUIDE Abstract: Intercropping offers farmers the opportunity to engage nature’s principle of diversity on their farms. Spatial arrangements of plants, planting rates, and maturity dates must be considered when planning intercrops. Intercrops can be more productive than growing pure stands. Many different intercrop systems are discussed, including mixed intercropping, strip cropping, and traditional intercropping arrangements. Pest management benefits can also be realized from intercropping due to increased diversity. Harvesting options for intercrops include hand harvest, machine harvest for on-farm feed, and animal harvest of the standing crop. By Preston Sullivan, NCAT Agriculture Specialist Illustrations by Missy Gocio Updated August 2003 Table of Contents Principles ............................................ 1 Principles Pursuing Diversity on the Farm ........... 2 Sustainable agriculture seeks, at least in prin- Intercropping Concepts ....................... 3 ciple, to use nature as the model for designing Intercrop Productivity .......................... 4 agricultural systems. Since nature consistently integrates her plants and animals into a diverse Managing Intercrops ........................... 5 landscape, a major tenet of sustainable agricul- Examples of Intercrop Systems .......... 6 ture is to create and maintain diversity. Nature is also efficient. There are no waste products in Escalating Diversity and Stability to a nature. Outputs from one organism become in- Higher Level ........................................ 7 puts for another. One organism dies and becomes Escalating Diversity and Stability to an food for other organisms. Since we are model- Even Higher Level ............................. 10 ing nature, let us first look at some of the prin- ciples by which nature functions. By understand- Intercropping for Disease Control ..... 11 ing these principles we can use them to reduce Adapting Intercropping to Your Farm 11 References ....................................... 12 costs and increase profitability, while at the same time sustaining our land resource base. · Diversity is nature’s design When early humans replaced hunting and gathering of food with domestication of crops and animals, the landscape changed accordingly. By producing a limited selection of crop plants and animals, humankind has greatly reduced the level of biological diversity over much of the earth. Annual crop monocultures represent a ATTRA is the national sustainable agriculture information service operated by the National Center for Appropriate Technology, through a grant from the Rural Business-Cooperative Service, U.S. Department of Agriculture. These organizations do not recommend or endorse products, companies, or individuals. NCAT has offices in Fayetteville, Arkansas (P.O. Box 3657, Fayetteville, AR 72702), Butte, Montana, and Davis, California.
  • 2. classic example. In response to this biological up of many wild species develops. Once a wild simplification, nature has struggled to restore di- plant and animal community has reached a high versity to these landscapes—that is her tendency. level of diversity, it remains stable for many years. Our “war” with nature over the tendency to di- When wild communities are in the early versity is what we call “weed control” and “pest stages of development, or when they have lost management.” Of course we could hardly pro- diversity due to natural catastrophe or human duce any crops if we simply allowed our fields actions, they are prone to major fluctuations, both to return to natural vegetation, but we can real- in types of species present and in their numbers. ize some of the benefits of diversity by planting Disease outbreaks in plants and animals occur mixtures of different crops. more frequently—as do outbreaks of weed, in- · Cooperation is more apparent sect, bird, or rodent pests. One good example is the grasshopper plagues that follow regional than competition weather shifts. Another is the shift in weed spe- There is far more cooperation in nature than cies dominance following a soil disturbance. competition. Cooperation is typified by mutu- The more complex and diverse communities ally beneficial relationships that occur between become, the fewer the fluctuations in numbers species within communities. In The Redesigned of a given species, and the more stable commu- Forest, ecologist Chris Maser offers a glimpse of nities tend to be. As the number of species in- the cooperation inherent in a northern temperate creases, so does the web of interdependencies. forest when he describes a relationship that ex- In both higher and lower rainfall years, there are ists among squirrels, fungi, and trees (1). The fewer increases in any one species and fewer fluc- squirrels feed on the fungus, then assist in its tuations in the community as a whole (2). reproduction by dropping fecal pellets contain- ing viable fungal spores onto the forest floor. There new fungal colonies establish. Tree feeder Pursuing Diversity on the roots search out the fungi and form a symbiotic Farm association that enables the tree roots to increase their nutrient uptake. The fungi, in turn, derive So, then, how can we begin to model our ag- food from the tree roots. Each benefits from the ricultural pursuits after some of these natural other’s presence or actions. principles? Can we look for patterns in nature If we view competition as the driving force and imitate them? Some pioneering farmers have in nature, we fail to see the complex relation- been able to utilize nature’s principle of diver- ships and feel compelled to take actions that may sity to their advantage. Results of their efforts have unforeseen impacts. The rancher who views include lower cost of production and higher prof- coyotes as competitors (for calves and lambs) and its. Among the practices that promote diversity kills them out may later find the predator helped and stability are: keep rodent populations in check. With the Enterprise diversification—Risk reduction predator gone, rodent numbers explode and through stability of income and yield are two of cause more problems than ever before. The same the reasons people diversify their crop and live- is true with many insect pests of crops. When stock systems. Increasing diversity on-farm also the only food for insects is crops, that is what reduces costs of pest control and fertilizer, be- they will eat. With no predator or parasite habi- cause these costs can be spread out over several tat present in a pure stand of crop, the pest in- crop or animal enterprises. sect could not possibly have it better. If we can Crop Crop Rotation — Moving from simple mo- shift our view of nature from a theme of compe- noculture to a higher level of diversity begins with tition to one of collaboration, we can act in ways viable crop rotations, which break weed and pest that yield fewer negative consequences (2). life cycles and provide complementary fertiliza- · Stability tends to increase with tion to crops in sequence with each other. increasing diversity Farmscaping—Diversity can be increased by If left undisturbed and unplanted, an aban- providing more habitat for beneficial organisms, doned crop field will first be colonized by just a habitats such as borders, windbreaks, and spe- few species of plants, insects, bacteria, and fungi. cial plantings for natural enemies of pests. Re- After several years, a complex community made quest the ATTRA publication Farmscaping to En- PAGE 2 //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES
  • 3. hance Biological Control for more information on SPATIAL ARRANGEMENT special plantings for beneficial insects. There are at least four basic spatial arrange- Intercr cropping Intercropping—Intercropping is the grow- ments used in intercropping. Most practical sys- ing of two or more crops in proximity to pro- tems are variations of these (3). mote interaction between them. Much of this publication focuses on the principles and strate- · Row intercropping—growing two or more gies of intercropping field crops. A related crops at the same time with at least one crop ATTRA publication, Companion Planting, provides planted in rows. more information on intercropping of vegetable · Strip intercropping—growing two or more crops. crops together in strips wide enough to per- Integration—On-farm diversity can be car- mit separate crop production using machines ried to an even higher level by integrating ani- but close enough for the crops to interact. mals with intercropping. With each increase in · Mixed intercropping—growing two or more the level of diversity comes an increase in stabil- crops together in no distinct row arrange- ity. This publication focuses on intercropping and ment. provides a section on integrating livestock with crops. · Relay intercropping—planting a second crop into a standing crop at a time when the stand- Intercropping Concepts ing crop is at its reproductive stage but be- fore harvesting. Most grain-crop mixtures with similar ripen- ing times cannot be machine-harvested to pro- PLANT DENSITY duce a marketable commodity since few buyers To optimize plant density, the seeding rate purchase mixed grains. Because of limited har- of each crop in the mixture is adjusted below its vest options with that type of intercropping, farm- full rate. If full rates of each crop were planted, ers are left with the options of hand harvesting, neither would yield well because of intense over- grazing crops in the field with animals, or har- crowding. By reducing the seeding rates of each, vesting the mixture for on-farm animal feed. the crops have a chance to yield well within the However, some intercropping schemes allow for mixture. The challenge comes in knowing how staggered harvest dates that keep crop species much to reduce the seeding rates. For example, separated. One example would be harvesting if you are planning to grow corn and cowpeas wheat that has been interplanted with soybeans, and you want mostly peas and only a little corn, which are harvested later in the season. Another it would be easy to achieve this. The corn-seed- example is planting harvestable strips, also known ing rate would be drastically cut (by 80% or more) as strip cropping. and the pea rate would be near normal. The field When two or more crops are growing to- should produce near top yields of peas even from gether, each must have adequate space to maxi- the lower planting rate and offer the advantage mize cooperation and minimize competition be- of corn plants for the pea vines to run on. If you tween them. To accom- wanted equal yields from plish this, four things both peas and corn, then the need to be considered: seeding rates would be ad- justed to produce those 1) spatial arrange- equal yields. ment, MATURITY DATES 2) plant density, Planting intercrops that 3) maturity dates feature staggered maturity of the crops dates or development peri- being grown, ods takes advantage of and variations in peak resource 4) plant architec- demands for nutrients, wa- strip cropping ter, and sunlight. Having ture. //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES PAGE 3
  • 4. one crop mature before its companion crop less- then know how much additional yield is required ens the competition between the two crops. An in the pure stand to equal the amount of yield aggressive climbing bean may pull down corn or achieved in the intercrop. The calculated figure sorghum growing with it and lower the grain is called the Land Equivalency Ratio (LER). To yield. Timing the planting of the aggressive bean calculate an LER, the intercrop yields are divided may fix the problem if the corn can be harvested by the pure stand yields for each component crop before the bean begins to climb. A common prac- in the intercrop. Then, these two figures are added tice in the old southern U.S. cotton culture was together. Here’s the equation for a corn/pea in- to plant velvet beans or cowpeas into standing tercrop where the yields from pure corn, pure corn at last corn cultivation. The corn was planted peas, and the yields from both corn and peas on wide 40-inch rows at a low plant population, growing together in an intercrop are measured. allowing enough sunlight to reach the peas or beans. The corn was close enough to maturity (intercrop corn / pure corn) + that the young legumes did not compete. When (intercrop pea / pure pea) = LER the corn was mature, the beans or peas had corn stalks to climb on. The end result was corn and beans that would be hand harvested together in When an LER measures 1.0, it tells us that the fall. Following corn and pea harvest, cattle the amount of land required for peas and corn and hogs would be turned into the field to con- grown together is the same as that for peas and sume the crop fodder. corn grown in pure stand (i.e., there was no ad- Selecting crops or varieties with different vantage to intercropping over pure stands). LERs maturity dates can also assist staggered harvest- above 1.0 show an advantage to intercropping, ing and separation of grain commodities. In the while numbers below 1.0 show a disadvantage traditional sorghum/pigeonpea intercrop, com- to intercropping. For example, an LER of 1.25 mon in India, the sorghum dominates the early tells us that the yield produced in the total inter- stages of growth and matures in about four crop would have required 25% more land if months. Following harvest of the sorghum, the planted in pure stands. If the LER was 0.75, we pigeonpea flowers and ripens. The slow-grow- know the intercrop yield was only 75% of that of ing pigeonpea has virtually no effect on the sor- the same amount of land that grew pure stands. ghum yield (4). In a South Carolina study, researchers planted PLANT ARCHITECTURE intercrops of southern peas and sweet corn at three different corn plant densities (5). The Plant architecture is a commonly used strate- plantings were on raised beds with flat and wide gy to allow one member of the mix to capture crowns on six-foot centers. In the center of each sunlight that would not otherwise be available to bed was a corn row, with two rows of peas the others. Widely spaced corn plants growing planted 18 inches to either side of the corn row above an understory of beans and pumpkins is a (see Figure 1). The low corn-seeding rate was classic example. 6,700 plants per acre, medium corn was 9,500 Intercrop Productivity per acre, and high was 11,900 plants per acre. Peas were established at a rate of 31,800 plants One of the most important reasons to grow per acre in all intercrop plots. In the pure pea two or more crops together is the increase in pro- stand, each bed had two rows of peas spaced 24 ductivity per unit of land. Researchers have de- inches apart. Yields of the intercrops and pure signed a method for assessing intercrop perfor- stands are shown in Table 1. mance as compared to pure stand yields. In re- In this trial there was a yield advantage from search trials, they grow mixtures and pure stands intercropping over growing the two crops in pure in separate plots. Yields from the pure stands, stands. Pea yields suffered from the increased and from each separate crop from within the mix- competition in the higher densities of corn. Some ture, are measured. practical on-farm guidelines can be drawn to From these yields, an assessment of the land guide seeding-rate choices for a two-crop inter- requirements per unit of yield can be determined. crop. To test seeding rates, experiment with three This information tells them the yield advantage small plantings of two crops at the following per- the intercrop has over the pure stand, if any. They centages of their full seeding rates: 1/3 + 2/3, PAGE 4 //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES
  • 5. might mature sooner. Corn or sorghum, requir- Table 1. Yields of sweet corn and ing three months to mature, can be grown with southern peas from intercrops (5) pigeon pea, requiring 10 months to maturation. _______________________________________ John Bowen and Bernard Kratky, researchers Corn Peas and instructors at the University of Hawaii, tell (pounds/ (pounds/ us that there are five distinct aspects to success- _Seed_Rates ______________acre)__________ acre) LER ___________________________________________ _____ ______ _____ ful multiple cropping. These are: Full corn 5600 *** *** _______________________________________ 1) detailed planning, Full peas *** 1200 *** _______________________________________ 2) timely planting of each crop, Low corn 4200 800 1.41 _______________________________________ 3) adequate fertilization at the optimal Medium corn 4600 800 1.48 _______________________________________ times, High corn 5000 500 1.30 _______________________________________ 4) effective weed and pest control, and 5) efficient harvesting (6). 1/2 + 1/2, and 2/3 + 1/3. From there, make Before any fieldwork is begun, adequate plan- adjustments for future plantings based on the ning should be done. Planning covers selection results and your expectations. of crop species and appropriate cultivars, water availability, plant populations and spacing, labor Managing Intercrops requirements throughout the season, tillage re- quirements, and predicted profitability of the in- Many combinations of crops have been grown tercrop. These and other parameters need to be or experimented with as mixed or relay inter- evaluated before spending money on inputs. crops. Some of these include sunflowers grown With any crop, seed germination and seed- with black lentils, wheat with flax, and canola ling establishment are the most critical phases of with flax. Other combinations include cucum- the entire season. A good seedbed is needed to bers, beans, celery, and chives in China; upland get a good stand. Delayed planting may reduce rice, corn, and cassava in Indonesia; and in vari- yield, since crop development may not coincide ous parts of the tropics corn and cassava, corn with the optimal growth periods. and peanuts, sorghum and millet, and sorghum Planning fertilization for intercrops can be and pigeonpeas. challenging, as the full needs of both crops must Frequently these cropping combinations in- be met. Generally, there is little information avail- volve a short and a tall crop both planted at the able on how to go about this. One possibility same time. In many cases the tall crop is har- would be to ask for soil test results for each crop vested first. For example, corn grown with a separately, then formulate a recommendation that shorter plant would be harvested first, then pea- will cover the needs of both crops to be grown. nut or sweet potato would be harvested later. Such recommendations are generally 10% to 30% Another pattern would be planting two tall crops higher than rates for individual crops. with different growth rates. In relay intercrops, As with any crop, also accounting for residual different planting dates are used so that one crop or carryover fertility from past crops saves money. Carryover fertility from intercrops may well be lower than that of pure stands because of the two crops having different root types and feed- ing habits. Weed and pest controls in intercrops will likely be different from those in pure stands. Some disease incidence, such as soybean or mung bean rusts, may increase when aggravated with high corn populations and overfertilization. Any disease or pest that prospers in shady conditions could increase under a taller crop such as corn or Figure 1. Sweetcorn and southern pea sunflowers. In many cases, insect pest popula- planting pattern tions are lower when two or more crops are //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES PAGE 5
  • 6. grown together. More on pest management will CORN AND SOYBEAN MIXED INTERCROPS be found later in this publication. Canadian researchers (8) have worked with Harvesting of mixed intercrops has been a several corn-soybean intercrop seeding rates to major limitation to their adoption in mechanized determine their economic advantages as silage. farming. As mentioned earlier, if the crops can- Pure stands of corn and soybeans were grown not be harvested by animals, or all together as for comparison at 24,000 corn seed per acre and feed, you’re left with hand harvesting. Some 200,000 soybean seed per acre. Results showed crops such as flax and wheat have been harvested that intercrops were more cost effective than pure together and mechanically separated. Any other stands over both years the study was conducted. mechanized harvest efforts must get one crop The study featured five experimental intercrop without damaging the other. One example would seeding rates with two planting arrangements be harvesting wheat over the top of a young stand (alternate and within the row). The researchers of soybeans growing beneath the grain heads. All concluded that a planting rate of 16,000 corn seed intercropping strategies— especially mixed inter- per acre (67% of the full corn rate) with 135,000 cropping—require advanced planning and keen soybean seed per acre (67% of the full bean rate) management. Success will likely be the reward planted within the same rows along with 53 lbs. for such efforts. of N/acre gave the highest economic returns. Examples of Intercrop (Note: the planter was set to drop 151,000 seeds per acre.) This mixture gave an LER of 1.14 over Systems pure stand yields. The crude protein level of the intercrop silage was considerably higher than that TRADITIONAL CORN-BEAN-SQUASH of pure corn silage. A slightly higher yield was MIXED INTERCROPS achieved from full stands of both corn and beans in alternate rows (LER=1.23), but the cost of pro- Farmers throughout Central America tradi- duction was higher, thus offsetting the improved tionally grow an intercrop of corn, beans, and yields. squash. Grown together, these three crops opti- mize available resources. The corn towers high CORN AND SORGHUM MIXED INTERCROPS over the other two crops, and the beans climb up Frank Cawrse, Jr., of Lebanon, Oregon, inter- the corn stalks. The squash plants sprawl along crops forage sorghum into his silage corn. He the ground, capturing light that filters down first plants the corn at 28,000 seed per acre, then through the canopy and shading the ground. The goes back over the field with a drill with enough shading discourages weeds from growing. drop tubes closed off to plant 8 pounds of sor- This mixture was compared to the individual ghum on 32-inch rows in between the corn. He crops grown separately in a study near Tabasco, also plants two different maturities of corn, a 95- Mexico (7). In the study, corn yields were con- day and a 75-day, to even out the silage mois- siderably higher in the mixture than in a pure ture content. He harvests a mix of corn in hard stand planted at optimum densities. Bean and dent and soft dent, and sorghum in the milk stage squash yields suffered (8). considerable yield reduc- STRIP CROPPING tions when grown in mix- Table 2. Yields of corn, beans and ture. In this example if squash grown alone or in a mixture CORN/SOYBEANS/ (7) corn were the most impor- _______________________________________ SMALL GRAINS tant crop, it was beneficial Pure Stand Intercrop South Dakota to grow it in a mixture (pounds/ (pounds/ farmer Tod Intermill with squash and beans. ___________________________________________ _Crop ____________________________________ _____ acre) acre) plants alternating The beans and squash strips of corn, soy- Corn 1096 were just a bonus. The _______________________________________1533 beans, and spring LER for the whole mixture Beans 544 98 wheat on his farm (9). _______________________________________ was considerably higher The strips are six rows (1.6) than any of the pure Squash 383 71 __________________________________ wide in a ridge-till stands. See Table 2 for system. All the crop details. plantings are adapted PAGE 6 //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES
  • 7. to existing equipment widths. Regular herbicide narrow strips (12 to 30 feet wide) offer. The strips treatments can be applied using a ground sprayer accommodate the pest management and soil of strip width. Even the wheat is drilled on ridges, building advantages of rotations and the yield using a drill with individual depth gauges on each boost of border rows. With proper management opener. Intermill orients his rows east and west the border effect can pay off; managed improp- to minimize the shading effects of taller crops erly, it can cost yield. With oat and corn strips, like corn. The crops are planted in a wheat–corn– the early-maturing oats are nearly mature before soybean pattern, with soybeans on the north side corn can pose much of a shade and competition of the corn (Figure 2). This arrangement reduces problem. The corn can also provide wind pro- the effect of corn shading often associated with a tection for the oats. When the oats are harvested, straight corn-soybean pattern, since the wheat is more sunlight is available to the corn. In times of mature before the corn has a chance to shade it. low moisture, oats may rob the corn border rows Corn gains the greatest benefit from the addi- of water. In his field trials, Cruse found a 5% tional sunlight interception on the outside rows increase in oat yields on their borders, while corn of the corn strip. realized a 12 to 15% increase. Soybean yields dropped by 10% on their bor- der rows, but the yields in the soybean middle rows were higher than they would be in a solid field, possibly representing a windbreak effect (10). Some have experimented with a shorter corn variety in the border row to minimize shading. One farmer tried planting six rows of corn and doubling his soybean strips to 12 rows to elimi- nate the impact of corn shading on the beans. Figure 2. Corn, soybeans, and wheat strip- This same farmer found that corn strips wider cropped than eight rows did not provide adequate results. Iowa farmer Tom Frantzen strip-crops oats, Using a 12-row planter, it’s easy to establish the corn, and soybeans on ridge-till rows. He views 6-row strips by filling the middle six hoppers with his strips as a crop rotation in one field. His rows corn and the outer three hoppers with beans. are oriented generally east and west on the con- Some farmers plant higher corn populations and tour. His 1989 strip-crop corn yields were 166 add higher nitrogen rates in the border rows to bushels per acre, compared to 130 for his farm take advantage of the extra sunlight exposure. average. Stripped soybean yields were two bush- Most farmers agree that strip cropping corn, soy- els lower than farm average. His oat yields were beans, and oats works best with ridge-till or no- 109 bushels stripped and 100-bushel farm aver- till. When the field is tilled, it’s difficult to gauge age. Tom was not surprised at the increase in where the rows should go in order to get the corn yields. The outer strip rows captured more strips even. sunlight. His average corn border row yielded 198 bushels per acre next to the soybeans and Escalating Diversity and 177 bushels next to oats. The soybean yields were 37 bushels, even with the increased shading on Stability to a Higher the border rows. This loss was made up in the Level middle rows with yields of 44 bushels per acre. Oats showed a 107-bushel yield on the soybean Ecologists tell us that stable natural systems side, a 103-bushel yield on the corn side, and 99 are typically diverse, containing many different bushels in the middle. Tom says the strip inter- types of plants, arthropods, mammals, birds, and cropping is no more labor intensive than microorganisms. In stable systems, serious pest monocrop fields. His profits were $76 per acre outbreaks are rare, because natural controls exist for the stripped fields and $55 for the same crops to automatically bring populations back into bal- grown in monoculture. (11). ance. Planting crop mixtures, which increase Rick Cruse, an Iowa State University agrono- farmscape biodiversity, can make crop ecosystems mist, has observed several characteristics that more stable, and thereby reduce pest problems. //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES PAGE 7
  • 8. There is overwhelming evidence that plant smother crop to curtail weeds and grasses. The mixtures support lower numbers of pests than lupines in the row middles can be tilled in with do pure stands (11), and there are two schools of the cultivator later in the season to release more thought on why this occurs. One suggests that legume nitrogen. higher natural enemy populations persist in di- In the Parramores’ system, all the nitrogen verse mixtures due to more continuous food needs of the cotton crop are met with cover crops sources (nectar, pollen, and prey) and favorable except for 10 units per acre of starter nitrogen habitat. and another 15 units applied while spraying her- The other thought is that pest insects that feed bicides. Petiole samples taken every week to on only one type of plant have greater opportu- monitor plant nitrogen show that cotton grown nity to feed, move around in, and breed in pure with lupines maintains a normal range of tissue crop stands because their resources are more con- nitrogen throughout the growing season. The ni- centrated than they would be in a crop mixture trogen level in cotton grown solely with fertilizer (12). Regardless of which reason you accept, the is very high initially, then subsequently falls back crops growing together in the mixture comple- to a lower level. In one comparative year, the ment one another, resulting in lower pest levels. cotton grown following lupine produced 96 more Intercropping also aids pest control efforts pounds of lint, with only 25 units of commercial by reducing the ability of the pest insects to rec- nitrogen, compared to a field with 125 units of ognize their host plants. For example, thrips and nitrogen and no lupines. Additionally, the lu- white flies are attracted to green plants with a pine field required less spraying for insects—only brown (soil) background, ignoring areas where twice compared to five sprays for the commer- vegetation cover is complete—including mulched cial nitrogen field. This reduction saved 60% on soil (13). Some intercrops have a spatial arrange- insecticides, amounting to $35 per acre. The re- ment that produces the complete vegetation cover duction in need for pesticides is attributed to the that would be recognized as unfavorable to thrips large population of beneficial insects generated and whiteflies. Other insects recognize their host and sustained in this system. The lupines pro- plants by smell. Onions planted with carrots vide food for aphids and thrips, which attract la- mask the smell of carrots from carrot flies. For dybugs, big-eyed bugs, and fire ants as preda- more information on companion planting for in- tors. When the cotton gets big enough to shade sect management, request the ATTRA publica- out the lupines, the beneficial insects move to tions Farmscaping to Enhance Biological Control and the cotton rather than migrating from the field. Companion Planting. The Parramores estimate that improved yields, Innovative farmers are paving the way with combined with cost reductions, are netting them intercrops and realizing pest management ben- an additional $184 per acre with the strip tillage efits as a result. Georgia cotton farmers Wayne lupine system when compared to the conventional Parramore and sons reduced their insecticide and management system. fertilizer use by growing a lu- Alfalfa is one of the pine cover crop ahead of their best crops for attracting spring-planted cotton (14). and retaining beneficial They started experimenting insects. This characteris- with lupines on 100 acres in tic can be enhanced fur- 1993, and by 1995 were grow- ther. Strip-cutting alfalfa ing 1,100 acres of lupines. (i.e., cutting only half of Ground preparation for cotton the crop at any one time, planting is begun about 10 in alternating strips) main- days prior to planting by till- tains two growth stages in ing 14-inch wide strips into the the crop; consequently, lupines. Herbicides are ap- some beneficial habitat is plied to the strips at that time, available at all times. In and row middles remain un- some cases alfalfa is mixed touched. The remaining lu- ©2003www.clipart.com with another legume and pines provide a beneficial in- lupine a grass. Auburn Univer- sect habitat and also serve as a sity researcher Mike PAGE 8 //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES
  • 9. Gayler is just starting research projects using al- ment of soil-borne diseases, request the ATTRA falfa as an attractant crop for beneficials. He publication Sustainable Management of Soilborne speculates that it will work in the Southeast with Plant Diseases. proper management. Other main-season strip Texas dryland farmer Ron Gobel intercrops crops that research suggests will benefit cotton 8-row strips of sesame and cotton for insect con- crop pest management include cowpeas, sor- trol benefits. The sesame harbors many benefi- ghum, corn, and crotalaria (15). cial insects, including high populations of lace- Dr. Sharad Phatak of the University of Geor- wings, assassin bugs, and lady beetles. Ron’s gia has been working with cotton growers in 1995 crop was planted late due to prolonged Georgia testing a strip-cropping method using spring rains. He did not use a Bt cotton variety. annual winter cover crops (16). Planting cotton Early frost terminated the crop two weeks ear- into strip-killed crimson clover improves soil lier than normal, yet he still produced 0.8 bales health, cuts tillage costs, and allows him to grow per acre under dryland conditions. His sesame cotton with no insecticides and only 30 pounds produced 800 pounds per acre. The 1996 cotton of nitrogen fertilizer. Working with Phatak, rows were planted where the sesame rows were farmer Benny Johnson reportedly saved at least the previous year, and sesame planted where $120/acre on his 16-acre test plot with the clover cotton was before. system. There were no insect problems in the Since Ron sells his cotton for a premium price test plot, while beet armyworms and whiteflies in the organic market, he cannot spray any syn- were infesting nearby cotton and requiring 8 to thetic insecticides. Consequently, he must rely 12 sprayings to control. Cotton intercropped with on beneficial insects attracted to his fields by cul- crimson clover yielded more than three bales of tural practices and a handful of natural insecti- lint per acre compared to 1.2 bales of lint per cides. acre in the rest of the field (16). Boll counts were Following the fall harvest, Ron plants annual 30 per plant with crimson clover and 11 without rye at a low rate of 20 to 40 pounds per acre. The it. Phatak identified up to 15 different kinds of rye is tilled in prior to crop planting in the spring. beneficial insects in these strip-planted plots. Ron believes the rye helps with soil moisture re- Phatak finds that planting crimson clover seed tention and weed control. During the 1997 crop at 15 pounds per acre in the fall produces around year his fields suffered only minimal boll weevil 60 pounds of nitrogen per acre by spring. By damage. Ron noticed lots of adult bollworm late spring, beneficial insects are active in the clo- moths but no worms. The eggs were eaten or ver. At that time, 6- to 12-inch planting strips of parasitized by the beneficials. clover are killed with Roundup™ herbicide. Fif- Ron’s fields were scouted as part of a boll teen to 20 days later the strips are lightly tilled weevil eradication program. The scouts were and cotton is planted. The clover in the row- amazed at the lack of worms and the high num- middles is left growing to maintain beneficial in- bers of beneficial insects. The cotton crop was sect habitat. When the clover is past the bloom sprayed one time with diatomaceous earth im- stage and less desirable for beneficials, they move pregnated with natural pyrethrum, which was readily onto the cotton. Even early-season thrips, acceptable under the organic standards. The in- which can be a problem following cover crops, sect scouts noticed a 70% reduction in adult boll are limited or prevented by beneficial insects in weevil population three days after the spray. this system. The timing coincides with a period They were so surprised that they placed cages of when cotton is most vulnerable to insect pests. 20 live weevils in the field to see whether the Following cotton defoliation, the beneficials hi- spray was working. The next day, 45% of those bernate in adjacent non-crop areas. weevils were dead. The entomologists specu- Phatak points out that switching to a whole- lated that the weevils were getting enough of the farm focus while reducing off-farm inputs is not diatomaceous earth on their leg joints to cut their simple. It requires planning, management, and exoskeletons, allowing the pyrethrum to kill several years to implement on a large scale. It is them. just as important to increase and maintain organic In a scientific study, Mississippi researchers matter, which stimulates beneficial soil microor- interplanted 24 rows of cotton with 4 rows of ganisms. Eventually a “living soil” will keep sesame to study the intercrop’s effects on tobacco harmful nematodes and soilborne fungi under budworms and bollworms (Heliothis spp.). control (16). For more information on manage- Throughout the growing season, larvae numbers //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES PAGE 9
  • 10. were much higher in the sesame than on the cot- ver. Not all the pastures have water sources for ton until late August, indicating the worm’s pref- the animals, so water is moved on a trailer tank erence for sesame. Following a large summer when necessary. The animals are moved daily in rain at a time when the sesame was reaching a planned grazing system during rapid plant maturity, the Heliothis adults became more at- growth and much more slowly, up to five days tracted to the cotton. The researchers noted that on a paddock, during slow plant growth. sesame’s attractiveness to Heliothis and sesame’s Some of the paddocks are planted with mix- ability to harbor high numbers of beneficial in- tures of either winter or summer forage or grain sects made it useful in a cotton pest management crops. An intercrop of cereal grain, fava beans, program (17). and Canadian field peas is planted for winter grain, each crop at 1/3 normal seeding rate. The Escalating Diversity and grain mixture is combine-harvested to make en- ergy and protein supplement feed as needed. Stability to an Even After harvest, the animals are turned into the Higher Level paddock to glean what’s left. For summer feed, a mixture of milo planted on 18-inch rows is in- The diversity created by intercropping can be tercropped with a row of black-eyed peas planted enhanced even further by integrating livestock six inches to either side of each sorghum row, (single or mixed species) into the cropping plan using a drill with partitions in the seedbox. The as harvesters. Allowing animals to harvest feed milo provides a trellis for the pea vines to run on crops in the field puts gain on animals at the cost (Figure 3). The milo/black-eyed mixture requires of crop production—considerably less than the no herbicide. Before peas and milo were grown purchase price of the grain. If you think about it, together, the milo pure stand would be plagued feed grains cost a lot less when they’re not run with whiteflies and green bugs. Mixing the two through a $150,000 combine or hauled 1000 miles crops together ended the pest problem. Cow- across the country. peas have extrafloral nectaries that attract lots of Grazing animals and other livestock can be beneficial insects. managed on croplands to reduce costs, increase This could ex- income, and increase diversity. There are ways plain the absence of incorporating animals into cropping without of pest insects in the farmer getting into animal husbandry or own- the mixture. The ership directly. Collaboration with neighbors who milo/pea mix- own animals will benefit both croppers and live- ture is harvested stock owners. Grazing or hogging-off of corn by setting the residue is one example where a cost can be turned combine to cut at into a profit. The animals replace the $6 per acre the height of the stalk mowing cost and produce income in ani- milo heads. This mal gains. yields a milo to Figure 3. Cowpeas and Shasta College provides a unique demonstra- bean ratio of milo growing together tion of integrating livestock with intercrops. 2:1—ideal for Shasta is a two-year community college located feed. in Redding, California, that offers associate de- The college animal herd consists of 20 sows grees in several branches of agriculture. Stan that farrow on pasture, 35 head of cattle, 50 sheep, Gorden (18) heads the college’s holistic resource and 30 laying hens that all range together. The laboratory, where students get hands-on experi- hens are with the herd during the day and roost ence with ranching and farming (19). Stan and in a nearby eggmobile at night. Gorden selects his students have taken intercropping to a high breeds and genetics to fit this system, as opposed level of efficiency. They run hogs, sheep, cattle, to selecting breeds for maximum production and and chickens together over 42 small paddocks of adapting a system to match the animal. The ani- various forages and crops growing on 100 acres mals benefit one another. The sheep learn to stay of college-owned land. One paddock is a pump- close to the middle of the herd to avoid preda- kin patch, another a garlic and carrot patch. Some tors, which are fended off by the hogs. The cattle are planted in alfalfa or mixes of grasses and clo- learn that the hogs know how to break the pump- PAGE 10 //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES
  • 11. kins open, so they stick close and get some too. over the 1987 figure. During that same time the The hogs eat the cow and sheep droppings and soil organic matter has increased from 1.7% to benefit from the predigestion. The hens scav- 3.2 % (18). enge wasted seeds from the various crops. There are three different kinds of hens, each of which Intercropping for lays eggs of a different color. The eggs are mar- keted as rainbow eggs, with each dozen contain- Disease Control ing four white, four blue, and four brown eggs. Under direction of an international team of The chickens also scratch apart cattle dung pats scientists, farmers in China’s Yunnan province searching for insects, thus destroying cattle para- made some simple changes in their rice produc- sites. tion methods (20). They changed from planting Gorden says that developing and maintain- their typical pure stand of a single rice variety to ing this high level of diversity has required cre- planting a mixture of two different rice varieties. ativity, selection criteria, constant monitoring, and Their primary reason for trying this new tech- re-examining traditional beliefs. By challenging nique was to reduce the incidence of rice blast, long-held beliefs, Bill and his students discov- the main disease of rice. The technique was so ered that hogs do not need standard farrowing successful at reducing blast disease that the farm- crates and that sheep and cattle are compatible ers were able to abandon chemical fungicides grazers. Animals and crops are selected and culled they had been using. The biodiversity effect is according to their ability to adapt to this com- apparent here in that if one variety of a crop is plex system. Shasta College has one of the larg- susceptible to a disease, the denser the stand, est heritage hog herds in the country. The hogs the worse the disease can spread. If susceptible have been fitted with humane nose rings to pre- plants are separated by non-host plants that can vent rooting. Also, hog breeds are selected that act as a physical barrier to the disease, the sus- don’t root up the ground nor eat the baby lambs ceptible variety will suffer less disease infection. when they are born. The sows farrow on pas- Rice blast moves from plant to plant via airborne ture with only a single bale of hay for bedding. spores. These spores can be blocked by a row of Hogs are not vaccinated, nor are needle teeth re- a resistant variety. In this on-farm study, the moved or other detailing done. Sows generally rice was harvested by hand. Separating the vari- wean 12 pigs with no supplemental feed. The eties was easily done during harvest, since one only purchased input is some nitrogen and phos- variety towered above the other. phorus fertilizer applied to the pastures. The pigs are only touched twice; once to castrate and Adapting Intercropping once to wean. As with the hogs, the cattle and sheep are selected to prosper on grass. Preda- to Your Farm tors are not controlled in any way. Any animal Intercropping has been important in the U.S. that gets killed by wandering off is naturally se- and other countries and continues to be an im- lected out of the herd. portant practice in developing nations. In tradi- The sheep/hog/cow mix provides much bet- tional systems, intercropping evolved through ter utilization of forage than single species graz- many centuries of trial and error. To have per- ing. Since the animals do most of the harvesting, sisted, intercropping had to have merit biologi- less fossil fuel and labor-hours are expended. cally, environmentally, economically, and socio- There are no pens to wash and no manure to logically. To gain acceptance, any agricultural deal with. The herd is controlled using an elec- practice must provide advantages over other tric fence charged up to 8,000 volts to hold the available options in the eyes of the practitioner . sheep. Many of the impediments to adoption of new Before the 100-acre crop/animal integration strategies or practices of diversification are so- project began in 1987, the College’s agriculture ciological (Will I look foolish to my neighbors? resource laboratory was costing $8,000 per year. Will I fail?) and financial (What are the risks? That was the first year the resource laboratory What is the profit potential?) rather than techno- started managing holistically. By 1996, the re- logical. source lab’s income was up $12,000, and expenses Farmers have generally regarded intercrop- were down $10,000—rendering a $14,000 profit ping as a technique that reduces risks in crop //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES PAGE 11
  • 12. production; if one member of an intercrop fails, (ed.). Multiple Cropping Systems. the other survives and compensates in yield to Macmillan Company, New York. 383 p. some extent, allowing the farmer an acceptable 13. Ecological Agriculture Projects. Mixing Crop harvest. Pest levels are often lowered in inter- Species. McGill University, Macdonald crops, as the diversity of plants hampers move- Campus. http://www.eap.mcgill.ca/ ment of certain pest insects and in some cases CSI_2.htm encourages beneficial insect populations. 14. Dirnerger, J.M. 1995. The bottom line matters—you can laugh at him on the way to References the bank. National Conservation Tillage Digest. October–November. p. 20–23. 1. Maser, Chris. 1990. The Redesigned Forest. Stoddart, Toronto, Canada. 224 p. 15. Rincon-Vitova. No date. Product Informa- tion: Biological Control Solutions for Cotton 2. Savory, Allan. 1998. Holistic Manage- Pests. Rincon-Vitova Insectaries, Inc. Oak ment—A New Framework for Decision- View, CA. 6 p. Making. 2nd edition. Island Press. Covelo, CA. 550 p. 16. Yancey, Cecil Jr. 1994. Covers challenge cotton chemicals. The New Farm. February. 3. Grossman, Joel, and William Quarles. 1993. p. 20–23. Strip intercropping for biological control. IPM Practitioner. April. p. 1–11. 17. Laster, M.L., and R.E. Furr. 1972. Heliothis populations in cotton-sesame interplantings. 4. Willy, R.W., et al. 1983. Intercropping Journal of Economic Entomology. Vol. 65, studies with annual crops. In: Better Crops No. 5. p. 1524–1525. for Food, CIBA Foundation Symposium 97. Pitman, London, UK. 18. Stan Gorden Department of Agriculture and Natural 5. Francis, R., and D.R. Decoteau. 1993. Devel- Resources oping an effective southernpea and sweet Shasta College corn intercrop system. Hort Technology. PO Box 496006 Vol. 3, No. 2. p. 178–184. Redding, CA 96049-6006 6. Bowen, John F., and Bernard A. Kratky. 1986. 530-225-4687 Successful multiple cropping requires Email: sgorden@shastacollege.edu superior management skills. Agribusiness Web: http://www.shastacollege.edu Worldwide. November/December. p. 22–30. 19. Richardson, Pat. 1997. Polyculture makes 7. Amador, M.F. 1980. Behavior of three the most of biodiversity. HRM of Texas species (corn, beans, squash) in polyculture Newsletter. Summer. p. 5, 7. in Chontalpa, Tabasco, Mexico. CSAT, 20. Wolfe, Martin S. 2000. Crop strength Cardenas, Tabasco, Mexico. through diversity. Nature. August. p. 681– 8. Martin, Ralph, Don Smith, and Harvey 682. Voldeng. 1987. Intercropping corn and soybeans. Sustainable Farming. REAP By Preston Sullivan, NCAT Agriculture Canada. McGill University, Macdonald Specialist Campus. http://www.eap.mcgill.ca/ 9. Anon. 1987. Intercropping bolsters silage Edited by Paul Williams yields. Hay and Forage Grower. August. p. Formatted by Gail Hardy 29. Updated August 2003 10. Tonneson, Lon, and Jim Houtsma. 1991. IP135/8 Adding new wrinkles to alternate strips. The Farmer. September 7. p. 8–9. The electronic version of Intercropping 11. Anon. 1990. Strip intercropping offers low- Principles and Production Practices is input way to boost yields. Sensible Agricul- located at: ture. May. p. 7–8. HTML http://attra.ncat.org/attra-pub/intercrop.html 12. Altieri, M.A., and M. Leibman. 1994. Insect, PDF weed, and plant disease management in multiple cropping systems. In Francis, C.A. http://attra.ncat.org/attra-pub/PDF/ intercrop.pdf PAGE 12 //INTERCROPPING PRINCIPLES AND PRODUCTION PRACTICES