SlideShare ist ein Scribd-Unternehmen logo
1 von 42
Downloaden Sie, um offline zu lesen
Ing. Carlos Elmer Cruz Salazar
2016
Autor:
ING.CIVILI7º“K”
ANALISIS ESTRUCTURAL
AVANZADO
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 2
CUADERNILLO DE EJERCICIOS UNIDAD 3
INGENIERIA CIVIL | 7° “K”
INTEGRATES
SANTOS NATAREN HUGO ALBERTO
SANTOS CAMACHO MANUEL JULIO CESAR
VILLALOBOS HERNANDEZ FCO. GABRIEL
SANCHEZ ZARATE ENRIQUE
TRINIDAD FIGUEROA GUADALUPE
VELAZQUEZ ORTIZ LUIS ENRIQUE
ANALISIS ESTRUCTURAL
AVANZADO
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 3
14-1 DETERMINE LA MATRIZ DE RIGIDEZ K P ARA EL ENSAMBLE. CONSIDERE
𝒒𝒖𝒆 𝑨 = 𝟎. 𝟓 𝒑𝒖𝒍𝒈𝟕 Y QUE 𝑬 = 𝟐𝟗(𝟏𝟎 𝟑
) KSI PARA CADA ELEMENTO.
Barra 1
𝜆 𝑥 = cos 36.87 = 0.8
𝜆 𝑦 = 𝑠𝑒𝑛 36.87 = 0.6
𝐿 = 60
5 6 1 2
154.667 116 -154.667 -116 5
116 87 -116 -87 6
-154.667 -116 154.667 116 1
-116 -87 116 87 2
K11
Barra 2 𝜆 𝑥 = 1 𝜆 𝑦 = 0 𝐿 = 72
1 2 3 4
K12
201.389 0 -201.389 0 1
0 0 0 0 2
-201.389 0 201.389 0 3
0 0 0 0 4
Barra 3 𝜆 𝑥 = cos 36.87 = 0.8 L=60
𝜆 𝑦 = 𝑠𝑒𝑛 36.87 = −0.6
7 8 1 2
154.667 -116 -154.667 116 7
-116 87 116 -87 8
-154.667 116 154.667 -116 1
116 -87 -116 87 2
K13
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 4
Ensamble para la determinación de la matriz de rigidez K
1 2 3 4 5 6 7 8
510.723 0 -201.39 0 -154.667 -116 -154.667 116 1
0 174 0 0 -116 -87 116 -87 2
-201.389 0 201.389 0 0 0 0 0 3
0 0 0 0 0 0 0 0 4
-154.667 -116 0 0 154.667 116 0 0 5
-116 -87 0 0 116 87 0 0 6
-154.667 116 0 0 0 0 154.667 -116 7
116 -87 0 0 0 0 -116 87 8
KG
14-2 DETERMINE LOS DESPLAZAMIENTOS HORIZONTALES Y VERTICAL EN LA
JUNTA (3) DEL ENSAMBLE DEL PROBLEMA.
𝐷𝑘 =
[
0
0
0
0
0]
𝑄𝐾 = [
0
−4
]
1 2 3 4 5 6 7 8
0 510.723 0 -201.39 0 -154.667 -116 -154.667 116 D1
-4 0 174 0 0 -116 -87 116 -87 D2
Q3 -201.389 0 201.389 0 0 0 0 0 0
Q4 0 0 0 0 0 0 0 0 0
Q5 -154.667 -116 0 0 154.667 116 0 0 0
Q6 -116 -87 0 0 116 87 0 0 0
Q7 -154.667 116 0 0 0 0 154.667 -116 0
Q8 116 -87 0 0 0 0 -116 87 0
KG
0 = 510.72𝐷1 + 0𝐷2
−4 = 0𝐷1 + 172𝐷2
𝐷1 = 0
𝐷2 = −0.0230𝑖𝑛
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 5
14-3 DETERMINE LA FUERZA E N CADA ELEMENTO DEL ENSAMBLE DEL
PROBLEMA 14-1
𝐷1 = 𝐷2 = 𝐷3 = 𝐷4 = 𝐷5 = 𝐷6 = 𝐷7 = 𝐷8 = 0 𝐷2 = −0.230
Barra 1
𝑄1 =
0.5(29(103))
60
[−0.8 −0.6 0.8 0.6] [
0
0
0
−0.230
]
𝑄1 =
0.5(29(103))
60
(0.6)(−0.230) = −𝟑. 𝟑𝟑𝑲
Barra 2
𝑄2 =
0.5(29(103))
72
[−1 0 1 0] [
0
−0.0230
0
0
]
𝑄2 = 0
Barra 3
𝑄3 =
0.5(29(103))
60
[−0.8 0.6 0.8 −0.6] [
0
0
0
−0.230
]
𝑄3 =
0.5(29(103))
60
(0.6)(−0.230) = −𝟑. 𝟑𝟑𝑲
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 6
14-4 DETERMINE LA MATRIZ DE RIGIDEZ K PARA LA ARMADURA. CONSIDERE QUE
𝑨 = 𝟎 𝟕 𝟓 𝒑𝒖𝒍𝒈𝟕 Y QUE 𝑬 = 𝟐𝟗(𝟏𝟎 𝟑
)𝒌𝒔𝒊.
Barra 1
𝜆 𝑥 = sen 450
= −0.707
𝜆 𝑦 = cos 450
= −0.707
𝐿 = 12√32
1 2 3 4
160.155 160.155 -160.155 -160.155 1
160.155 160.155 -160.155 -160.155 2
-160.155 -160.155 160.155 160.155 3
-160.155 -160.155 160.155 160.155 4
K11
Barra 2
𝜆 𝑥 = 0 𝜆 𝑦 = −1 𝐿 = 48
1 2 5 6
0.000 0.000 0.000 0.000 1
0.000 453.125 0.000 -453.125 2
0.000 0.000 0.000 0.000 5
0.000 -453.125 0.000 453.125 6
K12
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 7
Barra 3
𝜆 𝑥 = sen 36.870
= 0.6
𝜆 𝑦 = cos 36.87 = −0.8
𝐿 = 60
1 2 7 8
130.50 -174.00 -130.50 174.00 1
-174.00 232.00 174.00 -232.00 2
-130.50 174.00 130.50 -174.00 7
174.00 -232.00 -174.00 232.00 8
K13
Ensamble para la determinación de la matriz de rigidez K
1 2 3 4 5 6 7 8
290.655 -13.845 -160.155 -160.155 0.000 0.000 -130.50 174.00 1
-13.845 845.280 -160.155 -160.155 0.000 -453.125 174.00 -232.00 2
-160.155 -160.155 160.155 160.155 0 0 0 0 3
-160.155 -160.155 160.155 160.155 0 0 0 0 4
0.000 0.000 0.000 0.000 0.000 0.000 0 0 5
0.000 -453.125 0.000 0.000 0.000 453.125 0 0 6
-130.500 -130.500 0.000 0.000 0.000 0.000 130.50 -174.00 7
174.000 174.000 0.000 0.000 0.000 0.000 -174.00 232.00 8
K
14-5 DETERMINACIÓN DEL DESPLAZAMIENTO HORIZONTAL DE LA JUNTA 1 Y LA
FUERZA EN EL ELEMENTO 2.
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 8
Elemento 2
𝜆 𝑥 = 0 𝜆 𝑦 = 1, −1
𝐷1 = −500
𝐷2 = 0
𝐷𝑘 =
0
0
0
0
0
0
Qk=⌈
500
0
⌉
1 2 3 4 5 6 7 8
-500 290.655 -13.845 -160.155 -160.155 0.000 0.000 -130.50 174.00 1 D1
0 -13.845 845.280 -160.155 -160.155 0.000 -453.125 174.00 -232.00 2 D2
Q3 -160.155 -160.155 160.155 160.155 0 0 0 0 3 0
Q4 -160.155 -160.155 160.155 160.155 0 0 0 0 4 0
Q5 0.000 0.000 0.000 0.000 0.000 0.000 0 0 5 0
Q6 0.000 -453.125 0.000 0.000 0.000 453.125 0 0 6 0
Q7 -130.500 -130.500 0.000 0.000 0.000 0.000 130.50 -174.00 7 0
Q8 174.000 174.000 0.000 0.000 0.000 0.000 -174.00 232.00 8 0
K
[
−500
0
] = [
0.003443191 5.63967E − 05
5.63967E − 05 0.001183964
] [
𝐷1
𝐷2
]
−500 = 𝐴𝐸(0.003443191D1 − 5.63967E − 05D2)
0 = 5.63967E − 05D1 − 0.001183964D2
𝐷2 =-1.72159573 𝐷 = -0.02819834
ELEMENTO 2
𝜆 𝑥 = 0 𝜆 𝑦 = −1 𝐿 = 48
𝑄2 =
0.75(29(103))
48
[0 1 0 −1] [
−1.7116
−0.0282
0
0
]
𝑄2 =
0.75(29(103))
48
(1)(−0.082) = −𝟏𝟐. 𝟕𝟖𝒍𝒃
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 9
14-7 DETERMINE LA MATRIZ DE RIGIDEZ K ARA LA ARMADURA. CONSIDERE QUE
A = 0.0015 𝑴 𝟐
Y QUE E = 200 G P A P ARA CADA ELEMENTO.
Barra 1
𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 2
5 6 7 8
150000000 0 -150000000 0 5
0 0 0 0 6
-150000000 0 150000000 0 7
0 0 0 0 8
K11
Barra 2 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 2
1 2 5 6
150000000 0 -150000000 0 1
0 0 0 0 2
-150000000 0 150000000 0 5
0 0 0 0 6
K12
Barra 3
𝜆 𝑥 = sen 45 = −0.707
𝜆 𝑦 = cos 45 = −0.707
𝐿 = 2√2
1 2 3 4
53020000 -53020000 -53020000 53020000 1
-53020000 53020000 53020000 -53020000 2
-53020000 53020000 53020000 -53020000 3
53020000 -53020000 -53020000 53020000 4
k13
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 10
Barra 4 𝜆𝑥 = 0 𝜆𝑦 = 1 𝐿 = 2
5 6 3 4
0 0 0 0 5
0 150000000 0 -150000000 6
0 0 0 0 3
0 -150000000 0 150000000 4
k14
Barra 5 𝜆𝑥 = −0.7071 𝜆𝑦 = −0.7071 𝐿 = 2.8284
3 4 7 8
53020000 53020000 -53020000 -53020000 3
53020000 53020000 -53020000 -53020000 4
-53020000 -53020000 53020000 53020000 7
-53020000 -53020000 53020000 53020000 8
k15
Barra 6 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 2
3 4 9 10
150000000 0 -150000000 0 3
0 0 0 0 4
-150000000 0 150000000 0 9
0 0 0 0 10
k16
Ensamble para la determinación de la matriz de rigidez K
1 2 3 4 5 6 7 8 9 10
203020000 -53020000 -53020000 53020000 -150000000 0 0 0 0 0 1
-53020000 53020000 53020000 -53020000 0 0 0 0 0 0 2
-53020000 53020000 256040000 0 0 0 -53020000 -53020000 -150000000 0 3
53020000 -53020000 0 256040000 0 -150000000 -53020000 -53020000 0 0 4
-150000000 0 0 0 300000000 0 150000000 0 0 0 5
0 0 0 -150000000 0 150000000 0 0 0 0 6
0 0 -53020000 -53020000 -150000000 0 203020000 53020000 0 0 7
0 0 -53020000 -53020000 0 0 53020000 53020000 0 0 8
0 0 -150000000 0 0 0 0 0 150000000 0 9
0 0 0 0 0 0 0 0 0 0 10
KG
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 11
14-8 DETERMINE EL DESPLAZAMIENTO VERTICAL EN LA JUNTA 2 Y LA FUERZA EN
LA JUNTA EL ELEMENTO [5]. CONSIDERE QUE 𝑨 = 𝟎. 𝟎𝟎𝟏𝟓 Y QUE 𝑬 = 𝟐𝟎𝟎 𝑮𝑷𝒂.
𝑄𝑘 =
[
0
−30000
0
0
0
0 ]
1
2
3
4
5
6
𝐷𝑘 = [
0
0
0
0
]
7
8
9
10
1 2 3 4 5 6 7 8 9 10
203020000 -53020000 -53020000 53020000 -150000000 0 0 0 0 0 D1
-53020000 53020000 53020000 -53020000 0 0 0 0 0 0 D2
-53020000 53020000 256040000 0 0 0 -53020000 -53020000 -150000000 0 D3
53020000 -53020000 0 256040000 0 -150000000 -53020000 -53020000 0 0 D4
-150000000 0 0 0 300000000 0 150000000 0 0 0 D5
0 0 0 -150000000 0 150000000 0 0 0 0 D6
KG
0 = [203.033 𝐷1 − 53.033𝐷2 − 53.033𝐷3 + 53.033𝐷4 − 150𝐷5](106) − 30(103)
= [−53.033𝐷1 + 53.033𝐷2 + 53.033𝐷3 − 53.033𝐷4](106)
0 = [−53.033𝐷1 + 53.033𝐷2 + 256.066𝐷3](106)
0 = [53.033𝐷1 − 53.033𝐷2 + 256.066𝐷4 − 150𝐷6](106)
0 = [−150𝐷4 + 300𝐷5](106)
0 = [−150𝐷4 + 150𝐷6](106)
𝐷1 = −0.0004𝑚 𝐷2 = −0.0023314𝑚 𝐷3 = 0.0004𝑚 𝐷4 = −0.00096569𝑚
𝐷5 = −0.0002𝑚 𝐷6 = 0.00096569𝑚 = 0.000966𝑚
𝜆 𝑦 = − cos 45 . 𝜆 𝑥 = −𝑠𝑒𝑛 45
𝐿 = 2.8284𝑀
(𝑞5) 𝐹 =
0.0015[200(109)]
2.8284
[. 707 .707 − .707 − .707]= -42.4 kN
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 12
14.9 DETERMINE LA MATRIZ DE RIGIDEZ K PARA LA ARMADURA. CONSIDERE QUE
A= 0.0015 𝑴 𝟐
Y QUE E = 200 GPA PARA CADA ELEMENTO.
Barra 1
𝜆𝑥 = cos 36.87 = − 0.8
𝜆𝑦 = 𝑠𝑒𝑛 36.87 = 0.6
𝐿 = 5𝑚
Barra 2 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 4𝑚
1 2 3 4
75000000 0 -75000000 0 1
0 0 0 0 2
-75000000 0 75000000 0 3
0 0 0 0 4
k12
Barra 3 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 4𝑚
3 4 9 10
75000000 0 -75000000 0 3
0 0 0 0 4
-75000000 0 75000000 0 9
0 0 0 0 10
k13
Barra 4 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 3𝑚
3 4 5 6
0 0 0 0 3
0 100000000 0 -100000000 4
0 0 0 0 5
0 -100000000 0 100000000 6
k14
1 2 5 6
38400000 28800000 -38400000 -28800000 1
28800000 21600000 -28800000 -21600000 2
-38400000 -28800000 38400000 28800000 5
-28800000 -21600000 28800000 21600000 6
k11
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 13
Barra 5 𝜆𝑥 = cos 36.87 = − 0.8 𝜆𝑦 = 𝑠𝑒𝑛 36.87 = 0.6 𝐿 = 5𝑚
5 6 9 10
38400000 28800000 -38400000 -28800000 5
28800000 21600000 -28800000 -21600000 6
-38400000 -28800000 38400000 28800000 9
-28800000 -21600000 28800000 21600000 10
k15
Barra 6 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 4𝑚
5 6 8 7
75000000 0 -75000000 0 5
0 0 0 0 6
-75000000 0 75000000 0 8
0 0 0 0 7
k16
Barra 7 𝜆𝑥 = 0 𝜆𝑦 = 1 𝐿 = 3𝑚
8 7 9 10
0 0 0 0 8
0 100000000 0 -100000000 7
0 0 0 0 9
0 -100000000 0 100000000 10
k17
Ensamble para la determinación de la matriz de rigidez K
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 14
1 2 3 4 5 6 7 8 9 10
113400000 28800000 -75000000 0 -38400000 -28800000 0 0 0 0 1
28800000 21600000 0 0 -28800000 -21600000 0 0 0 0 2
-75000000 0 150000000 0 0 0 0 0 0 0 3
0 0 0 100000000 0 -100000000 0 0 0 0 4
-38400000 -28800000 0 0 84600000 57600000 0 -75000000 0 0 5
-28800000 -21600000 0 -100000000 57600000 143200000 0 0 0 0 6
0 0 0 0 0 0 100000000 0 0 -100000000 7
0 0 0 0 -75000000 0 0 75000000 0 0 8
0 0 -75000000 0 -75000000 -28800000 0 0 0 0 9
0 0 0 0 -28800000 -28800000 -100000000 0 0 100000000 10
KG
14.10, 14-11 DETERMINE LA FUERZA EN EL ELEMENTO (5). CONSIDERE QUE A =
00015𝐌 𝟐
Y QUE E = 200 GPA PARA CADA ELEMENTO.
1 2 3 4 5 6 7
0 113400000 28800000 -75000000 0 -38400000 -28800000 0 D1 0
-20000 28800000 21600000 0 0 -28800000 -21600000 0 D2 -20000
0 -75000000 0 150000000 0 0 0 0 D3 0
0 0 0 0 100000000 0 -100000000 0 D4 0
0 -38400000 -28800000 0 0 84600000 57600000 0 D5 0
0 -28800000 -21600000 0 -100000000 57600000 143200000 0 D6 0
0 0 0 0 0 0 0 100000000 D7 0
2.66667E-08 -3.55556E-08 1.33333E-08 -2.34968E-23 -3.1329E-23 -2.34968E-23 0 D1 0.000711111
-3.55556E-08 0.00000014 -1.77778E-08 4.62963E-08 2.09832E-22 4.62963E-08 0 D2 -0.0028
1.33333E-08 -1.77778E-08 1.33333E-08 -1.18424E-23 -1.18424E-23 -1.18424E-23 0 D3 0.000355556
0 4.62963E-08 0 2.84217E-07 -1.7094E-07 2.74217E-07 0 D4 -0.000925926
0 1.15348E-22 0 -1.7094E-07 1.28205E-07 -1.7094E-07 0 D5 -2.30696E-18
0 4.62963E-08 0 2.74217E-07 -1.7094E-07 2.74217E-07 0 D6 -0.000925926
0 0 0 0 0 0 0.00000001 D7 0
MINVERSA
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 15
0.8 -0.6 -0.8 0.6 -2.30696E-18
-0.000925926
0
0
𝑸𝟓 = 𝟑𝟑. 𝟑𝟑
14.12 DETERMINE LA MATRIZ DE RIGIDEZ K PARA LA ARMADURA. CON SIDERE QUE
𝑨 = 𝟐 𝒑𝒖𝒍𝒈 𝟐 Y QUE 𝑬 = 𝟐 𝟗 ( 𝟏𝟎 𝟑
) KSI.
Barra 1 𝜆𝑥 = 0 𝜆𝑦 = −1 𝐿 = 72𝑖𝑛
1 2 5 6
0 0 0 0 1
0 805.556 0 -805.56 2
0 0 0 0 5
0 -805.56 0 805.556 6
K11
Barra 2 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 96𝑖𝑛
5 6 3 4
604.167 0 -604.17 0 5
0 0 0 0 6
-604.17 0 604.167 0 3
0 0 0 0 4
K12
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 16
Barra 3 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 96𝑖𝑛
1 2 7 8
604.167 0 -604.17 0 1
0 0 0 0 2
-604.17 0 604.167 0 7
0 0 0 0 8
K13
Barra 4 𝜆𝑥 = 0 𝜆𝑦 = −1 𝐿 = 72𝑖𝑛
3 4 7 8
0 0 0 0 3
0 805.556 0 -805.56 4
0 0 0 0 7
0 -805.56 0 805.556 8
K14
Barra 5 𝜆𝑥 = −0.8 𝜆𝑦 = −0.6 𝐿 = 120𝑖𝑛
1 2 3 4
309.333 232 -309.33 -232 1
232 174 -232 -174 2
-309.33 -232 309.333 232 3
-232 -174 232 174 4
K15
Barra 6 𝜆𝑥 = −0.8 𝜆𝑦 = 0.6 𝐿 = 120𝑖𝑛
5 6 7 8
309.333 -232 -309.33 232 5
-232 174 232 -174 6
-309.33 232 309.333 -232 7
232 -174 -232 174 8
K16
ENSAMBLE PARA LA DETERMINACIÓN DE LA MATRIZ DE RIGIDEZ K
1 2 3 4 5 6 7 8
913.5 232 -309.333 -232 0 0 -604.167 0 1
232 979.556 -232 -174 0 -805.556 0 0 2
-309.333 -232 913.5 232 -604.167 0 0 0 3
-232 -174 232 979.556 0 0 0 -805.556 4
0 0 -604.167 0 913.5 -232 -309.333 232 5
0 -805.556 0 0 -232 979.556 232 -174 6
-604.167 0 0 0 -309.333 232 309.333 -232 7
0 0 0 -805.556 232 -174 -232 979.556 8
KG
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 17
14.13 DETERMINE E L DESPLAZAMIENTO HORIZONTAL DE LA JUNTA Y LA FUERZA
E N E L ELEMENTO [5]. CONSIDERE QUE A -2 PULG2 Y QUE E = 29(𝟏𝟎 𝟑
) KSI. NO TOME
EN CUENTA EL ESLABÓN CORTO EN (2).
14.14 DETERMINE LA FUERZA EN EL ELEMENTO [3] SI EL ELEMENTO ERA 0.025
PULGADAS MÁS CORTO DE LO ESPERADO ANTES DE AJUSTARSE EN LA
ARMADURA. CONSIDERE QUE A = 2 PULG2 Y QUE E=29(𝟏𝟎 𝟑
) KSI. NO TOME EN
CUENTA EL ESLABÓN CORTO E N (2).
913.5 232 -309.333 -232 0 D1 0
232 979.556 -232 -174 0 D2 0
-309.333 -232 913.5 232 -604.167 D3 3
-232 -174 232 979.556 0 D4 0
0 0 -604.167 0 913.5 D5 0
CONOCIDOS
0.00140996 -0.00013793 0.00072414 0.00013793 0.00047893 D1 0.00217241
-0.00013793 0.00116379 0.00040733 7.7586E-05 0.0002694 D2 0.00122198
0.00072414 0.00040733 0.00274946 -0.00040733 0.00181843 D3 0.00824839
0.00013793 7.7586E-05 -0.00040733 0.00116379 -0.0002694 D4 -0.00122198
0.00047893 0.0002694 0.00181843 -0.0002694 0.00229736 D5 0.00545529
MINVERSA
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 18
16-1 DETERMINAR LA MATRIZ DE LAS RIGIDECES K DE LA ESTRUCTURA PARA EL
MARCO.
DATOS
𝐴 = 10 𝐸3
𝑚𝑚4
. = 0.01𝑚2
𝐼 = 300 𝐸6
𝑚𝑚4
= 0.0003𝑚4
.
𝐸 = 200 𝐺𝑝𝑎. = 200𝐸9
𝑁
𝐿 = 4𝑚
Componentes de la matriz de rigideces.
𝐴𝐸
𝐿
=
(0.01𝑚)(200𝐸9
𝑁)
4
= 500𝐸6
𝑁/𝑚
12𝐸𝐼
𝐿3
=
12(200𝐸9
𝑁)(300 𝐸−6)
42
= 11.25𝐸6
𝑁/𝑚
6𝐸𝐼
𝐿2
=
6(200𝐸9
𝑁)(0.0003𝑚4
)
42
= 22.5𝐸6
𝑁
4𝐸𝐼
𝐿
=
4(200𝐸9
𝑁)(0.0003𝑚4
)
4
= 60𝐸6
𝑁. 𝑚
2𝐸𝐼
𝐿
=
2(200𝐸9
𝑁)(0.0003𝑚4
)
4
= 30𝐸6
𝑁. 𝑚
Elemento 1 (VIGA)
𝜆 𝑋 =
4−0
4
= 1 𝜆 𝑌 =
0−0
4
= 0
7 8 9 1 2 3
500 0 0 -500 0 0 7
0 11.25 22.5 0 -11.25 22.5 8
0 22.5 60 0 -22.5 30 9
-500 0 0 500 0 0 1
0 -11.25 -22.5 0 11.25 -22.5 2
0 22.5 30 0 -22.5 60
3
E6
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 19
7 8 9 1 2 3
500 0 0 -500 0 0 7
0 11.25 22.5 0 -11.25 22.5 8
0 22.5 60 0 -22.5 30 9
-500 0 0 500 0 0 1
0 -11.25 -22.5 0 11.25 -22.5 2
0 22.5 30 0 -22.5 60 3
Elemento 2 (COLUMNA)
𝜆 𝑋 =
4−4
4
= 0 𝜆 𝑌 =
−4−0
4
= −1
Matriz de rigideces del marco
1 2 3 4 5 6 7 8 9
511.25 0 22.5 -11.25 0 22.5 -500 0 0 1
0 511.25 -22.5 0 -500 0 0 -11.25 -22.5 2
22.5 -22.5 120 -22.5 0 30 0 22.5 30 3
-11.25 0 -22.5 11.25 0 -22.5 0 0 0 4
0 -500 0 0 500 0 0 0 0 5
22.5 0 30 -22.5 0 60 0 0 0 6
-500 0 0 0 0 0 500 0 0 7
0 -11.25 22.5 0 0 0 0 11.25 22.5 8
0 -22.5 30 0 0 0 0 25.5 60 9
E6
1 2 3 4 5 6
11.25 0 22.5 -11.25 0 22.5 1
0 500 0 0 -500 0 2
22.5 0 60 -22.5 0 30 3
-11.25 0 -22.5 11.25 0 -22.5 4
0 -500 0 0 500 0 5
22.5 0 30 -22.5 0 60 6
E6
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 20
16-2 DETERMINE LAS REACCIONES EN LOS SOPORTES FIJOS 1 Y 2. CONSIDERE
QUE E = 200 GPA, I = 300(106) MM4 Y A =10(103) MM2 PARA CADA ELEMENTO.
Conociendo las cargas en los nodos y las deflexiones
𝑄 𝑘 [
−5(103
)
−24(103
)
11(103
)
]
1
2
3
𝐷 𝑘
[
0
0
0
0
0
0]
4
5
6
7
8
9
Relación de cargas-desplazamiento Q=KD
[
−5(103
)
−24(103
)
11(103
)
𝑄4
𝑄5
𝑄6
𝑄7
𝑄8
𝑄9 ]
=
[
511.25 0 22.5
0 511.25 −22.5
22.5
−11.25
0
22.5
−500
0
0
−22.5
0
−500
0
0
−11.25
−22.5
120
−22.5
0
30
0
22.5
30
−11.25 0 22.5
0 −500 0
−22.5
11.5
0
−22.5
0
0
0
0
0
500
0
0
0
0
30
−22.5
0
60
0
0
0
−500 0 0
0 −11.25 −22.5
0
0
0
0
500
0
0
22.5
0
0
0
0
11.25
22.5
30
0
0
0
0
22.5
60 ]
(106)
[
𝐷1
𝐷2
𝐷3
0
0
0
0
0
0 ]
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 21
Qu = K11Du + K12DK
−5(103) = (511.25𝐷1 + 22.5𝐷3)(106
) (1)
−24(103) = (511.25𝐷2 − 22.5𝐷3)(106
) (2)
11(103) = (511.25𝐷1 − 22.5𝐷2 + 120𝐷3)(106
) (3)
Resolviendo las ecuaciones 1, 2 y 3
𝐷1 = 13.57(10−6
)𝑚
𝐷2 = −43.15(10−6
)𝑚
𝐷3 = 86.12(10−6
)𝑟𝑎𝑑
Usando estos resultados y aplicándolos en Qu = K21Du + K22Dk
𝑄4 = −11.25(106)(−13.57)(10−6) + (−22.5)(106)(86.12)(10−6) = −1.785𝐾𝑁
𝑄5 = −500(106)(−43.15)(10−6) = 21.58𝐾𝑁
𝑄6 = 22.5(106)(−13.57)(10−6) + 30(106)(86.12)(10−6) = 2.278𝐾𝑁. 𝑚
𝑄7 = −500(106)(−13.57)(10−6) = 6.785𝐾𝑁
𝑄8 = −11.25(106)(−43.15)(10−6) + 22.5(106)(86.12)(10−6) = 2.423𝐾𝑁
𝑄9 = −22.5(106)(−43.15)(10−6) + 30(106)(86.12)(10−6) = 3.555𝐾𝑁. 𝑚
Reacciones.
𝑅4 = −1.785 + 5 = 3.214𝐾𝑁 = 3.21KN
𝑅5 = 21.58 + 0 = 21.58𝐾𝑁 = 21.6𝑁
𝑅6 = 2.278 − 5 = −2.722𝐾𝑁. 𝑚 = −2.722𝐾𝑁. 𝑚
𝑅7 = 6.785 + 0 = 6.785𝐾𝑁 = 6.79𝐾𝑁
𝑅8 = 2.423 + 24 = 26.42𝐾𝑁 = 26.4𝐾𝑁
𝑅9 = 3.555 + 16 = 19.55𝐾𝑁. 𝑚 = 19.6𝐾𝑁. 𝑚
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 22
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 23
16-3 DETERMINE LA MATRIZ DE RIGIDEZ DE ESTRUCTURA K PARA EL MARCO.
SUPONGA QUE (3). ESTÁ ARTICULADO Y QUE (1) ESTÁ FIJO. CONSIDERE QUE E =
200 MPA, I= 300(10)6 MM4 Y A=21(10)3 MM2 PARA CADA ELEMENTO.
ELEMENTO 1:
𝜆 𝑥 =
5−0
5
= 1 𝜆 𝑦 = 0
𝐴𝐸
𝐿
=
(0.021)(200𝐸8
)
5
= 840000
6𝐸𝐼
𝐿2
=
6(200𝐸6
)(300𝐸−6
)
52
= 14000
4𝐴𝐸
𝐿
=
4(200𝐸6
)(300𝐸−6
)
5
= 48000
12𝐸𝐼
𝐿3
=
12(200𝐸6
)(300𝐸−6
)
53
= 5760
2𝐸𝐼
𝐿
=
2(200𝐸6
)(300𝐸−6
)
5
= 24000
K1=
840000 0 0 −840000 0 0
0 5760 14400 0 −5760 14400
0 14400 48000 0 −14400 24000
−840000 0 0 840000 0 0
0 −5760 −14400 0 5760 −14400
0 14400 24000 0 −14400 48000
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 24
ELEMENTO 2:
𝜆 𝑌 =
0 − (−4)
4
= 1 𝜆 𝑋 = 0
𝐴𝐸
𝐿
=
(0.021)(200𝐸6
)
4
= 1050000
6𝐸𝐼
𝐿2
=
6(200𝐸6
)(300𝐸−6
)
42
= 22500
4𝐴𝐸
𝐿
=
4(200𝐸6
)(300𝐸−6
)
4
= 60000
12𝐸𝐼
𝐿3
=
12(200𝐸6
)(300𝐸−6
)
43
= 11250
2𝐸𝐼
𝐿
=
2(200𝐸6
)(300𝐸−6
)
4
= 30000
K2=
11250 0 −22500 −11250 0 −22500
0 1050000 0 0 −1050000 0
−22500 0 60000 22500 0 30000
−11250 0 22500 11250 0 22500
0 −1050000 0 0 1050000 0
−22500 0 30000 22500 0 60000
𝐾 =
851250 0 22500 22500 −11250 0 −840000 0 0
0 1055760 −14400 0 0 −1050000 0 −5760 −14400
22500 −14400 108000 30000 −22500 0 0 14400 24000
22500 0 30000 60000 −22500 0 0 0 0
−11250 0 −22500 −22500 11250 0 0 0 0
0 −1050000 0 0 0 1050000 0 0 0
−840000 0 0 0 0 0 840000 0 0
0 −5760 14400 0 0 0 0 5760 14400
0 −14400 24000 0 0 0 0 14400 48000
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 25
16-4 DETERMINE LAS REACCIONES CON LOS SOPORTES 1 Y 3 CONSIDERE QUE
E= 200 MPA, I=300 (10⁶) MM⁴ Y A= 21(10³) MM² PARA CADA ELEMENTO.
7 8 9 1 2 3
𝐾1 =
[
840000
0
0
−840000
0
0
0
5760
14400
0
−5760
14400
0
14400
48000
0
−14400
24000
−840000
0
0
840000
0
0
0
−5760
−14400
0
5760
−14400
0
14400
24000
0
−14400
48000 ]
7
8
9
1
2
3
1 2 3 5 6 4
𝐾2 =
[
11250
0
−22500
−11250
0
−22500
0
1050000
0
0
−1050000
0
−22500
0
60000
22500
0
30000
−11250
0
22500
11250
0
22500
0
−1050000
0
0
1050000
0
−22500
0
30000
22500
0
60000 ]
1
2
3
5
6
4
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 26
MATRIZ GLOBAL
1 2 3 4 5 6 7 8 9
𝐊 =
[
851250
0
22500
22500
−11250
0
−840000
0
0
0
1055760
−14400
0
0
−1055760
0
−5760
−14400
22500
−14400
108000
30000
−22500
0
0
14400
24000
22500
0
30000
60000
−22500
0
0
0
0
−11250
0
−22500
−22500
11250
0
0
0
0
0
−1050000
0
0
0
1050000
0
0
0
−840000
0
0
0
0
0
840000
0
0
0
−5760
14400
0
0
0
0
5760
1440
0
−14400
24000
0
0
0
0
14400
48000 ]
𝟏
𝟐
𝟑
𝟒
𝟓
𝟔
𝟕
𝟖
𝟗
𝑫 𝑲 =
[
𝟎
𝟎
𝟎
𝟎
𝟎]
𝑸 𝑲 = [
𝟎
𝟎
𝟑𝟎𝟎
𝟎
]
[
𝟎
𝟎
𝟑𝟎𝟎
𝟎
𝑸 𝟓
𝑸 𝟔
𝑸 𝟕
𝑸 𝟖
𝑸 𝟗 ]
=
[
851250
0
22500
22500
−11250
0
−840000
0
0
0
1055760
−14400
0
0
−1055760
0
−5760
−14400
22500
−14400
108000
30000
−22500
0
0
14400
24000
22500
0
30000
60000
−22500
0
0
0
0
−11250
0
−22500
−22500
11250
0
0
0
0
0
−1050000
0
0
0
1050000
0
0
0
−840000
0
0
0
0
0
840000
0
0
0
−5760
14400
0
0
0
0
5760
1440
0
−14400
24000
0
0
0
0
14400
48000 ] [
𝑫 𝟏
𝑫 𝟐
𝑫 𝟑
𝑫 𝟒
𝟎
𝟎
𝟎
𝟎
𝟎 ]
CALCULO DE LAS REACCIONES
[
0
0
300
0
] = [
851250
0
22500
22500
0
1055760
−14400
0
22500
−14400
108000
30000
22500
0
30000
60000
] [
D1
D2
D3
D4
] + [
0
0
0
0
]
0 = 851250 𝐷1 + 22500 𝐷3 + 22500 𝐷4
0 = 1055760 𝐷2 + −14400 𝐷3
300 = 22500 𝐷1 + −14400 𝐷2 + 108000 𝐷3 + 30000 𝐷4
0 = 22500 𝐷1 + 30000 𝐷3 + 60000 𝐷4
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 27
SOLUCION
𝐷1 = −0.00004322 𝑚 𝐷2 = 0.00004417 𝑚 𝐷3 = 0.00323787 𝑟𝑎𝑑 𝐷4 = −0.00160273 𝑟𝑎𝑑
[
Q5
Q6
Q7
Q8
Q9]
=
[
−11250
0
−840000
0
0
0
−1050000
0
−5760
−14400
−22500
0
0
14400
24000
−22500
0
0
0
0 ]
[
−0.00004322
0.00004417
0.00323787
−0.00160273
] +
[
0
0
0
0
0]
𝐐 𝟓 = −𝟑𝟔. 𝟑 𝑲𝑵
𝐐 𝟔 = −𝟒𝟔. 𝟒 𝑲𝑵
𝐐 𝟕 = 𝑵𝟑𝟔. 𝟑 𝑲𝑵
𝐐 𝟖 = 𝟒𝟔. 𝟒 𝑲𝑵
𝐐 𝟗 = 𝟕𝟕. 𝟏 𝑲𝑵 ∗ 𝒎
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 28
16-5 DETERMINE LA MATRIZ DE RIGIDEZ DE LA ESTRUCTURA K PARA EL MARCO.
CONSIDERE QUE E= 200 GPA, I= 350 (𝟏𝟎 𝟔
) 𝒎𝒎 𝟒
Y 𝑨 = 𝟏𝟓(𝟏𝟎 𝟑)𝒎𝒎 𝟐
PARA CADA
ELEMENTO. LAS JUNTAS EN 1 Y 3 ESTÁN ARTICULADOS.
𝐸 = 200 𝐺𝑃𝑎 = 200 ∗ 109
𝑁/𝑚
𝐼 = 350 ∗ 106
𝑚𝑚4
= 350 ∗ 10−6
𝑚4
𝐴 = 15 ∗ 103
𝑚𝑚2
= 0.015 𝑚2
𝐴𝐸
𝐿
=
(0.015)(200𝐸9
)
4
= 750𝐸6
𝑁/𝑚
12𝐸𝐼
𝐿3
=
12(200𝐸9
)(350𝐸−6
)
43
= 13.125𝐸6
𝑁/𝑚
6𝐸𝐼
𝐿2
=
6(200𝐸9
)(350𝐸−6
)
42
= 26.25𝐸6
𝑁
4𝐸𝐼
𝐿
=
4(200𝐸9
)(350𝐸−6
)
4
= 70𝐸6
𝑁 ∙ 𝑚
2𝐸𝐼
𝐿
=
2(200𝐸9
)(350𝐸−6
)
4
= 35𝐸6
𝑁 ∙ 𝑚
Por miembro 1 𝜆 𝑥 =
4−0
4
= 1 𝜆 𝑦 =
0−0
4
= 0
𝐾1 =
0080 00009 0000500 00010000 020000 03000
[
750 0 0 −750 0 0
0 13.125 26.25 0 −13.125 26.25
0 26.25 70 0 −26.25 35
−750 0 0 750 0 0
0 −13.125 −26.25 0 13.125 −26.25
0 26.25 35 0 −26.25 70 ]
(106)
Por miembro 2 𝜆 𝑥 =
4−4
4
= 0 𝜆 𝑦 =
−4−0
4
= −1
𝐾2 =
0080 00009 0000500 00010000 020000 03000
[
750 0 0 −750 0 0
0 13.125 26.25 0 −13.125 26.25
0 26.25 70 0 −26.25 35
−750 0 0 750 0 0
0 −13.125 −26.25 0 13.125 −26.25
0 26.25 35 0 −26.25 70 ]
(106)
Matriz general 9X9
𝐾2 =
000010 00002000 0000300 0004000000 0050000 60000 7 08000 9
[
763.125 0 26.25 26.25 0 −13.125 0 0 0
0 763.125 −26.25 0 −26.25 0 −750 −750 −13.125
26.25 −26.25 140 35 35 −26.25 0 0 26.25
26.25 0 35 70 0 −26.25 0 0 0
0 −26.25 35 0 70 0 0 0 26.25
−13.125 0 26.25 −26.25 0 13.125 0 0 0
0 −750 0 0 0 0 750 750 0
−750 0 0 0 0 0 0 0 0
0 −13.125 26.25 0 26.25 0 0 0 13.125 ]
(106)
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 29
16-6 DETERMINE LAS REACCIONES EN LOS SOPORTES ARTICULADOS 1 Y 3
CONSIDERE QUE E=200 GPA, I=350 ( 𝟏𝟎 𝟔
) MM4 Y A=15 (𝟏𝟎 𝟑
) MM2 PARA CADA
ELEMENTO.
𝑄𝑘 =
[
0
−41.25(103)
45(103)
0
0 ]
1
2
3
4
5
𝐷𝑘 = [
0
0
0
0
]
6
7
8
9
[
0
−41.25(103)
45(103)
0
0
𝑄6
𝑄7
𝑄8
𝑄9 ]
=
[
763.125
0
26.25
26.25
0
−13.125
0
−750
0
0
763.125
−26.25
0
−26.25
0
−750
0
−13.125
26.25
−26.25
140
35
35
−26.25
0
0
26.25
26.25
0
35
70
0
−26.25
0
0
0
0
−26.25
35
0
70
0
0
0
26.25
−13.125
0
−26.25
−26.25
0
13.125
0
0
0
0
−750
0
0
0
0
750
0
0
−750
0
0
0
0
0
0
750
0
0
−13.125
26.25
0
26.25
0
0
0
13.125 ]
106
[
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5
0
0
0
0 ]
Desde la partición de matriz, Qk= K11Du + K12Dk
0= (763.125D1 + 26 .25D3 + 26.25D4) ( 106
) (1)
-41.25 (103
)= 763.125D1 + 26 .25D3 + 26.25D5) ( 106
) (2)
45(103
)= (26.25D1 - 26.25D2 + 140D3 + 35D4 + 35D4) ( 106
) (3)
0= (26.25D1 + 35D3 + 70D4) (106
) (4)
0= (26.25D1 + 35D3 + 70D4) (106
) (5)
Resultados ecuación. (1) a (5)
D1= -7.3802(10−6
) D2= -47.3802(10−6
) D3= 423.5714(10−6
)
D5= -209.0181(10−6
) D5= -229.5533(10−6
)
Utilizando estos resultados y aplicando Qu= K21Du +K22Dk
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 30
Q6= (-13.125) (10−6
) – 7.3802(10−6
) – 26.25(10−6
)423.5714(10−6
) – 26.25(106
) - 209.0181(10−6
) + 0 = -
5.535 kN
Q7= -750(106
) – 47.3802(10−6
) + 0 = 35.535 kN
Q8= -750(106
) – 7.3802(10−6
) + 0 = 5.535 kN
Q9= -13.125(106
) – 47.3802(10−6
) + 26.25(106
) + 423.5714(10−6
) + 26.25(106
) – 229.5533(10−6
) + 0 =
5.715 kN
Superponer estos resultados a los de la figura (a),
R6 = - 5. 535 kN + 0 = 5.54 kN
R7= 35.535 + 0 = 35.5 kN
R8= 5.535 + 0 = 5.54 kN
R9= 5.715 + 18.75 = 24.5 kN
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 31
16.7 DETERMINE LA MATRIZ DE RIGIDEZ DE LA ESTRUCTURA K, PARA EL MARCO.
CONSIDERE QUE 𝑬 = 𝟐𝟗 × 𝟏𝟎 𝟑
𝒌𝒔𝒊 , 𝑰 = 𝟔𝟓𝟎𝒑𝒖𝒍𝒈 𝟒
, 𝑨 = 𝟐𝟎𝒑𝒖𝒍𝒈 𝟐
, PARA CADA
ELEMENTO.
Miembro 1
λx =
10 − 0
10
= 1 λy = 0
𝐴𝐸
𝐿
=
(20)(29 × 103
)
10(12)
= 4833.33
6𝐸𝐼
𝐿2
=
6(29 × 103
)(650)
(10)2(12)2
= 7854.17
2𝐸𝐼
𝐿
=
2(29 × 103
)(650)
10(12)
= 314166.67
12𝐸𝐼
𝐿3
=
12(29 × 103
)(650)
(10)3(12)3
= 130.90
4𝐸𝐼
𝐿
=
4(29 × 103
)(650)
10(12)
= 628333.33
𝐾1 =
[
4833.33
0
0
−4833.33
0
0
0
130.90
7854.17
0
−130.90
7854.17
0
7854.17
628333.33
0
−7854.17
314166.67
−4833.33
0
0
4833.33
0
0
0
−130.90
−7854.17
0
130.90
−7854.17
0
7854.17
314166.6
0
−7854.17
628333.33]
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 32
Miembro 2
λY =
12 − 0
12
= 1 λX = 0
𝐴𝐸
𝐿
=
(20)(29 × 103
)
(12)(12)
= 4027.78
6𝐸𝐼
𝐿2
=
6(29 × 103
)(650)
(12)2(12)2
= 5454.28
2𝐸𝐼
𝐿
=
2(29 × 103
)(650)
(12)(12)
= 261805.55
12𝐸𝐼
𝐿3
=
12(29 × 103
)(650)
(12)3(12)3
= 75.75
4𝐸𝐼
𝐿
=
4(29 × 103
)(650)
(12)(12)
= 523611.11
𝐾2 =
[
75.75
0
5454.28
−75.75
0
5454.28
0
4027.78
0
0
−4027.78
0
5454.28
0
523611.11
−5454.28
0
261805.55
−75.75
0
−5454.28
75.75
0
−5454.28
0
−4027.78
0
0
4027.78
0
5454.28
0
261805.55
−5454.28
0
523611.11]
MATRIZ DE RIGIDEZ ESTRUCTURAL
𝐾:
[
4833.33
0
0
−4833.33
0
0
0
0
0
0
130.90
7854.17
0
−130.90
7854.17
0
0
0
0
7854.17
628333.33
0
−7854.17
314166.67
0
0
0
−4833.33
0
0
4909.08
0
5454.28
−75.75
0
5454.28
0
−130.90
−7854.17
0
4158.68
−7854.17
0
−4027.78
0
0
7854.17
314166.67
5454.28
−7854.17
1151944.44
−5454.28
0
261805.55
0
0
0
−75.75
0
−5454.28
75.75
0
−5454.28
0
0
0
0
−4027.78
0
0
4027.78
0
0
0
0
5454.28
0
261805.55
−5454.28
0
523611.11 ]
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 33
16-8 DETERMINE LOS COMPONENTES DE LOS DESPLAZAMIENTOS EN 1
CONSIDERE QUE E =29(𝟏𝟎 𝟑
) KSI, I=650𝒑𝒖𝒍𝒈 𝟒
Y A=20 𝒑𝒖𝒍𝒈 𝟐
PARA CADA ELEMENTO.
𝐷 𝑘=|
0
0
0
| 𝑄 𝑘=
|
|
−4
−6
0
0
0
0
|
|
[
−4
−6
0
0
0
0
𝑄7
𝑄8
𝑄9 ]
=
[
4833.33
0
0
−4833.33
0
0
0
0
0
0
130.90
7854.17
0
−130.90
7854.17
0
0
0
0
7854.17
628333.33
0
−7854.17
314166.67
0
0
0
−4833.33
0
0
4909.08
0
5454.28
−75.75
0
5454.28
0
−130.90
−7854.17
0
4158.68
−7854.17
0
−4027.78
0
0
7854.17
314166.67
5454.28
−7854.17
1151944.44
−5454.28
0
261805.55
0
0
0
−75.75
0
−5454.28
75.75
0
−5454.28
0
0
0
0
−4027.78
0
0
4027.78
0
0
0
0
5454.28
0
261805.55
−5454.28
0
523611.11 ] [
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5
𝐷6
0
0
0 ]
[
−4
−6
0
0
0
0 ]
+
[
4833.33
0
0
−4833.33
0
0
0
130.90
7854.17
0
−130.90
7854.17
0
7854.17
628333.33
0
−7854.17
314166.67
−4833.33
0
0
4909.08
0
5454.28
0
−130.90
−7854.17
0
4158.68
−7854.17
0
7854.17
314166.67
5454.28
−7854.17
1151944.44 ] [
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5
𝐷6]
+
[
0
0
0
0
0
0]
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 34
-4 = 4833.33D1 - 4833.33D4
-6 = 130.90D2 + 7854.17D3 - 130.90D5 + 7854.17D6
0 = 7854.17D2 + 628333.33D3 - 7854.17D5 + 314166.67D6
0 = -4833.33D1 + 4909.08D4 + 5454.28D6
0 = -130.90D2 - 7854.17D3 + 4158.68D5 - 7854.17D6
0 = 7854.17D2 + 314166.67D3 + 5454.28D4 – 7854.17D5 + 11519944.44D6
Resolviendo los rendimientos de las ecuaciones anteriores
D1= -0.608 in
D2= -1.12 in
D3= 0.0100 rad
D4= -0.6076 in
D5= -0.001490 in
D6= 0.007705 rad
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 35
16.9 DETERMINE LA MATRIZ DE RIGIDEZ K PARA EL MARCO. CONSIDERE 𝑬 =
𝟐𝟗 × 𝟏𝟎 𝟑
𝒌𝒔𝒊, 𝑰 = 𝟑𝟎𝟎𝒑𝒖𝒍𝒈 𝟒
, 𝑨 = 𝟏𝟎𝒑𝒖𝒍𝒈 𝟐
, PARA CADA ELEMENTO.
Miembro 1
λy =
10 − 0
10
= 1 λx = 0
𝐴𝐸
𝐿
=
(10)(29 × 103
)
10(12)
= 2416.67 𝑘/𝑖𝑛
6𝐸𝐼
𝐿2
=
6(29 × 103
)(300)
(10)2(12)2
= 3625 𝑘
2𝐸𝐼
𝐿
=
2(29 × 103
)(300)
10(12)
= 145000 𝑘. 𝑖𝑛
12𝐸𝐼
𝐿3
=
12(29 × 103
)(300)
(10)3(12)3
= 60.4167 𝑘/𝑖𝑛
4𝐸𝐼
𝐿
=
4(29 × 103
)(300)
10(12)
= 290000 𝑘. 𝑖𝑛
𝐾1 =
[
8
60.4167
0
−3625
−60.4167
0
−3625
9
0
2416.67
0
0
−2416.67
0
5
−3625
0
290000
3625
0
145000
1
−60.4167
0
3625
60.4167
0
3625
2
0
−2416.67
0
0
2416.67
0
3
−3625
0
145000
3625
0
290000]
8
9
5
1
2
3
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 36
Miembro 2
λx =
20 − 0
20
= 1 λy =
10 − 10
20
= 0
𝐴𝐸
𝐿
=
(10)(29 × 103
)
(120)(12)
= 1208.33 𝑘/𝑖𝑛
6𝐸𝐼
𝐿2
=
6(29 × 103
)(300)
(20)2(12)2
= 906.25 𝑘
2𝐸𝐼
𝐿
=
2(29 × 103
)(300)
(20)(12)
= 72500 𝑘. 𝑖𝑛
12𝐸𝐼
𝐿3
=
12(29 × 103
)(300)
(20)3(12)3
= 7.5521 𝑘/𝑖𝑛
4𝐸𝐼
𝐿
=
4(29 × 103
)(300)
(20)(12)
= 145000 𝑘. 𝑖𝑛
𝐾2 =
[
1
1208.33
0
0
−1208.33
0
0
2
0
7.5521
906.25
0
−7.5521
906.25
3
0
906.25
145000
0
−906.25
72500
6
−1208.33
0
0
1208.33
0
0
7
0
−7.5521
−906.25
0
7.5521
−906.25
4
0
906.25
72500
0
−906.25
145000 ]
1
2
3
6
8
4
Matriz de rigidez estructural
𝐾:
[
1268,75
0
3625
0
3625
−1208.33
0
−60.4167
0
0
2424.22
906.25
906.25
0
0
−7.5521
0
−2416.67
3625
906.25
435000
72500
145000
0
−906.25
−3625
0
0
906.25
72500
145000
0
0
−906.25
0
0
3625
0
145000
0
290000
0
0
−3625
0
−1208.33
0
0
0
0
1208.33
0
0
0
0
−7.5521
−906.25
−906.25
0
0
7.5521
0
0
−60.4167
0
−3625
0
−3625
0
0
60.4167
0
0
−2416.67
0
0
0
0
0
0
2416.67 ]
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 37
16-10 DETERMINE LA REACCIONES DE SOPORTE EN (1) Y (3). TOMAR E = 2911032
KSI, I = 300 IN4, A = 10 IN2 PARA CADA MIEMBRO.
Cargas y deflexiones normales conocidas. Las cargas normales que actúan sobre el
grado de libertad.
20 = - 2416.67D2
D2 = - 8.275862071 (10-3)
5 = - 7.5521 (- 8.2758)(10- 3) - 906.25D3 - 906.25D4
0 = 906.25 (- 8.2758)(10- 3) + 72500D3 + 145000D4
4.937497862 = - 906.25D3 - 906.25D4
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 38
Desde la partición de matriz Qk = K11Du + K12Dk,
0 = 1268.75D1 + 3625D3 + 3625D5 - 1208.33D6 (1)
-25 = 2424.22D2 + 906.25D3 + 906.25D4 (2)
-1200 = 3625D1 + 906.25D2 + 435000D3 + 72500D4 + 145000D5 (3)
0 = 906.25D2 + 72500D3 + 145000D4 (4)
0 = 3625D1 + 145000D3 + 290000D5 (5)
0 = -1208.33D1 + 1208.33D6 (6)
Resolución de La ecu. (1) a (6)
D1 = 1.32 D2 = -0.008276 D3 = -0.011 D4 = 0.005552
D5 = -0.011 D6 = 1.32
Usando estos resultados y aplicando Qk = K21Du + K22Dk
Q7 = -7.5521 (-0.008276) - 906.25(-0.011) - 906.25(0.005552) = 5
Q8 = 60.4167 (1.32)-3625(-0.011)-3625(-0.011) = 0
Q9 = -2416.67 (-0.008276) = 20
Superponer estos resultados a los de FEM mostrados
R7 = 5 + 15 = 20 k Ans.
R8 = 0 + 0 = 0 Ans.
R9 = 20 + 0 = 20 k Ans.
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 39
16.-11 DETERMINE LA MATRIZ DE RIGIDEZ DE LA ESTRUCTURA K PARA EL MARCO,
CONSIDERE QUE E =29(103) KSI. 1= 700 PULG4 Y A = 20 PULG2 PARA CADA
ELEMENTO.
𝐴𝐸
𝐿
=
20((29(102))
24(12)
= 2013.89𝐾/𝑖𝑛
13𝐸𝐼
𝐿2
=
12(29(103
)(700)
(24(12))2
= 10.197𝑘/𝑖𝑛
6𝐸𝐼
𝐿2
=
6((29(102))(700)
24(12))2
= 1468.46 𝐾
4𝐸𝐼
𝐿
=
4(29(103
)(700)
(24(12)
= 281944 𝐾. 𝑖𝑛
2𝐸𝐼
𝐿
=
2(29(103))(700)
24(12)
= 140972 𝐾. 𝑖𝑛
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 40
L=16 ft AX =
24−24
16
= 0 𝑎𝑛𝑑 𝑥 𝑦 =
16−0
16
= 1.
𝐴𝐸
𝐿
=
20((29(103))
16(12)
= 3020.83𝐾/𝑖𝑛
12𝐸𝐼
𝐿3
=
12(29(103
)(700)
(16(12))3
= 34.4170𝑘/𝑖𝑛
6𝐸𝐼
𝐿
=
6((29(103))(700)
16(12))2
= 3304.04𝐾
4𝐸𝐼
𝐿
=
4(29(103
)(700)
(16(12)
= 42217 𝐾. 𝑖𝑛
2𝐸𝐼
𝐿
=
2(29(103))(700)
16(12)
= 211458 𝐾. 𝑖𝑛
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 41
16.12 DETERMINE LAS REACCIONES EN LOS SOPORTES FIJOS 1 Y 2. CONSIDERE
QUE E = 200 GPA, I= 300(10^6) MM^4 Y A= 10(10^3) MM^2 PARA CADA ELEMENTO.
CARGAS Y DEFLEXIONES NODALES CONOCIDAS, LAS CARGAS NODALES ACTÚAN
A LIBERTAD.
Qk=
{
0
−13.75
1080
0
0 } {
1
2
3
4
5}
DK={
0
0
0
0
} {
6
7
8
9
}
RELACIÓN CARGAS, DESPLAZAMIENTO Y APLICACIÓN DE Q=KD.
[
0
−13.75
90
0
0
− − − −
𝑄6
𝑄7
𝑄8
𝑄9 ] [
2048.31
0
−3304.04
−3304.04
0
− − − −
−34.4170
0
−2013..89
0 ] [
0
3031..03
−1468.46
0
−1468.46
− − − −
0
−3020.83
0
−10.1976] [
−3304.04
−1468.46
704861
211458
140972
− − − −
3304.04
0
0
1468.46 ][
−3304.04
0
211458
422917
0
− − − −
3304.04
0
0
0 ] [
0
−1468.46
140972
0
281944
− − − −
0
0
0
1468.46 ] [
−34.4170
0
3304.04
3304.04
0
− − − −
34.4170
0
0
0 ] [
0
−3020..83
0
0
0
− − − − −
0
−3020.83
0
0 ] [
−2013.89
0
0
0
0
− − − −
0
0
2013.89
0 ] [
0
−10.1976
1468.46
0
1468.46
− − − −
0
0
0
10.1976 ] [
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5
− − − −
0
0
0
0 ]
ANALISIS ESTRUCTURAL AVANZADO
ING. CIVIL I 7º “K” 42
A PARTIR DE LA PARTICIÓN DE MATRIZ.
Qk= K11Du+K12DK
0=2048.31D1 – 3304.04D3- 3304.04D4 (1)
-13.75=3031.03D2 -1468.46D3 -1468.46D5 (2)
90= -3304.04D1-1468.46D2+704861D3+211458D4+140972D5 (3)
0= -3304.04D1+211458D3+422917D4 (4)
0=-1468.46D2+140972D3+281944D5 (5)
SOLUCION DE ECUACIONES.
D1=0.001668 D2=-0.004052 D3=0.002043 D4=-0.001008 D5=-0.001042
USANDO ESTOS RESULTADOS Y APLICANDO Qu=K21Du+K22Dk
Q6=-34.4170 (0.001668) +3304.04(0.002043) +3304.04(-0.001008) =3.360
Q7= -3020.83 (-0.004052) = 12.24
Q8= -2013.89 (0.001668) = -3.360
Q9= -10.1976 (-0.004052) +1468.46(0.002043) +1468.46(-0.001008) = 1.510
Superponer estos resultados a los de FEM
R6=3.360 + 0 = 3.36K
R7= 12.24 + 0 = 12.2K
R8= -3.360 + 0 = -3.36K
R9=1.510 +6.25 = 7.76K

Weitere ähnliche Inhalte

Was ist angesagt?

252714346 ejercicios-cap-3-cimentaciones
252714346 ejercicios-cap-3-cimentaciones252714346 ejercicios-cap-3-cimentaciones
252714346 ejercicios-cap-3-cimentacionesnelson carbajal
 
Factor capacidad de carga meyerhof
Factor capacidad de carga meyerhofFactor capacidad de carga meyerhof
Factor capacidad de carga meyerhofEduardo Bas
 
12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelomatias diaz
 
1er examen teoria unsa 2015
1er examen teoria unsa 20151er examen teoria unsa 2015
1er examen teoria unsa 2015oscar torres
 
Examen final mecanica de suelos 2 2001 - resuelto
Examen final  mecanica de suelos 2   2001  - resueltoExamen final  mecanica de suelos 2   2001  - resuelto
Examen final mecanica de suelos 2 2001 - resueltoGERARDO CONTRERAS SERRANO
 
Análisis matricial de estructuras, cuarta edición
Análisis matricial de estructuras, cuarta ediciónAnálisis matricial de estructuras, cuarta edición
Análisis matricial de estructuras, cuarta edicióncivil1980
 
Cálculo del área de acero sin iteraciones
Cálculo del área de acero sin iteracionesCálculo del área de acero sin iteraciones
Cálculo del área de acero sin iteracionesWillian Montalvo Malca
 
Segundo teorema de castigliano
Segundo teorema de castiglianoSegundo teorema de castigliano
Segundo teorema de castiglianoChrizthian Marcos
 
97974021 diseno-y-calculo-de-losa-aligerada
97974021 diseno-y-calculo-de-losa-aligerada97974021 diseno-y-calculo-de-losa-aligerada
97974021 diseno-y-calculo-de-losa-aligeradaMateo Iban Damian Vega
 

Was ist angesagt? (20)

252714346 ejercicios-cap-3-cimentaciones
252714346 ejercicios-cap-3-cimentaciones252714346 ejercicios-cap-3-cimentaciones
252714346 ejercicios-cap-3-cimentaciones
 
Factor capacidad de carga meyerhof
Factor capacidad de carga meyerhofFactor capacidad de carga meyerhof
Factor capacidad de carga meyerhof
 
12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo
 
Diseño de una zapata aislada
Diseño de una zapata aisladaDiseño de una zapata aislada
Diseño de una zapata aislada
 
EJERCICIO DE CONCRETO ARMADO
EJERCICIO DE CONCRETO ARMADOEJERCICIO DE CONCRETO ARMADO
EJERCICIO DE CONCRETO ARMADO
 
1er examen teoria unsa 2015
1er examen teoria unsa 20151er examen teoria unsa 2015
1er examen teoria unsa 2015
 
Examen final mecanica de suelos 2 2001 - resuelto
Examen final  mecanica de suelos 2   2001  - resueltoExamen final  mecanica de suelos 2   2001  - resuelto
Examen final mecanica de suelos 2 2001 - resuelto
 
Análisis matricial de estructuras, cuarta edición
Análisis matricial de estructuras, cuarta ediciónAnálisis matricial de estructuras, cuarta edición
Análisis matricial de estructuras, cuarta edición
 
Predimensionamiento 2006
Predimensionamiento 2006Predimensionamiento 2006
Predimensionamiento 2006
 
Calzaduras en edificaciones
Calzaduras en edificacionesCalzaduras en edificaciones
Calzaduras en edificaciones
 
Teoria capacidad de carga terzaghi
Teoria capacidad de carga terzaghiTeoria capacidad de carga terzaghi
Teoria capacidad de carga terzaghi
 
Cálculo del área de acero sin iteraciones
Cálculo del área de acero sin iteracionesCálculo del área de acero sin iteraciones
Cálculo del área de acero sin iteraciones
 
instalaciones sanitarias (sistema directo e indirecto)
 instalaciones sanitarias (sistema directo e indirecto) instalaciones sanitarias (sistema directo e indirecto)
instalaciones sanitarias (sistema directo e indirecto)
 
78541046 puente-seccion-compuesta
78541046 puente-seccion-compuesta78541046 puente-seccion-compuesta
78541046 puente-seccion-compuesta
 
Muro de contencion en voladizo
Muro de contencion en voladizoMuro de contencion en voladizo
Muro de contencion en voladizo
 
EJERCICIOS DE CIMENTACIÓN
EJERCICIOS DE CIMENTACIÓNEJERCICIOS DE CIMENTACIÓN
EJERCICIOS DE CIMENTACIÓN
 
Diseño en concreto armado ing. roberto morales morales
Diseño en concreto armado ing. roberto morales moralesDiseño en concreto armado ing. roberto morales morales
Diseño en concreto armado ing. roberto morales morales
 
Segundo teorema de castigliano
Segundo teorema de castiglianoSegundo teorema de castigliano
Segundo teorema de castigliano
 
Cimentaciones - Roberto Morales
Cimentaciones - Roberto MoralesCimentaciones - Roberto Morales
Cimentaciones - Roberto Morales
 
97974021 diseno-y-calculo-de-losa-aligerada
97974021 diseno-y-calculo-de-losa-aligerada97974021 diseno-y-calculo-de-losa-aligerada
97974021 diseno-y-calculo-de-losa-aligerada
 

Ähnlich wie ANALISIS MATRICIAL

Ähnlich wie ANALISIS MATRICIAL (20)

Tarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandroTarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandro
 
Método de Mínimos Cuadrados (ejemplo)
Método de Mínimos Cuadrados (ejemplo)Método de Mínimos Cuadrados (ejemplo)
Método de Mínimos Cuadrados (ejemplo)
 
Ch02
Ch02Ch02
Ch02
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticas
 
Rigidez de Dos Pórticos para Dos Niveles de Piso - Albañilería Estructural
Rigidez de Dos Pórticos para Dos Niveles de Piso - Albañilería EstructuralRigidez de Dos Pórticos para Dos Niveles de Piso - Albañilería Estructural
Rigidez de Dos Pórticos para Dos Niveles de Piso - Albañilería Estructural
 
Vigas
VigasVigas
Vigas
 
Project 1
Project 1Project 1
Project 1
 
EENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docx
EENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docxEENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docx
EENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docx
 
Regression project
Regression projectRegression project
Regression project
 
Examen4taunit
Examen4taunitExamen4taunit
Examen4taunit
 
Bjs green belt ppt
Bjs green belt pptBjs green belt ppt
Bjs green belt ppt
 
Deber 9
Deber 9Deber 9
Deber 9
 
Antisismica ing.civil
Antisismica ing.civilAntisismica ing.civil
Antisismica ing.civil
 
Sistemas de múltiples grados de libertad
Sistemas de múltiples grados de libertadSistemas de múltiples grados de libertad
Sistemas de múltiples grados de libertad
 
Esfuerzos cortantes q
Esfuerzos cortantes qEsfuerzos cortantes q
Esfuerzos cortantes q
 
Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
 
Budynas sm ch20
Budynas sm ch20Budynas sm ch20
Budynas sm ch20
 
Truss optimization with excel solver
Truss optimization with excel solverTruss optimization with excel solver
Truss optimization with excel solver
 
Kira cepat
Kira cepatKira cepat
Kira cepat
 
Chinaprecisionslewingbearingsspindlebearingstandembearings2
Chinaprecisionslewingbearingsspindlebearingstandembearings2Chinaprecisionslewingbearingsspindlebearingstandembearings2
Chinaprecisionslewingbearingsspindlebearingstandembearings2
 

Kürzlich hochgeladen

Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 

Kürzlich hochgeladen (20)

DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 

ANALISIS MATRICIAL

  • 1. Ing. Carlos Elmer Cruz Salazar 2016 Autor: ING.CIVILI7º“K” ANALISIS ESTRUCTURAL AVANZADO
  • 2. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 2 CUADERNILLO DE EJERCICIOS UNIDAD 3 INGENIERIA CIVIL | 7° “K” INTEGRATES SANTOS NATAREN HUGO ALBERTO SANTOS CAMACHO MANUEL JULIO CESAR VILLALOBOS HERNANDEZ FCO. GABRIEL SANCHEZ ZARATE ENRIQUE TRINIDAD FIGUEROA GUADALUPE VELAZQUEZ ORTIZ LUIS ENRIQUE ANALISIS ESTRUCTURAL AVANZADO
  • 3. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 3 14-1 DETERMINE LA MATRIZ DE RIGIDEZ K P ARA EL ENSAMBLE. CONSIDERE 𝒒𝒖𝒆 𝑨 = 𝟎. 𝟓 𝒑𝒖𝒍𝒈𝟕 Y QUE 𝑬 = 𝟐𝟗(𝟏𝟎 𝟑 ) KSI PARA CADA ELEMENTO. Barra 1 𝜆 𝑥 = cos 36.87 = 0.8 𝜆 𝑦 = 𝑠𝑒𝑛 36.87 = 0.6 𝐿 = 60 5 6 1 2 154.667 116 -154.667 -116 5 116 87 -116 -87 6 -154.667 -116 154.667 116 1 -116 -87 116 87 2 K11 Barra 2 𝜆 𝑥 = 1 𝜆 𝑦 = 0 𝐿 = 72 1 2 3 4 K12 201.389 0 -201.389 0 1 0 0 0 0 2 -201.389 0 201.389 0 3 0 0 0 0 4 Barra 3 𝜆 𝑥 = cos 36.87 = 0.8 L=60 𝜆 𝑦 = 𝑠𝑒𝑛 36.87 = −0.6 7 8 1 2 154.667 -116 -154.667 116 7 -116 87 116 -87 8 -154.667 116 154.667 -116 1 116 -87 -116 87 2 K13
  • 4. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 4 Ensamble para la determinación de la matriz de rigidez K 1 2 3 4 5 6 7 8 510.723 0 -201.39 0 -154.667 -116 -154.667 116 1 0 174 0 0 -116 -87 116 -87 2 -201.389 0 201.389 0 0 0 0 0 3 0 0 0 0 0 0 0 0 4 -154.667 -116 0 0 154.667 116 0 0 5 -116 -87 0 0 116 87 0 0 6 -154.667 116 0 0 0 0 154.667 -116 7 116 -87 0 0 0 0 -116 87 8 KG 14-2 DETERMINE LOS DESPLAZAMIENTOS HORIZONTALES Y VERTICAL EN LA JUNTA (3) DEL ENSAMBLE DEL PROBLEMA. 𝐷𝑘 = [ 0 0 0 0 0] 𝑄𝐾 = [ 0 −4 ] 1 2 3 4 5 6 7 8 0 510.723 0 -201.39 0 -154.667 -116 -154.667 116 D1 -4 0 174 0 0 -116 -87 116 -87 D2 Q3 -201.389 0 201.389 0 0 0 0 0 0 Q4 0 0 0 0 0 0 0 0 0 Q5 -154.667 -116 0 0 154.667 116 0 0 0 Q6 -116 -87 0 0 116 87 0 0 0 Q7 -154.667 116 0 0 0 0 154.667 -116 0 Q8 116 -87 0 0 0 0 -116 87 0 KG 0 = 510.72𝐷1 + 0𝐷2 −4 = 0𝐷1 + 172𝐷2 𝐷1 = 0 𝐷2 = −0.0230𝑖𝑛
  • 5. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 5 14-3 DETERMINE LA FUERZA E N CADA ELEMENTO DEL ENSAMBLE DEL PROBLEMA 14-1 𝐷1 = 𝐷2 = 𝐷3 = 𝐷4 = 𝐷5 = 𝐷6 = 𝐷7 = 𝐷8 = 0 𝐷2 = −0.230 Barra 1 𝑄1 = 0.5(29(103)) 60 [−0.8 −0.6 0.8 0.6] [ 0 0 0 −0.230 ] 𝑄1 = 0.5(29(103)) 60 (0.6)(−0.230) = −𝟑. 𝟑𝟑𝑲 Barra 2 𝑄2 = 0.5(29(103)) 72 [−1 0 1 0] [ 0 −0.0230 0 0 ] 𝑄2 = 0 Barra 3 𝑄3 = 0.5(29(103)) 60 [−0.8 0.6 0.8 −0.6] [ 0 0 0 −0.230 ] 𝑄3 = 0.5(29(103)) 60 (0.6)(−0.230) = −𝟑. 𝟑𝟑𝑲
  • 6. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 6 14-4 DETERMINE LA MATRIZ DE RIGIDEZ K PARA LA ARMADURA. CONSIDERE QUE 𝑨 = 𝟎 𝟕 𝟓 𝒑𝒖𝒍𝒈𝟕 Y QUE 𝑬 = 𝟐𝟗(𝟏𝟎 𝟑 )𝒌𝒔𝒊. Barra 1 𝜆 𝑥 = sen 450 = −0.707 𝜆 𝑦 = cos 450 = −0.707 𝐿 = 12√32 1 2 3 4 160.155 160.155 -160.155 -160.155 1 160.155 160.155 -160.155 -160.155 2 -160.155 -160.155 160.155 160.155 3 -160.155 -160.155 160.155 160.155 4 K11 Barra 2 𝜆 𝑥 = 0 𝜆 𝑦 = −1 𝐿 = 48 1 2 5 6 0.000 0.000 0.000 0.000 1 0.000 453.125 0.000 -453.125 2 0.000 0.000 0.000 0.000 5 0.000 -453.125 0.000 453.125 6 K12
  • 7. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 7 Barra 3 𝜆 𝑥 = sen 36.870 = 0.6 𝜆 𝑦 = cos 36.87 = −0.8 𝐿 = 60 1 2 7 8 130.50 -174.00 -130.50 174.00 1 -174.00 232.00 174.00 -232.00 2 -130.50 174.00 130.50 -174.00 7 174.00 -232.00 -174.00 232.00 8 K13 Ensamble para la determinación de la matriz de rigidez K 1 2 3 4 5 6 7 8 290.655 -13.845 -160.155 -160.155 0.000 0.000 -130.50 174.00 1 -13.845 845.280 -160.155 -160.155 0.000 -453.125 174.00 -232.00 2 -160.155 -160.155 160.155 160.155 0 0 0 0 3 -160.155 -160.155 160.155 160.155 0 0 0 0 4 0.000 0.000 0.000 0.000 0.000 0.000 0 0 5 0.000 -453.125 0.000 0.000 0.000 453.125 0 0 6 -130.500 -130.500 0.000 0.000 0.000 0.000 130.50 -174.00 7 174.000 174.000 0.000 0.000 0.000 0.000 -174.00 232.00 8 K 14-5 DETERMINACIÓN DEL DESPLAZAMIENTO HORIZONTAL DE LA JUNTA 1 Y LA FUERZA EN EL ELEMENTO 2.
  • 8. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 8 Elemento 2 𝜆 𝑥 = 0 𝜆 𝑦 = 1, −1 𝐷1 = −500 𝐷2 = 0 𝐷𝑘 = 0 0 0 0 0 0 Qk=⌈ 500 0 ⌉ 1 2 3 4 5 6 7 8 -500 290.655 -13.845 -160.155 -160.155 0.000 0.000 -130.50 174.00 1 D1 0 -13.845 845.280 -160.155 -160.155 0.000 -453.125 174.00 -232.00 2 D2 Q3 -160.155 -160.155 160.155 160.155 0 0 0 0 3 0 Q4 -160.155 -160.155 160.155 160.155 0 0 0 0 4 0 Q5 0.000 0.000 0.000 0.000 0.000 0.000 0 0 5 0 Q6 0.000 -453.125 0.000 0.000 0.000 453.125 0 0 6 0 Q7 -130.500 -130.500 0.000 0.000 0.000 0.000 130.50 -174.00 7 0 Q8 174.000 174.000 0.000 0.000 0.000 0.000 -174.00 232.00 8 0 K [ −500 0 ] = [ 0.003443191 5.63967E − 05 5.63967E − 05 0.001183964 ] [ 𝐷1 𝐷2 ] −500 = 𝐴𝐸(0.003443191D1 − 5.63967E − 05D2) 0 = 5.63967E − 05D1 − 0.001183964D2 𝐷2 =-1.72159573 𝐷 = -0.02819834 ELEMENTO 2 𝜆 𝑥 = 0 𝜆 𝑦 = −1 𝐿 = 48 𝑄2 = 0.75(29(103)) 48 [0 1 0 −1] [ −1.7116 −0.0282 0 0 ] 𝑄2 = 0.75(29(103)) 48 (1)(−0.082) = −𝟏𝟐. 𝟕𝟖𝒍𝒃
  • 9. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 9 14-7 DETERMINE LA MATRIZ DE RIGIDEZ K ARA LA ARMADURA. CONSIDERE QUE A = 0.0015 𝑴 𝟐 Y QUE E = 200 G P A P ARA CADA ELEMENTO. Barra 1 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 2 5 6 7 8 150000000 0 -150000000 0 5 0 0 0 0 6 -150000000 0 150000000 0 7 0 0 0 0 8 K11 Barra 2 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 2 1 2 5 6 150000000 0 -150000000 0 1 0 0 0 0 2 -150000000 0 150000000 0 5 0 0 0 0 6 K12 Barra 3 𝜆 𝑥 = sen 45 = −0.707 𝜆 𝑦 = cos 45 = −0.707 𝐿 = 2√2 1 2 3 4 53020000 -53020000 -53020000 53020000 1 -53020000 53020000 53020000 -53020000 2 -53020000 53020000 53020000 -53020000 3 53020000 -53020000 -53020000 53020000 4 k13
  • 10. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 10 Barra 4 𝜆𝑥 = 0 𝜆𝑦 = 1 𝐿 = 2 5 6 3 4 0 0 0 0 5 0 150000000 0 -150000000 6 0 0 0 0 3 0 -150000000 0 150000000 4 k14 Barra 5 𝜆𝑥 = −0.7071 𝜆𝑦 = −0.7071 𝐿 = 2.8284 3 4 7 8 53020000 53020000 -53020000 -53020000 3 53020000 53020000 -53020000 -53020000 4 -53020000 -53020000 53020000 53020000 7 -53020000 -53020000 53020000 53020000 8 k15 Barra 6 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 2 3 4 9 10 150000000 0 -150000000 0 3 0 0 0 0 4 -150000000 0 150000000 0 9 0 0 0 0 10 k16 Ensamble para la determinación de la matriz de rigidez K 1 2 3 4 5 6 7 8 9 10 203020000 -53020000 -53020000 53020000 -150000000 0 0 0 0 0 1 -53020000 53020000 53020000 -53020000 0 0 0 0 0 0 2 -53020000 53020000 256040000 0 0 0 -53020000 -53020000 -150000000 0 3 53020000 -53020000 0 256040000 0 -150000000 -53020000 -53020000 0 0 4 -150000000 0 0 0 300000000 0 150000000 0 0 0 5 0 0 0 -150000000 0 150000000 0 0 0 0 6 0 0 -53020000 -53020000 -150000000 0 203020000 53020000 0 0 7 0 0 -53020000 -53020000 0 0 53020000 53020000 0 0 8 0 0 -150000000 0 0 0 0 0 150000000 0 9 0 0 0 0 0 0 0 0 0 0 10 KG
  • 11. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 11 14-8 DETERMINE EL DESPLAZAMIENTO VERTICAL EN LA JUNTA 2 Y LA FUERZA EN LA JUNTA EL ELEMENTO [5]. CONSIDERE QUE 𝑨 = 𝟎. 𝟎𝟎𝟏𝟓 Y QUE 𝑬 = 𝟐𝟎𝟎 𝑮𝑷𝒂. 𝑄𝑘 = [ 0 −30000 0 0 0 0 ] 1 2 3 4 5 6 𝐷𝑘 = [ 0 0 0 0 ] 7 8 9 10 1 2 3 4 5 6 7 8 9 10 203020000 -53020000 -53020000 53020000 -150000000 0 0 0 0 0 D1 -53020000 53020000 53020000 -53020000 0 0 0 0 0 0 D2 -53020000 53020000 256040000 0 0 0 -53020000 -53020000 -150000000 0 D3 53020000 -53020000 0 256040000 0 -150000000 -53020000 -53020000 0 0 D4 -150000000 0 0 0 300000000 0 150000000 0 0 0 D5 0 0 0 -150000000 0 150000000 0 0 0 0 D6 KG 0 = [203.033 𝐷1 − 53.033𝐷2 − 53.033𝐷3 + 53.033𝐷4 − 150𝐷5](106) − 30(103) = [−53.033𝐷1 + 53.033𝐷2 + 53.033𝐷3 − 53.033𝐷4](106) 0 = [−53.033𝐷1 + 53.033𝐷2 + 256.066𝐷3](106) 0 = [53.033𝐷1 − 53.033𝐷2 + 256.066𝐷4 − 150𝐷6](106) 0 = [−150𝐷4 + 300𝐷5](106) 0 = [−150𝐷4 + 150𝐷6](106) 𝐷1 = −0.0004𝑚 𝐷2 = −0.0023314𝑚 𝐷3 = 0.0004𝑚 𝐷4 = −0.00096569𝑚 𝐷5 = −0.0002𝑚 𝐷6 = 0.00096569𝑚 = 0.000966𝑚 𝜆 𝑦 = − cos 45 . 𝜆 𝑥 = −𝑠𝑒𝑛 45 𝐿 = 2.8284𝑀 (𝑞5) 𝐹 = 0.0015[200(109)] 2.8284 [. 707 .707 − .707 − .707]= -42.4 kN
  • 12. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 12 14.9 DETERMINE LA MATRIZ DE RIGIDEZ K PARA LA ARMADURA. CONSIDERE QUE A= 0.0015 𝑴 𝟐 Y QUE E = 200 GPA PARA CADA ELEMENTO. Barra 1 𝜆𝑥 = cos 36.87 = − 0.8 𝜆𝑦 = 𝑠𝑒𝑛 36.87 = 0.6 𝐿 = 5𝑚 Barra 2 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 4𝑚 1 2 3 4 75000000 0 -75000000 0 1 0 0 0 0 2 -75000000 0 75000000 0 3 0 0 0 0 4 k12 Barra 3 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 4𝑚 3 4 9 10 75000000 0 -75000000 0 3 0 0 0 0 4 -75000000 0 75000000 0 9 0 0 0 0 10 k13 Barra 4 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 3𝑚 3 4 5 6 0 0 0 0 3 0 100000000 0 -100000000 4 0 0 0 0 5 0 -100000000 0 100000000 6 k14 1 2 5 6 38400000 28800000 -38400000 -28800000 1 28800000 21600000 -28800000 -21600000 2 -38400000 -28800000 38400000 28800000 5 -28800000 -21600000 28800000 21600000 6 k11
  • 13. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 13 Barra 5 𝜆𝑥 = cos 36.87 = − 0.8 𝜆𝑦 = 𝑠𝑒𝑛 36.87 = 0.6 𝐿 = 5𝑚 5 6 9 10 38400000 28800000 -38400000 -28800000 5 28800000 21600000 -28800000 -21600000 6 -38400000 -28800000 38400000 28800000 9 -28800000 -21600000 28800000 21600000 10 k15 Barra 6 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 4𝑚 5 6 8 7 75000000 0 -75000000 0 5 0 0 0 0 6 -75000000 0 75000000 0 8 0 0 0 0 7 k16 Barra 7 𝜆𝑥 = 0 𝜆𝑦 = 1 𝐿 = 3𝑚 8 7 9 10 0 0 0 0 8 0 100000000 0 -100000000 7 0 0 0 0 9 0 -100000000 0 100000000 10 k17 Ensamble para la determinación de la matriz de rigidez K
  • 14. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 14 1 2 3 4 5 6 7 8 9 10 113400000 28800000 -75000000 0 -38400000 -28800000 0 0 0 0 1 28800000 21600000 0 0 -28800000 -21600000 0 0 0 0 2 -75000000 0 150000000 0 0 0 0 0 0 0 3 0 0 0 100000000 0 -100000000 0 0 0 0 4 -38400000 -28800000 0 0 84600000 57600000 0 -75000000 0 0 5 -28800000 -21600000 0 -100000000 57600000 143200000 0 0 0 0 6 0 0 0 0 0 0 100000000 0 0 -100000000 7 0 0 0 0 -75000000 0 0 75000000 0 0 8 0 0 -75000000 0 -75000000 -28800000 0 0 0 0 9 0 0 0 0 -28800000 -28800000 -100000000 0 0 100000000 10 KG 14.10, 14-11 DETERMINE LA FUERZA EN EL ELEMENTO (5). CONSIDERE QUE A = 00015𝐌 𝟐 Y QUE E = 200 GPA PARA CADA ELEMENTO. 1 2 3 4 5 6 7 0 113400000 28800000 -75000000 0 -38400000 -28800000 0 D1 0 -20000 28800000 21600000 0 0 -28800000 -21600000 0 D2 -20000 0 -75000000 0 150000000 0 0 0 0 D3 0 0 0 0 0 100000000 0 -100000000 0 D4 0 0 -38400000 -28800000 0 0 84600000 57600000 0 D5 0 0 -28800000 -21600000 0 -100000000 57600000 143200000 0 D6 0 0 0 0 0 0 0 0 100000000 D7 0 2.66667E-08 -3.55556E-08 1.33333E-08 -2.34968E-23 -3.1329E-23 -2.34968E-23 0 D1 0.000711111 -3.55556E-08 0.00000014 -1.77778E-08 4.62963E-08 2.09832E-22 4.62963E-08 0 D2 -0.0028 1.33333E-08 -1.77778E-08 1.33333E-08 -1.18424E-23 -1.18424E-23 -1.18424E-23 0 D3 0.000355556 0 4.62963E-08 0 2.84217E-07 -1.7094E-07 2.74217E-07 0 D4 -0.000925926 0 1.15348E-22 0 -1.7094E-07 1.28205E-07 -1.7094E-07 0 D5 -2.30696E-18 0 4.62963E-08 0 2.74217E-07 -1.7094E-07 2.74217E-07 0 D6 -0.000925926 0 0 0 0 0 0 0.00000001 D7 0 MINVERSA
  • 15. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 15 0.8 -0.6 -0.8 0.6 -2.30696E-18 -0.000925926 0 0 𝑸𝟓 = 𝟑𝟑. 𝟑𝟑 14.12 DETERMINE LA MATRIZ DE RIGIDEZ K PARA LA ARMADURA. CON SIDERE QUE 𝑨 = 𝟐 𝒑𝒖𝒍𝒈 𝟐 Y QUE 𝑬 = 𝟐 𝟗 ( 𝟏𝟎 𝟑 ) KSI. Barra 1 𝜆𝑥 = 0 𝜆𝑦 = −1 𝐿 = 72𝑖𝑛 1 2 5 6 0 0 0 0 1 0 805.556 0 -805.56 2 0 0 0 0 5 0 -805.56 0 805.556 6 K11 Barra 2 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 96𝑖𝑛 5 6 3 4 604.167 0 -604.17 0 5 0 0 0 0 6 -604.17 0 604.167 0 3 0 0 0 0 4 K12
  • 16. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 16 Barra 3 𝜆𝑥 = −1 𝜆𝑦 = 0 𝐿 = 96𝑖𝑛 1 2 7 8 604.167 0 -604.17 0 1 0 0 0 0 2 -604.17 0 604.167 0 7 0 0 0 0 8 K13 Barra 4 𝜆𝑥 = 0 𝜆𝑦 = −1 𝐿 = 72𝑖𝑛 3 4 7 8 0 0 0 0 3 0 805.556 0 -805.56 4 0 0 0 0 7 0 -805.56 0 805.556 8 K14 Barra 5 𝜆𝑥 = −0.8 𝜆𝑦 = −0.6 𝐿 = 120𝑖𝑛 1 2 3 4 309.333 232 -309.33 -232 1 232 174 -232 -174 2 -309.33 -232 309.333 232 3 -232 -174 232 174 4 K15 Barra 6 𝜆𝑥 = −0.8 𝜆𝑦 = 0.6 𝐿 = 120𝑖𝑛 5 6 7 8 309.333 -232 -309.33 232 5 -232 174 232 -174 6 -309.33 232 309.333 -232 7 232 -174 -232 174 8 K16 ENSAMBLE PARA LA DETERMINACIÓN DE LA MATRIZ DE RIGIDEZ K 1 2 3 4 5 6 7 8 913.5 232 -309.333 -232 0 0 -604.167 0 1 232 979.556 -232 -174 0 -805.556 0 0 2 -309.333 -232 913.5 232 -604.167 0 0 0 3 -232 -174 232 979.556 0 0 0 -805.556 4 0 0 -604.167 0 913.5 -232 -309.333 232 5 0 -805.556 0 0 -232 979.556 232 -174 6 -604.167 0 0 0 -309.333 232 309.333 -232 7 0 0 0 -805.556 232 -174 -232 979.556 8 KG
  • 17. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 17 14.13 DETERMINE E L DESPLAZAMIENTO HORIZONTAL DE LA JUNTA Y LA FUERZA E N E L ELEMENTO [5]. CONSIDERE QUE A -2 PULG2 Y QUE E = 29(𝟏𝟎 𝟑 ) KSI. NO TOME EN CUENTA EL ESLABÓN CORTO EN (2). 14.14 DETERMINE LA FUERZA EN EL ELEMENTO [3] SI EL ELEMENTO ERA 0.025 PULGADAS MÁS CORTO DE LO ESPERADO ANTES DE AJUSTARSE EN LA ARMADURA. CONSIDERE QUE A = 2 PULG2 Y QUE E=29(𝟏𝟎 𝟑 ) KSI. NO TOME EN CUENTA EL ESLABÓN CORTO E N (2). 913.5 232 -309.333 -232 0 D1 0 232 979.556 -232 -174 0 D2 0 -309.333 -232 913.5 232 -604.167 D3 3 -232 -174 232 979.556 0 D4 0 0 0 -604.167 0 913.5 D5 0 CONOCIDOS 0.00140996 -0.00013793 0.00072414 0.00013793 0.00047893 D1 0.00217241 -0.00013793 0.00116379 0.00040733 7.7586E-05 0.0002694 D2 0.00122198 0.00072414 0.00040733 0.00274946 -0.00040733 0.00181843 D3 0.00824839 0.00013793 7.7586E-05 -0.00040733 0.00116379 -0.0002694 D4 -0.00122198 0.00047893 0.0002694 0.00181843 -0.0002694 0.00229736 D5 0.00545529 MINVERSA
  • 18. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 18 16-1 DETERMINAR LA MATRIZ DE LAS RIGIDECES K DE LA ESTRUCTURA PARA EL MARCO. DATOS 𝐴 = 10 𝐸3 𝑚𝑚4 . = 0.01𝑚2 𝐼 = 300 𝐸6 𝑚𝑚4 = 0.0003𝑚4 . 𝐸 = 200 𝐺𝑝𝑎. = 200𝐸9 𝑁 𝐿 = 4𝑚 Componentes de la matriz de rigideces. 𝐴𝐸 𝐿 = (0.01𝑚)(200𝐸9 𝑁) 4 = 500𝐸6 𝑁/𝑚 12𝐸𝐼 𝐿3 = 12(200𝐸9 𝑁)(300 𝐸−6) 42 = 11.25𝐸6 𝑁/𝑚 6𝐸𝐼 𝐿2 = 6(200𝐸9 𝑁)(0.0003𝑚4 ) 42 = 22.5𝐸6 𝑁 4𝐸𝐼 𝐿 = 4(200𝐸9 𝑁)(0.0003𝑚4 ) 4 = 60𝐸6 𝑁. 𝑚 2𝐸𝐼 𝐿 = 2(200𝐸9 𝑁)(0.0003𝑚4 ) 4 = 30𝐸6 𝑁. 𝑚 Elemento 1 (VIGA) 𝜆 𝑋 = 4−0 4 = 1 𝜆 𝑌 = 0−0 4 = 0 7 8 9 1 2 3 500 0 0 -500 0 0 7 0 11.25 22.5 0 -11.25 22.5 8 0 22.5 60 0 -22.5 30 9 -500 0 0 500 0 0 1 0 -11.25 -22.5 0 11.25 -22.5 2 0 22.5 30 0 -22.5 60 3 E6
  • 19. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 19 7 8 9 1 2 3 500 0 0 -500 0 0 7 0 11.25 22.5 0 -11.25 22.5 8 0 22.5 60 0 -22.5 30 9 -500 0 0 500 0 0 1 0 -11.25 -22.5 0 11.25 -22.5 2 0 22.5 30 0 -22.5 60 3 Elemento 2 (COLUMNA) 𝜆 𝑋 = 4−4 4 = 0 𝜆 𝑌 = −4−0 4 = −1 Matriz de rigideces del marco 1 2 3 4 5 6 7 8 9 511.25 0 22.5 -11.25 0 22.5 -500 0 0 1 0 511.25 -22.5 0 -500 0 0 -11.25 -22.5 2 22.5 -22.5 120 -22.5 0 30 0 22.5 30 3 -11.25 0 -22.5 11.25 0 -22.5 0 0 0 4 0 -500 0 0 500 0 0 0 0 5 22.5 0 30 -22.5 0 60 0 0 0 6 -500 0 0 0 0 0 500 0 0 7 0 -11.25 22.5 0 0 0 0 11.25 22.5 8 0 -22.5 30 0 0 0 0 25.5 60 9 E6 1 2 3 4 5 6 11.25 0 22.5 -11.25 0 22.5 1 0 500 0 0 -500 0 2 22.5 0 60 -22.5 0 30 3 -11.25 0 -22.5 11.25 0 -22.5 4 0 -500 0 0 500 0 5 22.5 0 30 -22.5 0 60 6 E6
  • 20. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 20 16-2 DETERMINE LAS REACCIONES EN LOS SOPORTES FIJOS 1 Y 2. CONSIDERE QUE E = 200 GPA, I = 300(106) MM4 Y A =10(103) MM2 PARA CADA ELEMENTO. Conociendo las cargas en los nodos y las deflexiones 𝑄 𝑘 [ −5(103 ) −24(103 ) 11(103 ) ] 1 2 3 𝐷 𝑘 [ 0 0 0 0 0 0] 4 5 6 7 8 9 Relación de cargas-desplazamiento Q=KD [ −5(103 ) −24(103 ) 11(103 ) 𝑄4 𝑄5 𝑄6 𝑄7 𝑄8 𝑄9 ] = [ 511.25 0 22.5 0 511.25 −22.5 22.5 −11.25 0 22.5 −500 0 0 −22.5 0 −500 0 0 −11.25 −22.5 120 −22.5 0 30 0 22.5 30 −11.25 0 22.5 0 −500 0 −22.5 11.5 0 −22.5 0 0 0 0 0 500 0 0 0 0 30 −22.5 0 60 0 0 0 −500 0 0 0 −11.25 −22.5 0 0 0 0 500 0 0 22.5 0 0 0 0 11.25 22.5 30 0 0 0 0 22.5 60 ] (106) [ 𝐷1 𝐷2 𝐷3 0 0 0 0 0 0 ]
  • 21. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 21 Qu = K11Du + K12DK −5(103) = (511.25𝐷1 + 22.5𝐷3)(106 ) (1) −24(103) = (511.25𝐷2 − 22.5𝐷3)(106 ) (2) 11(103) = (511.25𝐷1 − 22.5𝐷2 + 120𝐷3)(106 ) (3) Resolviendo las ecuaciones 1, 2 y 3 𝐷1 = 13.57(10−6 )𝑚 𝐷2 = −43.15(10−6 )𝑚 𝐷3 = 86.12(10−6 )𝑟𝑎𝑑 Usando estos resultados y aplicándolos en Qu = K21Du + K22Dk 𝑄4 = −11.25(106)(−13.57)(10−6) + (−22.5)(106)(86.12)(10−6) = −1.785𝐾𝑁 𝑄5 = −500(106)(−43.15)(10−6) = 21.58𝐾𝑁 𝑄6 = 22.5(106)(−13.57)(10−6) + 30(106)(86.12)(10−6) = 2.278𝐾𝑁. 𝑚 𝑄7 = −500(106)(−13.57)(10−6) = 6.785𝐾𝑁 𝑄8 = −11.25(106)(−43.15)(10−6) + 22.5(106)(86.12)(10−6) = 2.423𝐾𝑁 𝑄9 = −22.5(106)(−43.15)(10−6) + 30(106)(86.12)(10−6) = 3.555𝐾𝑁. 𝑚 Reacciones. 𝑅4 = −1.785 + 5 = 3.214𝐾𝑁 = 3.21KN 𝑅5 = 21.58 + 0 = 21.58𝐾𝑁 = 21.6𝑁 𝑅6 = 2.278 − 5 = −2.722𝐾𝑁. 𝑚 = −2.722𝐾𝑁. 𝑚 𝑅7 = 6.785 + 0 = 6.785𝐾𝑁 = 6.79𝐾𝑁 𝑅8 = 2.423 + 24 = 26.42𝐾𝑁 = 26.4𝐾𝑁 𝑅9 = 3.555 + 16 = 19.55𝐾𝑁. 𝑚 = 19.6𝐾𝑁. 𝑚
  • 22. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 22
  • 23. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 23 16-3 DETERMINE LA MATRIZ DE RIGIDEZ DE ESTRUCTURA K PARA EL MARCO. SUPONGA QUE (3). ESTÁ ARTICULADO Y QUE (1) ESTÁ FIJO. CONSIDERE QUE E = 200 MPA, I= 300(10)6 MM4 Y A=21(10)3 MM2 PARA CADA ELEMENTO. ELEMENTO 1: 𝜆 𝑥 = 5−0 5 = 1 𝜆 𝑦 = 0 𝐴𝐸 𝐿 = (0.021)(200𝐸8 ) 5 = 840000 6𝐸𝐼 𝐿2 = 6(200𝐸6 )(300𝐸−6 ) 52 = 14000 4𝐴𝐸 𝐿 = 4(200𝐸6 )(300𝐸−6 ) 5 = 48000 12𝐸𝐼 𝐿3 = 12(200𝐸6 )(300𝐸−6 ) 53 = 5760 2𝐸𝐼 𝐿 = 2(200𝐸6 )(300𝐸−6 ) 5 = 24000 K1= 840000 0 0 −840000 0 0 0 5760 14400 0 −5760 14400 0 14400 48000 0 −14400 24000 −840000 0 0 840000 0 0 0 −5760 −14400 0 5760 −14400 0 14400 24000 0 −14400 48000
  • 24. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 24 ELEMENTO 2: 𝜆 𝑌 = 0 − (−4) 4 = 1 𝜆 𝑋 = 0 𝐴𝐸 𝐿 = (0.021)(200𝐸6 ) 4 = 1050000 6𝐸𝐼 𝐿2 = 6(200𝐸6 )(300𝐸−6 ) 42 = 22500 4𝐴𝐸 𝐿 = 4(200𝐸6 )(300𝐸−6 ) 4 = 60000 12𝐸𝐼 𝐿3 = 12(200𝐸6 )(300𝐸−6 ) 43 = 11250 2𝐸𝐼 𝐿 = 2(200𝐸6 )(300𝐸−6 ) 4 = 30000 K2= 11250 0 −22500 −11250 0 −22500 0 1050000 0 0 −1050000 0 −22500 0 60000 22500 0 30000 −11250 0 22500 11250 0 22500 0 −1050000 0 0 1050000 0 −22500 0 30000 22500 0 60000 𝐾 = 851250 0 22500 22500 −11250 0 −840000 0 0 0 1055760 −14400 0 0 −1050000 0 −5760 −14400 22500 −14400 108000 30000 −22500 0 0 14400 24000 22500 0 30000 60000 −22500 0 0 0 0 −11250 0 −22500 −22500 11250 0 0 0 0 0 −1050000 0 0 0 1050000 0 0 0 −840000 0 0 0 0 0 840000 0 0 0 −5760 14400 0 0 0 0 5760 14400 0 −14400 24000 0 0 0 0 14400 48000
  • 25. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 25 16-4 DETERMINE LAS REACCIONES CON LOS SOPORTES 1 Y 3 CONSIDERE QUE E= 200 MPA, I=300 (10⁶) MM⁴ Y A= 21(10³) MM² PARA CADA ELEMENTO. 7 8 9 1 2 3 𝐾1 = [ 840000 0 0 −840000 0 0 0 5760 14400 0 −5760 14400 0 14400 48000 0 −14400 24000 −840000 0 0 840000 0 0 0 −5760 −14400 0 5760 −14400 0 14400 24000 0 −14400 48000 ] 7 8 9 1 2 3 1 2 3 5 6 4 𝐾2 = [ 11250 0 −22500 −11250 0 −22500 0 1050000 0 0 −1050000 0 −22500 0 60000 22500 0 30000 −11250 0 22500 11250 0 22500 0 −1050000 0 0 1050000 0 −22500 0 30000 22500 0 60000 ] 1 2 3 5 6 4
  • 26. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 26 MATRIZ GLOBAL 1 2 3 4 5 6 7 8 9 𝐊 = [ 851250 0 22500 22500 −11250 0 −840000 0 0 0 1055760 −14400 0 0 −1055760 0 −5760 −14400 22500 −14400 108000 30000 −22500 0 0 14400 24000 22500 0 30000 60000 −22500 0 0 0 0 −11250 0 −22500 −22500 11250 0 0 0 0 0 −1050000 0 0 0 1050000 0 0 0 −840000 0 0 0 0 0 840000 0 0 0 −5760 14400 0 0 0 0 5760 1440 0 −14400 24000 0 0 0 0 14400 48000 ] 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝑫 𝑲 = [ 𝟎 𝟎 𝟎 𝟎 𝟎] 𝑸 𝑲 = [ 𝟎 𝟎 𝟑𝟎𝟎 𝟎 ] [ 𝟎 𝟎 𝟑𝟎𝟎 𝟎 𝑸 𝟓 𝑸 𝟔 𝑸 𝟕 𝑸 𝟖 𝑸 𝟗 ] = [ 851250 0 22500 22500 −11250 0 −840000 0 0 0 1055760 −14400 0 0 −1055760 0 −5760 −14400 22500 −14400 108000 30000 −22500 0 0 14400 24000 22500 0 30000 60000 −22500 0 0 0 0 −11250 0 −22500 −22500 11250 0 0 0 0 0 −1050000 0 0 0 1050000 0 0 0 −840000 0 0 0 0 0 840000 0 0 0 −5760 14400 0 0 0 0 5760 1440 0 −14400 24000 0 0 0 0 14400 48000 ] [ 𝑫 𝟏 𝑫 𝟐 𝑫 𝟑 𝑫 𝟒 𝟎 𝟎 𝟎 𝟎 𝟎 ] CALCULO DE LAS REACCIONES [ 0 0 300 0 ] = [ 851250 0 22500 22500 0 1055760 −14400 0 22500 −14400 108000 30000 22500 0 30000 60000 ] [ D1 D2 D3 D4 ] + [ 0 0 0 0 ] 0 = 851250 𝐷1 + 22500 𝐷3 + 22500 𝐷4 0 = 1055760 𝐷2 + −14400 𝐷3 300 = 22500 𝐷1 + −14400 𝐷2 + 108000 𝐷3 + 30000 𝐷4 0 = 22500 𝐷1 + 30000 𝐷3 + 60000 𝐷4
  • 27. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 27 SOLUCION 𝐷1 = −0.00004322 𝑚 𝐷2 = 0.00004417 𝑚 𝐷3 = 0.00323787 𝑟𝑎𝑑 𝐷4 = −0.00160273 𝑟𝑎𝑑 [ Q5 Q6 Q7 Q8 Q9] = [ −11250 0 −840000 0 0 0 −1050000 0 −5760 −14400 −22500 0 0 14400 24000 −22500 0 0 0 0 ] [ −0.00004322 0.00004417 0.00323787 −0.00160273 ] + [ 0 0 0 0 0] 𝐐 𝟓 = −𝟑𝟔. 𝟑 𝑲𝑵 𝐐 𝟔 = −𝟒𝟔. 𝟒 𝑲𝑵 𝐐 𝟕 = 𝑵𝟑𝟔. 𝟑 𝑲𝑵 𝐐 𝟖 = 𝟒𝟔. 𝟒 𝑲𝑵 𝐐 𝟗 = 𝟕𝟕. 𝟏 𝑲𝑵 ∗ 𝒎
  • 28. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 28 16-5 DETERMINE LA MATRIZ DE RIGIDEZ DE LA ESTRUCTURA K PARA EL MARCO. CONSIDERE QUE E= 200 GPA, I= 350 (𝟏𝟎 𝟔 ) 𝒎𝒎 𝟒 Y 𝑨 = 𝟏𝟓(𝟏𝟎 𝟑)𝒎𝒎 𝟐 PARA CADA ELEMENTO. LAS JUNTAS EN 1 Y 3 ESTÁN ARTICULADOS. 𝐸 = 200 𝐺𝑃𝑎 = 200 ∗ 109 𝑁/𝑚 𝐼 = 350 ∗ 106 𝑚𝑚4 = 350 ∗ 10−6 𝑚4 𝐴 = 15 ∗ 103 𝑚𝑚2 = 0.015 𝑚2 𝐴𝐸 𝐿 = (0.015)(200𝐸9 ) 4 = 750𝐸6 𝑁/𝑚 12𝐸𝐼 𝐿3 = 12(200𝐸9 )(350𝐸−6 ) 43 = 13.125𝐸6 𝑁/𝑚 6𝐸𝐼 𝐿2 = 6(200𝐸9 )(350𝐸−6 ) 42 = 26.25𝐸6 𝑁 4𝐸𝐼 𝐿 = 4(200𝐸9 )(350𝐸−6 ) 4 = 70𝐸6 𝑁 ∙ 𝑚 2𝐸𝐼 𝐿 = 2(200𝐸9 )(350𝐸−6 ) 4 = 35𝐸6 𝑁 ∙ 𝑚 Por miembro 1 𝜆 𝑥 = 4−0 4 = 1 𝜆 𝑦 = 0−0 4 = 0 𝐾1 = 0080 00009 0000500 00010000 020000 03000 [ 750 0 0 −750 0 0 0 13.125 26.25 0 −13.125 26.25 0 26.25 70 0 −26.25 35 −750 0 0 750 0 0 0 −13.125 −26.25 0 13.125 −26.25 0 26.25 35 0 −26.25 70 ] (106) Por miembro 2 𝜆 𝑥 = 4−4 4 = 0 𝜆 𝑦 = −4−0 4 = −1 𝐾2 = 0080 00009 0000500 00010000 020000 03000 [ 750 0 0 −750 0 0 0 13.125 26.25 0 −13.125 26.25 0 26.25 70 0 −26.25 35 −750 0 0 750 0 0 0 −13.125 −26.25 0 13.125 −26.25 0 26.25 35 0 −26.25 70 ] (106) Matriz general 9X9 𝐾2 = 000010 00002000 0000300 0004000000 0050000 60000 7 08000 9 [ 763.125 0 26.25 26.25 0 −13.125 0 0 0 0 763.125 −26.25 0 −26.25 0 −750 −750 −13.125 26.25 −26.25 140 35 35 −26.25 0 0 26.25 26.25 0 35 70 0 −26.25 0 0 0 0 −26.25 35 0 70 0 0 0 26.25 −13.125 0 26.25 −26.25 0 13.125 0 0 0 0 −750 0 0 0 0 750 750 0 −750 0 0 0 0 0 0 0 0 0 −13.125 26.25 0 26.25 0 0 0 13.125 ] (106)
  • 29. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 29 16-6 DETERMINE LAS REACCIONES EN LOS SOPORTES ARTICULADOS 1 Y 3 CONSIDERE QUE E=200 GPA, I=350 ( 𝟏𝟎 𝟔 ) MM4 Y A=15 (𝟏𝟎 𝟑 ) MM2 PARA CADA ELEMENTO. 𝑄𝑘 = [ 0 −41.25(103) 45(103) 0 0 ] 1 2 3 4 5 𝐷𝑘 = [ 0 0 0 0 ] 6 7 8 9 [ 0 −41.25(103) 45(103) 0 0 𝑄6 𝑄7 𝑄8 𝑄9 ] = [ 763.125 0 26.25 26.25 0 −13.125 0 −750 0 0 763.125 −26.25 0 −26.25 0 −750 0 −13.125 26.25 −26.25 140 35 35 −26.25 0 0 26.25 26.25 0 35 70 0 −26.25 0 0 0 0 −26.25 35 0 70 0 0 0 26.25 −13.125 0 −26.25 −26.25 0 13.125 0 0 0 0 −750 0 0 0 0 750 0 0 −750 0 0 0 0 0 0 750 0 0 −13.125 26.25 0 26.25 0 0 0 13.125 ] 106 [ 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 0 0 0 0 ] Desde la partición de matriz, Qk= K11Du + K12Dk 0= (763.125D1 + 26 .25D3 + 26.25D4) ( 106 ) (1) -41.25 (103 )= 763.125D1 + 26 .25D3 + 26.25D5) ( 106 ) (2) 45(103 )= (26.25D1 - 26.25D2 + 140D3 + 35D4 + 35D4) ( 106 ) (3) 0= (26.25D1 + 35D3 + 70D4) (106 ) (4) 0= (26.25D1 + 35D3 + 70D4) (106 ) (5) Resultados ecuación. (1) a (5) D1= -7.3802(10−6 ) D2= -47.3802(10−6 ) D3= 423.5714(10−6 ) D5= -209.0181(10−6 ) D5= -229.5533(10−6 ) Utilizando estos resultados y aplicando Qu= K21Du +K22Dk
  • 30. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 30 Q6= (-13.125) (10−6 ) – 7.3802(10−6 ) – 26.25(10−6 )423.5714(10−6 ) – 26.25(106 ) - 209.0181(10−6 ) + 0 = - 5.535 kN Q7= -750(106 ) – 47.3802(10−6 ) + 0 = 35.535 kN Q8= -750(106 ) – 7.3802(10−6 ) + 0 = 5.535 kN Q9= -13.125(106 ) – 47.3802(10−6 ) + 26.25(106 ) + 423.5714(10−6 ) + 26.25(106 ) – 229.5533(10−6 ) + 0 = 5.715 kN Superponer estos resultados a los de la figura (a), R6 = - 5. 535 kN + 0 = 5.54 kN R7= 35.535 + 0 = 35.5 kN R8= 5.535 + 0 = 5.54 kN R9= 5.715 + 18.75 = 24.5 kN
  • 31. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 31 16.7 DETERMINE LA MATRIZ DE RIGIDEZ DE LA ESTRUCTURA K, PARA EL MARCO. CONSIDERE QUE 𝑬 = 𝟐𝟗 × 𝟏𝟎 𝟑 𝒌𝒔𝒊 , 𝑰 = 𝟔𝟓𝟎𝒑𝒖𝒍𝒈 𝟒 , 𝑨 = 𝟐𝟎𝒑𝒖𝒍𝒈 𝟐 , PARA CADA ELEMENTO. Miembro 1 λx = 10 − 0 10 = 1 λy = 0 𝐴𝐸 𝐿 = (20)(29 × 103 ) 10(12) = 4833.33 6𝐸𝐼 𝐿2 = 6(29 × 103 )(650) (10)2(12)2 = 7854.17 2𝐸𝐼 𝐿 = 2(29 × 103 )(650) 10(12) = 314166.67 12𝐸𝐼 𝐿3 = 12(29 × 103 )(650) (10)3(12)3 = 130.90 4𝐸𝐼 𝐿 = 4(29 × 103 )(650) 10(12) = 628333.33 𝐾1 = [ 4833.33 0 0 −4833.33 0 0 0 130.90 7854.17 0 −130.90 7854.17 0 7854.17 628333.33 0 −7854.17 314166.67 −4833.33 0 0 4833.33 0 0 0 −130.90 −7854.17 0 130.90 −7854.17 0 7854.17 314166.6 0 −7854.17 628333.33]
  • 32. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 32 Miembro 2 λY = 12 − 0 12 = 1 λX = 0 𝐴𝐸 𝐿 = (20)(29 × 103 ) (12)(12) = 4027.78 6𝐸𝐼 𝐿2 = 6(29 × 103 )(650) (12)2(12)2 = 5454.28 2𝐸𝐼 𝐿 = 2(29 × 103 )(650) (12)(12) = 261805.55 12𝐸𝐼 𝐿3 = 12(29 × 103 )(650) (12)3(12)3 = 75.75 4𝐸𝐼 𝐿 = 4(29 × 103 )(650) (12)(12) = 523611.11 𝐾2 = [ 75.75 0 5454.28 −75.75 0 5454.28 0 4027.78 0 0 −4027.78 0 5454.28 0 523611.11 −5454.28 0 261805.55 −75.75 0 −5454.28 75.75 0 −5454.28 0 −4027.78 0 0 4027.78 0 5454.28 0 261805.55 −5454.28 0 523611.11] MATRIZ DE RIGIDEZ ESTRUCTURAL 𝐾: [ 4833.33 0 0 −4833.33 0 0 0 0 0 0 130.90 7854.17 0 −130.90 7854.17 0 0 0 0 7854.17 628333.33 0 −7854.17 314166.67 0 0 0 −4833.33 0 0 4909.08 0 5454.28 −75.75 0 5454.28 0 −130.90 −7854.17 0 4158.68 −7854.17 0 −4027.78 0 0 7854.17 314166.67 5454.28 −7854.17 1151944.44 −5454.28 0 261805.55 0 0 0 −75.75 0 −5454.28 75.75 0 −5454.28 0 0 0 0 −4027.78 0 0 4027.78 0 0 0 0 5454.28 0 261805.55 −5454.28 0 523611.11 ]
  • 33. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 33 16-8 DETERMINE LOS COMPONENTES DE LOS DESPLAZAMIENTOS EN 1 CONSIDERE QUE E =29(𝟏𝟎 𝟑 ) KSI, I=650𝒑𝒖𝒍𝒈 𝟒 Y A=20 𝒑𝒖𝒍𝒈 𝟐 PARA CADA ELEMENTO. 𝐷 𝑘=| 0 0 0 | 𝑄 𝑘= | | −4 −6 0 0 0 0 | | [ −4 −6 0 0 0 0 𝑄7 𝑄8 𝑄9 ] = [ 4833.33 0 0 −4833.33 0 0 0 0 0 0 130.90 7854.17 0 −130.90 7854.17 0 0 0 0 7854.17 628333.33 0 −7854.17 314166.67 0 0 0 −4833.33 0 0 4909.08 0 5454.28 −75.75 0 5454.28 0 −130.90 −7854.17 0 4158.68 −7854.17 0 −4027.78 0 0 7854.17 314166.67 5454.28 −7854.17 1151944.44 −5454.28 0 261805.55 0 0 0 −75.75 0 −5454.28 75.75 0 −5454.28 0 0 0 0 −4027.78 0 0 4027.78 0 0 0 0 5454.28 0 261805.55 −5454.28 0 523611.11 ] [ 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 0 0 0 ] [ −4 −6 0 0 0 0 ] + [ 4833.33 0 0 −4833.33 0 0 0 130.90 7854.17 0 −130.90 7854.17 0 7854.17 628333.33 0 −7854.17 314166.67 −4833.33 0 0 4909.08 0 5454.28 0 −130.90 −7854.17 0 4158.68 −7854.17 0 7854.17 314166.67 5454.28 −7854.17 1151944.44 ] [ 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6] + [ 0 0 0 0 0 0]
  • 34. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 34 -4 = 4833.33D1 - 4833.33D4 -6 = 130.90D2 + 7854.17D3 - 130.90D5 + 7854.17D6 0 = 7854.17D2 + 628333.33D3 - 7854.17D5 + 314166.67D6 0 = -4833.33D1 + 4909.08D4 + 5454.28D6 0 = -130.90D2 - 7854.17D3 + 4158.68D5 - 7854.17D6 0 = 7854.17D2 + 314166.67D3 + 5454.28D4 – 7854.17D5 + 11519944.44D6 Resolviendo los rendimientos de las ecuaciones anteriores D1= -0.608 in D2= -1.12 in D3= 0.0100 rad D4= -0.6076 in D5= -0.001490 in D6= 0.007705 rad
  • 35. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 35 16.9 DETERMINE LA MATRIZ DE RIGIDEZ K PARA EL MARCO. CONSIDERE 𝑬 = 𝟐𝟗 × 𝟏𝟎 𝟑 𝒌𝒔𝒊, 𝑰 = 𝟑𝟎𝟎𝒑𝒖𝒍𝒈 𝟒 , 𝑨 = 𝟏𝟎𝒑𝒖𝒍𝒈 𝟐 , PARA CADA ELEMENTO. Miembro 1 λy = 10 − 0 10 = 1 λx = 0 𝐴𝐸 𝐿 = (10)(29 × 103 ) 10(12) = 2416.67 𝑘/𝑖𝑛 6𝐸𝐼 𝐿2 = 6(29 × 103 )(300) (10)2(12)2 = 3625 𝑘 2𝐸𝐼 𝐿 = 2(29 × 103 )(300) 10(12) = 145000 𝑘. 𝑖𝑛 12𝐸𝐼 𝐿3 = 12(29 × 103 )(300) (10)3(12)3 = 60.4167 𝑘/𝑖𝑛 4𝐸𝐼 𝐿 = 4(29 × 103 )(300) 10(12) = 290000 𝑘. 𝑖𝑛 𝐾1 = [ 8 60.4167 0 −3625 −60.4167 0 −3625 9 0 2416.67 0 0 −2416.67 0 5 −3625 0 290000 3625 0 145000 1 −60.4167 0 3625 60.4167 0 3625 2 0 −2416.67 0 0 2416.67 0 3 −3625 0 145000 3625 0 290000] 8 9 5 1 2 3
  • 36. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 36 Miembro 2 λx = 20 − 0 20 = 1 λy = 10 − 10 20 = 0 𝐴𝐸 𝐿 = (10)(29 × 103 ) (120)(12) = 1208.33 𝑘/𝑖𝑛 6𝐸𝐼 𝐿2 = 6(29 × 103 )(300) (20)2(12)2 = 906.25 𝑘 2𝐸𝐼 𝐿 = 2(29 × 103 )(300) (20)(12) = 72500 𝑘. 𝑖𝑛 12𝐸𝐼 𝐿3 = 12(29 × 103 )(300) (20)3(12)3 = 7.5521 𝑘/𝑖𝑛 4𝐸𝐼 𝐿 = 4(29 × 103 )(300) (20)(12) = 145000 𝑘. 𝑖𝑛 𝐾2 = [ 1 1208.33 0 0 −1208.33 0 0 2 0 7.5521 906.25 0 −7.5521 906.25 3 0 906.25 145000 0 −906.25 72500 6 −1208.33 0 0 1208.33 0 0 7 0 −7.5521 −906.25 0 7.5521 −906.25 4 0 906.25 72500 0 −906.25 145000 ] 1 2 3 6 8 4 Matriz de rigidez estructural 𝐾: [ 1268,75 0 3625 0 3625 −1208.33 0 −60.4167 0 0 2424.22 906.25 906.25 0 0 −7.5521 0 −2416.67 3625 906.25 435000 72500 145000 0 −906.25 −3625 0 0 906.25 72500 145000 0 0 −906.25 0 0 3625 0 145000 0 290000 0 0 −3625 0 −1208.33 0 0 0 0 1208.33 0 0 0 0 −7.5521 −906.25 −906.25 0 0 7.5521 0 0 −60.4167 0 −3625 0 −3625 0 0 60.4167 0 0 −2416.67 0 0 0 0 0 0 2416.67 ]
  • 37. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 37 16-10 DETERMINE LA REACCIONES DE SOPORTE EN (1) Y (3). TOMAR E = 2911032 KSI, I = 300 IN4, A = 10 IN2 PARA CADA MIEMBRO. Cargas y deflexiones normales conocidas. Las cargas normales que actúan sobre el grado de libertad. 20 = - 2416.67D2 D2 = - 8.275862071 (10-3) 5 = - 7.5521 (- 8.2758)(10- 3) - 906.25D3 - 906.25D4 0 = 906.25 (- 8.2758)(10- 3) + 72500D3 + 145000D4 4.937497862 = - 906.25D3 - 906.25D4
  • 38. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 38 Desde la partición de matriz Qk = K11Du + K12Dk, 0 = 1268.75D1 + 3625D3 + 3625D5 - 1208.33D6 (1) -25 = 2424.22D2 + 906.25D3 + 906.25D4 (2) -1200 = 3625D1 + 906.25D2 + 435000D3 + 72500D4 + 145000D5 (3) 0 = 906.25D2 + 72500D3 + 145000D4 (4) 0 = 3625D1 + 145000D3 + 290000D5 (5) 0 = -1208.33D1 + 1208.33D6 (6) Resolución de La ecu. (1) a (6) D1 = 1.32 D2 = -0.008276 D3 = -0.011 D4 = 0.005552 D5 = -0.011 D6 = 1.32 Usando estos resultados y aplicando Qk = K21Du + K22Dk Q7 = -7.5521 (-0.008276) - 906.25(-0.011) - 906.25(0.005552) = 5 Q8 = 60.4167 (1.32)-3625(-0.011)-3625(-0.011) = 0 Q9 = -2416.67 (-0.008276) = 20 Superponer estos resultados a los de FEM mostrados R7 = 5 + 15 = 20 k Ans. R8 = 0 + 0 = 0 Ans. R9 = 20 + 0 = 20 k Ans.
  • 39. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 39 16.-11 DETERMINE LA MATRIZ DE RIGIDEZ DE LA ESTRUCTURA K PARA EL MARCO, CONSIDERE QUE E =29(103) KSI. 1= 700 PULG4 Y A = 20 PULG2 PARA CADA ELEMENTO. 𝐴𝐸 𝐿 = 20((29(102)) 24(12) = 2013.89𝐾/𝑖𝑛 13𝐸𝐼 𝐿2 = 12(29(103 )(700) (24(12))2 = 10.197𝑘/𝑖𝑛 6𝐸𝐼 𝐿2 = 6((29(102))(700) 24(12))2 = 1468.46 𝐾 4𝐸𝐼 𝐿 = 4(29(103 )(700) (24(12) = 281944 𝐾. 𝑖𝑛 2𝐸𝐼 𝐿 = 2(29(103))(700) 24(12) = 140972 𝐾. 𝑖𝑛
  • 40. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 40 L=16 ft AX = 24−24 16 = 0 𝑎𝑛𝑑 𝑥 𝑦 = 16−0 16 = 1. 𝐴𝐸 𝐿 = 20((29(103)) 16(12) = 3020.83𝐾/𝑖𝑛 12𝐸𝐼 𝐿3 = 12(29(103 )(700) (16(12))3 = 34.4170𝑘/𝑖𝑛 6𝐸𝐼 𝐿 = 6((29(103))(700) 16(12))2 = 3304.04𝐾 4𝐸𝐼 𝐿 = 4(29(103 )(700) (16(12) = 42217 𝐾. 𝑖𝑛 2𝐸𝐼 𝐿 = 2(29(103))(700) 16(12) = 211458 𝐾. 𝑖𝑛
  • 41. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 41 16.12 DETERMINE LAS REACCIONES EN LOS SOPORTES FIJOS 1 Y 2. CONSIDERE QUE E = 200 GPA, I= 300(10^6) MM^4 Y A= 10(10^3) MM^2 PARA CADA ELEMENTO. CARGAS Y DEFLEXIONES NODALES CONOCIDAS, LAS CARGAS NODALES ACTÚAN A LIBERTAD. Qk= { 0 −13.75 1080 0 0 } { 1 2 3 4 5} DK={ 0 0 0 0 } { 6 7 8 9 } RELACIÓN CARGAS, DESPLAZAMIENTO Y APLICACIÓN DE Q=KD. [ 0 −13.75 90 0 0 − − − − 𝑄6 𝑄7 𝑄8 𝑄9 ] [ 2048.31 0 −3304.04 −3304.04 0 − − − − −34.4170 0 −2013..89 0 ] [ 0 3031..03 −1468.46 0 −1468.46 − − − − 0 −3020.83 0 −10.1976] [ −3304.04 −1468.46 704861 211458 140972 − − − − 3304.04 0 0 1468.46 ][ −3304.04 0 211458 422917 0 − − − − 3304.04 0 0 0 ] [ 0 −1468.46 140972 0 281944 − − − − 0 0 0 1468.46 ] [ −34.4170 0 3304.04 3304.04 0 − − − − 34.4170 0 0 0 ] [ 0 −3020..83 0 0 0 − − − − − 0 −3020.83 0 0 ] [ −2013.89 0 0 0 0 − − − − 0 0 2013.89 0 ] [ 0 −10.1976 1468.46 0 1468.46 − − − − 0 0 0 10.1976 ] [ 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 − − − − 0 0 0 0 ]
  • 42. ANALISIS ESTRUCTURAL AVANZADO ING. CIVIL I 7º “K” 42 A PARTIR DE LA PARTICIÓN DE MATRIZ. Qk= K11Du+K12DK 0=2048.31D1 – 3304.04D3- 3304.04D4 (1) -13.75=3031.03D2 -1468.46D3 -1468.46D5 (2) 90= -3304.04D1-1468.46D2+704861D3+211458D4+140972D5 (3) 0= -3304.04D1+211458D3+422917D4 (4) 0=-1468.46D2+140972D3+281944D5 (5) SOLUCION DE ECUACIONES. D1=0.001668 D2=-0.004052 D3=0.002043 D4=-0.001008 D5=-0.001042 USANDO ESTOS RESULTADOS Y APLICANDO Qu=K21Du+K22Dk Q6=-34.4170 (0.001668) +3304.04(0.002043) +3304.04(-0.001008) =3.360 Q7= -3020.83 (-0.004052) = 12.24 Q8= -2013.89 (0.001668) = -3.360 Q9= -10.1976 (-0.004052) +1468.46(0.002043) +1468.46(-0.001008) = 1.510 Superponer estos resultados a los de FEM R6=3.360 + 0 = 3.36K R7= 12.24 + 0 = 12.2K R8= -3.360 + 0 = -3.36K R9=1.510 +6.25 = 7.76K