SlideShare ist ein Scribd-Unternehmen logo
1 von 23
Limite de uma função e sua representação
gráfica
lim
𝑥→𝑎
𝑓(𝑥) = 𝐿
Considere 𝑓 uma função de domínio 𝐷𝑓:
, com 𝑎 ∉ 𝐷𝑓
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒇 𝒙 =
𝟏
𝒙
Se 0 ∉ 𝐷𝑓 então não existe 𝑓 0 . Mas é possível calcular o valor da função para valores de 𝑥 tão
próximos de 0 quanto se queira.
Consideremos um conjunto de valores
positivos de 𝑥 cada vez mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
100 0,01
𝑥
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
100 0,01
20 0,05
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
100 0,01
20 0,05
10 0,1
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
100 0,01
20 0,05
10 0,1
5 0,2
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
100 0,01
20 0,05
10 0,1
5 0,2
2 0,5
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
100 0,01
20 0,05
10 0,1
5 0,2
2 0,5
1 1
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
100 0,01
20 0,05
10 0,1
5 0,2
2 0,5
1 1
0,5 2𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
100 0,01
20 0,05
10 0,1
5 0,2
2 0,5
1 1
0,5 2
0,25 4
0,01 100
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
100 0,01
20 0,05
10 0,1
5 0,2
2 0,5
1 1
0,5 2
0,25 4
0,01 100
… …
𝒙 → 𝟎+
𝒇 𝒙 → +∞
𝑥
𝑓(𝑥)
Quando 𝑥 está a tender para zero por valores à direita
de zero, 𝑓(𝑥) tende para valores cada vez maiores. Isto
é, quando 𝒙 𝐭𝐞𝐧𝐝𝐞 𝐩𝐚𝐫𝐚 𝟎+
, 𝒇(𝒙) tende para +∞.
O limite da função 𝑓, quando 𝑥 tende
para 0 à direita, tende para +∞:
𝐥𝐢𝐦
𝒙→𝟎+
𝟏
𝒙
= +∞
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒇 𝒙 =
𝟏
𝒙
De forma idêntica, conclui-se que 𝑓(𝑥) tende para −∞ quando 𝑥 tende para 0 por valores à
esquerda de 0.
Isto é, consideremos um conjunto de valores
negativos de 𝑥 cada vez mais próximos de 0.
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
−100 −0,01
𝑥
Consideremos um conjunto de
valores negativos de 𝑥 cada vez
mais próximos de 0.
𝒇 𝒙 =
𝟏
𝒙
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
−100 −0,01
−20 −0,05
𝑥
𝑓(𝑥)
Consideremos um conjunto de
valores negativos de 𝑥 cada vez
mais próximos de 0.
𝒇 𝒙 =
𝟏
𝒙
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
−100 −0,01
−20 −0,05
−10 −0,1
𝑥
𝑓(𝑥)
Consideremos um conjunto de
valores negativos de 𝑥 cada vez
mais próximos de 0.
𝒇 𝒙 =
𝟏
𝒙
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
−100 −0,01
−20 −0,05
−10 −0,1
−5 −0,2
𝑥
𝑓(𝑥)
Consideremos um conjunto de
valores negativos de 𝑥 cada vez
mais próximos de 0.
𝒇 𝒙 =
𝟏
𝒙
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
−100 −0,01
−20 −0,05
−10 −0,1
−5 −0,2
−2 −0,5
𝑥
𝑓(𝑥)
Consideremos um conjunto de
valores negativos de 𝑥 cada vez
mais próximos de 0.
𝒇 𝒙 =
𝟏
𝒙
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
−100 −0,01
−20 −0,05
−10 −0,1
−5 −0,2
−2 −0,5
−1 −1
𝑥
𝑓(𝑥)
Consideremos um conjunto de
valores negativos de 𝑥 cada vez
mais próximos de 0.
𝒇 𝒙 =
𝟏
𝒙
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
−100 −0,01
−20 −0,05
−10 −0,1
−5 −0,2
−2 −0,5
−1 −1
−0,5 −2
𝑥
𝑓(𝑥)
Consideremos um conjunto de
valores negativos de 𝑥 cada vez
mais próximos de 0.
𝒇 𝒙 =
𝟏
𝒙
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
−100 −0,01
−20 −0,05
−10 −0,1
−5 −0,2
−2 −0,5
−1 −1
−0,5 −2
−0,25 −4
−0,01 −100
𝑥
𝑓(𝑥)
Consideremos um conjunto de
valores negativos de 𝑥 cada vez
mais próximos de 0.
𝒇 𝒙 =
𝟏
𝒙
Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
−100 −0,01
−20 −0,05
−10 −0,1
−5 −0,2
−2 −0,5
−1 −1
−0,5 −2
−0,25 −4
−0,01 −100
… …
𝒙 → 𝟎−
𝒇 𝒙 → −∞
𝑥
𝑓(𝑥)
Quando 𝑥 está a tender para zero por valores à esquerda
de zero, 𝑓(𝑥) tende para valores cada vez menores. Isto
é, quando 𝒙 𝐭𝐞𝐧𝐝𝐞 𝐩𝐚𝐫𝐚 𝟎−
, 𝒇(𝒙) tende para −∞.
O limite da função 𝑓, quando 𝑥 tende
para 0 à esquerda, tende para −∞:
𝐥𝐢𝐦
𝒙→𝟎−
𝟏
𝒙
= −∞
Consideremos um conjunto de
valores negativos de 𝑥 cada vez
mais próximos de 0.
Conclusão…
𝐥𝐢𝐦
𝒙→𝟎−
𝟏
𝒙
= −∞
𝐥𝐢𝐦
𝒙→𝟎+
𝟏
𝒙
= +∞
Ao limite da função
1
𝑥
quando 𝑥 tende para 0 por valores superiores a 0 (𝑥 → 0+
),
designamos por limite à direita de 𝟎.
Ao limite da função
1
𝑥
quando 𝑥 tende para 0, por valores inferiores a 0 (𝑥 → 0−),
designamos por limite à esquerda de 𝟎.
Conclusão…
Seja 𝑓 uma função real de variável real. Diz-se que o limite de 𝑓(𝑥), quando 𝑥 tende para 𝑎 à
direita (ou por valores superiores a 𝑎), tende para 𝐿1.
Simbolicamente:
lim
𝑥→𝑎+
𝑓(𝑥) = 𝐿1
E
O limite de 𝑓(𝑥), quando 𝑥 tende para 𝑎 à esquerda (ou por valores inferiores a 𝑎), tende para 𝐿2.
Simbolicamente:
lim
𝑥→𝑎−
𝑓(𝑥) = 𝐿2
(limite à direita de 𝒂)
(limite à esquerda de 𝒂)
Se 𝒍𝒊𝒎
𝒙→𝒂+
𝒇(𝒙) = 𝒍𝒊𝒎
𝒙→𝒂−
𝒇(𝒙) = 𝑳 então existe 𝒍𝒊𝒎
𝒙→𝒂
𝒇(𝒙) = 𝑳 (limite de 𝑓 𝑥 , quando 𝑥
tende para 𝑎, tende para 𝐿).
Se 𝒍𝒊𝒎
𝒙→𝒂+
𝒇(𝒙) ≠ 𝒍𝒊𝒎
𝒙→𝒂−
𝒇(𝒙) então não existe 𝒍𝒊𝒎
𝒙→𝒂
𝒇(𝒙).

Weitere ähnliche Inhalte

Ähnlich wie 1. limite2com tabelas1 (p1)

Ähnlich wie 1. limite2com tabelas1 (p1) (20)

Aula_02_Cálculo_Integral_Osmar.pptx
Aula_02_Cálculo_Integral_Osmar.pptxAula_02_Cálculo_Integral_Osmar.pptx
Aula_02_Cálculo_Integral_Osmar.pptx
 
Exercícios resolvidos e propostos matemática
Exercícios resolvidos e propostos matemáticaExercícios resolvidos e propostos matemática
Exercícios resolvidos e propostos matemática
 
Matemática 11º ano
Matemática 11º anoMatemática 11º ano
Matemática 11º ano
 
15 funcoes essenciais_unidade2
15 funcoes essenciais_unidade215 funcoes essenciais_unidade2
15 funcoes essenciais_unidade2
 
Equacoes Diferenciais.pptx
Equacoes Diferenciais.pptxEquacoes Diferenciais.pptx
Equacoes Diferenciais.pptx
 
Funções 10 - novo programa
Funções 10 - novo programaFunções 10 - novo programa
Funções 10 - novo programa
 
Função derivada - teoria
Função derivada - teoriaFunção derivada - teoria
Função derivada - teoria
 
Cálculo Diferencial e Integral - Sucessões - Exercicios resolvidos e propostos
Cálculo Diferencial e Integral - Sucessões - Exercicios resolvidos e propostosCálculo Diferencial e Integral - Sucessões - Exercicios resolvidos e propostos
Cálculo Diferencial e Integral - Sucessões - Exercicios resolvidos e propostos
 
Exercícios de Cálculo Diferencial e Integral
Exercícios de Cálculo Diferencial e IntegralExercícios de Cálculo Diferencial e Integral
Exercícios de Cálculo Diferencial e Integral
 
Geometria Analítica.pdf
Geometria Analítica.pdfGeometria Analítica.pdf
Geometria Analítica.pdf
 
Desenvolvimento temporal de um sistema quântico
Desenvolvimento temporal de um sistema quânticoDesenvolvimento temporal de um sistema quântico
Desenvolvimento temporal de um sistema quântico
 
Descreve o conceito de função, objetos, imagens, domínio e contradomínio.
Descreve o conceito de função, objetos, imagens, domínio e contradomínio.Descreve o conceito de função, objetos, imagens, domínio e contradomínio.
Descreve o conceito de função, objetos, imagens, domínio e contradomínio.
 
CÁLCULO II.pptx
CÁLCULO II.pptxCÁLCULO II.pptx
CÁLCULO II.pptx
 
Calculo Integral - Conceito de primitiva e técnicas de primitivação
Calculo Integral - Conceito de primitiva e técnicas de primitivaçãoCalculo Integral - Conceito de primitiva e técnicas de primitivação
Calculo Integral - Conceito de primitiva e técnicas de primitivação
 
Livro de cálculo 1 com resolução de exercícios
Livro de cálculo 1 com resolução de exercíciosLivro de cálculo 1 com resolução de exercícios
Livro de cálculo 1 com resolução de exercícios
 
Aula 02 - Primitivas Imediatas
Aula 02  - Primitivas ImediatasAula 02  - Primitivas Imediatas
Aula 02 - Primitivas Imediatas
 
Função Polinomial do 1º grau
Função Polinomial do 1º grauFunção Polinomial do 1º grau
Função Polinomial do 1º grau
 
mat_ii_aula-2_integral-definida.pdf
mat_ii_aula-2_integral-definida.pdfmat_ii_aula-2_integral-definida.pdf
mat_ii_aula-2_integral-definida.pdf
 
Revisão de matemática para vestibular
Revisão de matemática para vestibularRevisão de matemática para vestibular
Revisão de matemática para vestibular
 
Teorema de cantor
Teorema de cantorTeorema de cantor
Teorema de cantor
 

1. limite2com tabelas1 (p1)

  • 1. Limite de uma função e sua representação gráfica lim 𝑥→𝑎 𝑓(𝑥) = 𝐿 Considere 𝑓 uma função de domínio 𝐷𝑓: , com 𝑎 ∉ 𝐷𝑓
  • 2. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒇 𝒙 = 𝟏 𝒙 Se 0 ∉ 𝐷𝑓 então não existe 𝑓 0 . Mas é possível calcular o valor da função para valores de 𝑥 tão próximos de 0 quanto se queira. Consideremos um conjunto de valores positivos de 𝑥 cada vez mais próximos de 0.
  • 3. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) 100 0,01 𝑥 𝒇 𝒙 = 𝟏 𝒙 Consideremos um conjunto de valores positivos de 𝑥 cada vez mais próximos de 0.
  • 4. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) 100 0,01 20 0,05 𝑥 𝑓(𝑥) 𝒇 𝒙 = 𝟏 𝒙 Consideremos um conjunto de valores positivos de 𝑥 cada vez mais próximos de 0.
  • 5. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) 100 0,01 20 0,05 10 0,1 𝑥 𝑓(𝑥) 𝒇 𝒙 = 𝟏 𝒙 Consideremos um conjunto de valores positivos de 𝑥 cada vez mais próximos de 0.
  • 6. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) 100 0,01 20 0,05 10 0,1 5 0,2 𝑥 𝑓(𝑥) 𝒇 𝒙 = 𝟏 𝒙 Consideremos um conjunto de valores positivos de 𝑥 cada vez mais próximos de 0.
  • 7. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) 100 0,01 20 0,05 10 0,1 5 0,2 2 0,5 𝑥 𝑓(𝑥) 𝒇 𝒙 = 𝟏 𝒙 Consideremos um conjunto de valores positivos de 𝑥 cada vez mais próximos de 0.
  • 8. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) 100 0,01 20 0,05 10 0,1 5 0,2 2 0,5 1 1 𝑥 𝑓(𝑥) 𝒇 𝒙 = 𝟏 𝒙 Consideremos um conjunto de valores positivos de 𝑥 cada vez mais próximos de 0.
  • 9. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) 100 0,01 20 0,05 10 0,1 5 0,2 2 0,5 1 1 0,5 2𝑥 𝑓(𝑥) 𝒇 𝒙 = 𝟏 𝒙 Consideremos um conjunto de valores positivos de 𝑥 cada vez mais próximos de 0.
  • 10. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) 100 0,01 20 0,05 10 0,1 5 0,2 2 0,5 1 1 0,5 2 0,25 4 0,01 100 𝑥 𝑓(𝑥) 𝒇 𝒙 = 𝟏 𝒙 Consideremos um conjunto de valores positivos de 𝑥 cada vez mais próximos de 0.
  • 11. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) 100 0,01 20 0,05 10 0,1 5 0,2 2 0,5 1 1 0,5 2 0,25 4 0,01 100 … … 𝒙 → 𝟎+ 𝒇 𝒙 → +∞ 𝑥 𝑓(𝑥) Quando 𝑥 está a tender para zero por valores à direita de zero, 𝑓(𝑥) tende para valores cada vez maiores. Isto é, quando 𝒙 𝐭𝐞𝐧𝐝𝐞 𝐩𝐚𝐫𝐚 𝟎+ , 𝒇(𝒙) tende para +∞. O limite da função 𝑓, quando 𝑥 tende para 0 à direita, tende para +∞: 𝐥𝐢𝐦 𝒙→𝟎+ 𝟏 𝒙 = +∞ 𝒇 𝒙 = 𝟏 𝒙 Consideremos um conjunto de valores positivos de 𝑥 cada vez mais próximos de 0.
  • 12. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒇 𝒙 = 𝟏 𝒙 De forma idêntica, conclui-se que 𝑓(𝑥) tende para −∞ quando 𝑥 tende para 0 por valores à esquerda de 0. Isto é, consideremos um conjunto de valores negativos de 𝑥 cada vez mais próximos de 0.
  • 13. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) −100 −0,01 𝑥 Consideremos um conjunto de valores negativos de 𝑥 cada vez mais próximos de 0. 𝒇 𝒙 = 𝟏 𝒙
  • 14. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) −100 −0,01 −20 −0,05 𝑥 𝑓(𝑥) Consideremos um conjunto de valores negativos de 𝑥 cada vez mais próximos de 0. 𝒇 𝒙 = 𝟏 𝒙
  • 15. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) −100 −0,01 −20 −0,05 −10 −0,1 𝑥 𝑓(𝑥) Consideremos um conjunto de valores negativos de 𝑥 cada vez mais próximos de 0. 𝒇 𝒙 = 𝟏 𝒙
  • 16. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) −100 −0,01 −20 −0,05 −10 −0,1 −5 −0,2 𝑥 𝑓(𝑥) Consideremos um conjunto de valores negativos de 𝑥 cada vez mais próximos de 0. 𝒇 𝒙 = 𝟏 𝒙
  • 17. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) −100 −0,01 −20 −0,05 −10 −0,1 −5 −0,2 −2 −0,5 𝑥 𝑓(𝑥) Consideremos um conjunto de valores negativos de 𝑥 cada vez mais próximos de 0. 𝒇 𝒙 = 𝟏 𝒙
  • 18. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) −100 −0,01 −20 −0,05 −10 −0,1 −5 −0,2 −2 −0,5 −1 −1 𝑥 𝑓(𝑥) Consideremos um conjunto de valores negativos de 𝑥 cada vez mais próximos de 0. 𝒇 𝒙 = 𝟏 𝒙
  • 19. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) −100 −0,01 −20 −0,05 −10 −0,1 −5 −0,2 −2 −0,5 −1 −1 −0,5 −2 𝑥 𝑓(𝑥) Consideremos um conjunto de valores negativos de 𝑥 cada vez mais próximos de 0. 𝒇 𝒙 = 𝟏 𝒙
  • 20. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) −100 −0,01 −20 −0,05 −10 −0,1 −5 −0,2 −2 −0,5 −1 −1 −0,5 −2 −0,25 −4 −0,01 −100 𝑥 𝑓(𝑥) Consideremos um conjunto de valores negativos de 𝑥 cada vez mais próximos de 0. 𝒇 𝒙 = 𝟏 𝒙
  • 21. Considere 𝑓 uma função real de variável real definida por 𝑓 𝑥 = 1 𝑥 e de domínio 𝐷𝑓 = ℝ 0 . 𝒙 𝒇(𝒙) −100 −0,01 −20 −0,05 −10 −0,1 −5 −0,2 −2 −0,5 −1 −1 −0,5 −2 −0,25 −4 −0,01 −100 … … 𝒙 → 𝟎− 𝒇 𝒙 → −∞ 𝑥 𝑓(𝑥) Quando 𝑥 está a tender para zero por valores à esquerda de zero, 𝑓(𝑥) tende para valores cada vez menores. Isto é, quando 𝒙 𝐭𝐞𝐧𝐝𝐞 𝐩𝐚𝐫𝐚 𝟎− , 𝒇(𝒙) tende para −∞. O limite da função 𝑓, quando 𝑥 tende para 0 à esquerda, tende para −∞: 𝐥𝐢𝐦 𝒙→𝟎− 𝟏 𝒙 = −∞ Consideremos um conjunto de valores negativos de 𝑥 cada vez mais próximos de 0.
  • 22. Conclusão… 𝐥𝐢𝐦 𝒙→𝟎− 𝟏 𝒙 = −∞ 𝐥𝐢𝐦 𝒙→𝟎+ 𝟏 𝒙 = +∞ Ao limite da função 1 𝑥 quando 𝑥 tende para 0 por valores superiores a 0 (𝑥 → 0+ ), designamos por limite à direita de 𝟎. Ao limite da função 1 𝑥 quando 𝑥 tende para 0, por valores inferiores a 0 (𝑥 → 0−), designamos por limite à esquerda de 𝟎.
  • 23. Conclusão… Seja 𝑓 uma função real de variável real. Diz-se que o limite de 𝑓(𝑥), quando 𝑥 tende para 𝑎 à direita (ou por valores superiores a 𝑎), tende para 𝐿1. Simbolicamente: lim 𝑥→𝑎+ 𝑓(𝑥) = 𝐿1 E O limite de 𝑓(𝑥), quando 𝑥 tende para 𝑎 à esquerda (ou por valores inferiores a 𝑎), tende para 𝐿2. Simbolicamente: lim 𝑥→𝑎− 𝑓(𝑥) = 𝐿2 (limite à direita de 𝒂) (limite à esquerda de 𝒂) Se 𝒍𝒊𝒎 𝒙→𝒂+ 𝒇(𝒙) = 𝒍𝒊𝒎 𝒙→𝒂− 𝒇(𝒙) = 𝑳 então existe 𝒍𝒊𝒎 𝒙→𝒂 𝒇(𝒙) = 𝑳 (limite de 𝑓 𝑥 , quando 𝑥 tende para 𝑎, tende para 𝐿). Se 𝒍𝒊𝒎 𝒙→𝒂+ 𝒇(𝒙) ≠ 𝒍𝒊𝒎 𝒙→𝒂− 𝒇(𝒙) então não existe 𝒍𝒊𝒎 𝒙→𝒂 𝒇(𝒙).