SlideShare ist ein Scribd-Unternehmen logo
1 von 29
Downloaden Sie, um offline zu lesen
MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS
1. INTRODUCCIÓN
Para la determinación de un analito hay métodos clásicos y métodos
instrumentales. Estos últimos tienen unas ventajas sobre los primeros:
1.) Permiten realizar análisis difíciles o imposibles por los otros métodos
con una elevada selectividad y sensibilidad. Además, mientras en los
métodos clásicos solo podemos determinar un analito por análisis, en
los instrumentales podemos determinar simultáneamente varios
analitos en un análisis.
2.) Suelen ser más rápidos y baratos que los clásicos. Es fácil la
automatización de estos métodos instrumentales.
3.) Los instrumentos analíticos pueden conectarse a ordenadores, lo que
permite un óptimo control del instrumento y manejo de datos.
4.) Desarrollo de instrumentos inteligentes.
A partir de ahora solo vamos a hablar de métodos instrumentales.
Estos métodos tienen ciertas desventajas:
1.) Requieren ser manejados por técnicos expertos.
2.) Es necesario una calibración previa del equipo. Esta calibración previa
se hace a base de métodos químicos, por lo cual la exactitud del
método instrumental depende de la exactitud del método químico
empleado.
3.) Esta calibración suele ser cara.
Existe una gran cantidad de técnicas instrumentales. Estas pueden
clasificarse en:
 Espectroscópicas
 Electroquímicas
 Cromatográficas
 Acopladas o conjuntadas
 Diversas
2. DEFINICIÓN
Los métodos espectroscópicos son un amplio grupo de métodos analíticos
que se basan en las interacciones de la radiación electromagnética con la
materia.
La radiación electromagnética es un tipo de energía que toma varias
formas, de las cuales las más fácilmente reconocibles son la luz y el calor
radiante. Sus manifestaciones más difícilmente reconocibles incluyen los rayos
gamma y los rayos X, así como la radiación ultravioleta, de microondas y de
radiofrecuencia.
Actualmente el uso de métodos espectroscópicos está generalizado,
debido a su rapidez, a la gran gama de instrumentación disponible y sus
grandes posibilidades de automatización. En muchos casos es posible la
resolución de un problema analítico sin necesidad de recurrir a métodos de otro
tipo.
3. PROPIEDADES DE LA RADIACIÓN ELECTROMAGNÉTICA
Muchas de las propiedades de la radiación electromagnética se explican
adecuadamente con un modelo clásico de onda sinusoidal, que utiliza
parámetros como longitud de onda, la frecuencia, la velocidad y la amplitud. A
diferencia de otros fenómenos ondulatorios, como el sonido, la radiación
electromagnética, no necesita un medio de apoyo para transmitirse y, por tanto,
se propaga fácilmente a través del vacío.
Figura. Representación de la radiación electromagnética como una onda sinusoidal
Para caracterizar una onda pueden usarse los siguientes parámetros
ondulatorios:
Longitud de onda, λ : es la distancia entre máximos o mínimos sucesivos.
Se expresa en cualquier unidad de longitud, siendo las más frecuentes el
metro, centímetro, angstrom, nanometro y micrometro.
1 angstrom (A) = 10-10
metros
1 nanometro (nm) = 10-9
metros
1 micrometro (mm) = 10-6
metros
Frecuencia,  : es el número de ciclos por unidad de tiempo; por ejemplo,
veces que pasa por un determinado punto en 1 segundo. La unidad de
frecuencia es el segundo recíproco, s-1
o hertz (Hz).
La relación entre los parámetros mencionados es:
c
 = ------

siendo c la velocidad de propagación, que en el vacío es de 2,9979 x 1010
cm/s.
El modelo ondulatorio falla al intentar explicar fenómenos asociados con la
absorción o la emisión de energía radiante. Para comprender estos procesos,
hay que acudir a un modelo corpuscular en el que la radiación
electromagnética se contempla como flujo de partículas energéticas
denominados fotones, en los que la energía de un fotón es proporcional a la
frecuencia de la radiación. Este doble punto de vista de la radiación como
partícula y como onda no es mutuamente excluyente, sino complementario. De
hecho, la dualidad onda-corpúsculo se aplica al comportamiento de haces de
electrones, protones y otras partículas elementales, y se racionaliza
completamente por medio de la mecánica ondulatoria.
La energía del fotón es proporcional a la frecuencia de la radiación
(relación de Einstein-Planck):
hc
E = h = ---- = hc

donde h la constante de Planck (6,63 x 10-34
J . s).
La relación anterior indica que la energía de un fotón de radiación
monocromática ideal (una sola frecuencia) depende únicamente de su longitud
de onda o de su frecuencia, de forma que un haz de radiación puede ser más o
menos intenso en función de la cantidad de fotones por unidad de área, pero la
energía del fotón es siempre la misma para una determinada frecuencia.
En la siguiente figura se muestran las regiones más importantes del es-
pectro electromagnético. Es necesario tener en cuenta que las zonas de
separación entre regiones no están establecidas de modo rígido, y al pasar de
una región a otra no existen discontinuidades en las propiedades de la
radiación.
Figura. Espectro electromagnético
4. CLASIFICACIÓN DE LOS MÉTODOS ÓPTICOS
Los métodos ópticos se dividen en:
1.) Métodos ópticos espectroscópicos: son aquellos en los que existe
intercambio de energía entre la radiación electromagnética y la materia.
Estos son debidos a transiciones entre distintos niveles energéticos.
Son los métodos más utilizados.
2.) Métodos ópticos no espectroscópicos: se basan en una interacción
entre radiación electromagnética y la materia que produce como
resultado un cambio en la dirección o en las propiedades físicas de la
radiación electromagnética. En estos métodos los mecanismos de
interacción son la reflexión, refracción, difracción, dispersión,
interferencias, polarización o la dispersión refractiva.
Espectroscópicos
Nivel molecular: UV-Visible, IR, microondas
Absorción
Nivel atómico: absorción atómica, rayos X
Nivel molecular: fluorimetría, fosforimetría, quimioluminiscencia
Emisión
Nivel atómico: Emisión atómica, ICP, fluorescencia de rayos X
No espectroscópicos
Dispersión: turbidimetría, nefelometría
Refracción: refractometría, interferometría
Difracción: rayos X
Rotación óptica: polarimetría
Los métodos de absorción han sido, hasta el momento, los de uso más
generalizado. Se basan en la absorción selectiva de radiación por la misma
especie a determinar o por un producto de transformación de dicha especie. En
los métodos de absorción molecular las transiciones se producen entre niveles
electrónicos, vibracionales y rotacionales, por absorción de radiación
ultravioleta, visible, infrarroja y de microondas.
El espectro en las regiones visible y ultravioleta está constituido por
bandas representativas de un gran número de transiciones. Como, con la
instrumentación ordinaria, la resolución de las diferentes bandas no puede
tener lugar las aplicaciones cualitativas de estas técnicas son bastante
limitadas. Sin embargo, la sensibilidad es relativamente alta, característica
adecuada para aplicaciones cuantitativas.
La absorción de energía correspondiente al infrarrojo produce cambios en
la energía de vibración y rotación de los enlaces en las moléculas. Como los
distintos grupos funcionales están constituidos por configuraciones atómicas
definidas, la absorción de los diferentes grupos tiene lugar a longitudes de onda
características. De aquí, la valiosa información cualitativa y estructural que se
obtiene con este tipo de espectros. El talón de Aquiles de esta técnica es su
aspecto cuantitativo, pues la sensibilidad es relativamente pequeña, salvo para
ciertos grupos químicos, tales como hidróxido e isocianato que presentan
fuertes absorciones.
Uno de los progresos más notables que ha experimentado la espec-
trofotometría infrarroja en época reciente ha sido el empleo del sistema de
transformadas de Fourier, modalidad con la que se mejoran características en
cuanto a rapidez, precisión y posibilidad de automatización.
La absorción de radiación a nivel atómico origina transiciones entre niveles
externos o entre niveles internos de los átomos, según que la radiación
absorbida sea ultravioleta-visible y de rayos X respectivamente.
La mayor utilidad de la espectroscopia de absorción de rayos X se
presenta en el estudio de espesores de materiales, pues en el terreno
puramente analítico las aplicaciones son escasas, debido fundamentalmente a
su baja sensibilidad.
El fundamento físico-químico de la espectrofotometría de absorción
atómica reside en el hecho de que cuando una radiación de una determinada
longitud de onda se pone en contacto con átomos en fase de vapor, éstos
absorben radiaciones energéticas correspondientes a sus líneas de resonancia,
pasando a estados excitados en cantidad proporcional a su concentración. La
atomización se produce con frecuencia en una llama o con métodos
electrotérmicos y la radiación incidente se origina en las llamadas lámparas de
cátodo hueco, que están construidas utilizando el mismo elemento a
determinar.
La técnica se caracteriza por su sencillez, rapidez y selectividad. Por otra
parte, el instrumental necesario suele ser bastante asequible desde el punto de
vista económico y la cantidad de muestra necesaria para una determinación es
muy pequeña.
Los métodos de emisión son menos utilizados que los de absorción y en
el esquema anterior se indican algunos. En ellos se utiliza la radiación
electromagnética emitida por la materia, independientemente de las causas
que originan dicha emisión.
Se produce luminiscencia cuando una especie molecular, que ha ad-
quirido un estado electrónico y vibracional excitado mediante una radiación
externa (fotoluminiscencia) o como consecuencia de una reacción química
(quimioluminiscencia), pierde el exceso de energía vibracional mediante
colisiones y a continuación vuelve al estado fundamental, emitiendo radiación
ultravioleta o visible. La característica más importante de estas técnicas desde
el punto de vista analítico es su gran sensibilidad.
La fotoluminiscencia puede dividirse en dos tipos, fluorimetría y
fosforimetría. De todas las técnicas luminiscentes, la más importante, sin duda,
es la fluorimetría, modernamente se ha desarrollado una modalidad muy
prometedora como fluorimetría de láser (con la que es posible el análisis de
compuestos fluorescentes a niveles de partes por trillón). En cuanto a la
fosforimetría, puede indicarse que en los últimos tiempos se ha apreciado un
notable incremento en su utilización, debido a mejoras que permiten trabajar a
temperatura ambiente.
La quimioluminiscencia no es una técnica de empleo masivo, si bien se
ofrecen cada vez mejores posibilidades en el análisis de trazas y en
inmunoensayos.
En la espectrometría de emisión, la excitación de la muestra se lleva a
cabo mediante un arco o una chíspa eléctrica. Generalmente la energía
necesaria para la excitación es tan alta que las especies moleculares se
disocian, con lo cual se emiten espectros atómicos o iónicos característicos.
Obviamente, estas técnicas no serán de utilidad para la determinación del
estado de combinación química de los elementos.
La excitación por arco o chispa presenta ventajas e inconvenientes, lo cual
delimita sus campos de aplicación. Así, el arco proporciona una energía mayor
lo que hace que sea más sensible, aunque su reproducibilidad es peor que la
de la chispa, de donde se infiere que en análisis cualitativo se prefiera el arco y
en análisis cuantitativo la chispa.
Cuando se utiliza una llama como fuente de excitación, la técnica se
denomina fotometría de llama. Debido a que la llama es menos energética
que el arco o la chispa, la fotometría de llama limita su campo de aplicación a
unos pocos elementos; los más fácilmente excitables, como alcalinos y
alcalinotérreos.
La utilización de un plasma como fuente de excitación, ICP, presenta
indudables ventajas relacionadas con su alta sensibilidad, gran intervalo de
linealidad y buena selectividad.
La fluorescencia atómica es una técnica relativamente reciente y se
puede considerar relacionada con la espectrofotometría de absorción atómica,
pues en lugar de medir la absorción por átomos formados en la llama, se mide
la emisión de resonancia o fluorescencia de resonancia que tiene lugar en
todas direcciones después de la absorción. Su principal ventaja frente a la
absorción atómica radica en que la sensibilidad es directamente proporcional a
la intensidad de la fuente luminosa fenómeno que no ocurre en absorción
atómica.
La fluorescencia de rayos X consiste en generar rayos X en una muestra
usando otros rayos X (primarios, más energéticos) para su excitación. Los
rayos X emitidos (secundarios) son característicos de la muestra excitada. El
método es, para el análisis cualitativo y cuantitativo más importante que todos
los demás métodos de rayos X. El análisis cualitativo se basa en la
identificación de las radiaciones fluorescentes producidas y el cuantitativo en la
medida de su intensidad, con ayuda de la correspondiente curva de calibrado.
El método es rápido, de buena sensibilidad y bastante exactitud, si bien, las
mayores ventajas son su especificidad y simplicidad.
La turbidimetría y la nefelometría son técnicas analíticas basadas en la
dispersión de la luz por partículas en suspensión en el seno de una disolución.
Como consecuencia de la interacción entre la radiación y las partículas, el
sistema no se eleva a un nivel energéticamente excitado, sino que la radiación
incidente induce un dipolo eléctrico oscilante, que actúa como una nueva
fuente emisora de radiación.
Pueden realizarse dos tipos de medidas. Si la dispersión es lo sufi-
cientemente grande como para originar una disminución apreciable en la
intensidad de la radiación incidente, puede observarse el rayo transmitido en el
mismo sentido que el incidente, denominándose turbidimetría a la
correspondiente técnica analítica. Si se trabaja con una suspensión que, o es
muy diluida, o está constituida por partículas relativamente pequeñas, la
relación entre la intensidad de radiación transmitida e incidente será
prácticamente la unidad, por lo que no podrá realizarse la medición como en el
caso anterior. Deberá medirse la intensidad de radiación en un cierto ángulo
con respeto al haz incidente, operando normalmente con un ángulo de 90o
.
Esta técnica analítica recibe el nombre de nefelometría, y se caracteriza por su
mayor sensibilidad respecto a la turbidimetría.
La técnica basada en la determinación del índice de refracción es la
refractometría. Entre las ventajas que presenta esta técnica cabe citar su
carácter no destructivo, empleo de pequeñas cantidades de muestra y
mediciones rápidas y sencillas.
Cuando se miden diferencias entre el índice de refracción de la muestra y
el de una sustancia patrón se tiene la interferometría, un poco más compleja
que la refractometría, pero con la ventaja de proporcionar mayor precisión.
La difracción de rayos X es el método de más utilidad para estudiar
estructuras cristalinas de sólidos. Cuando se hace incidir un haz mono-
cromático de rayos X sobre una muestra cristalina se obtiene un espectro de
rayos X difractados característicos y la disposición de sus líneas o círculos
puede usarse con fines analíticos.
Como se mencionó al comienzo de este capítulo, la radiación elec-
tromagnética puede resolverse en dos componentes que están polarizados en
planos perpendiculares entre si. Por otra parte, un cierto número de sustancias
giran el plano de vibración de una radiación polarizada, y la magnitud de la
rotación debida a una sustancia determinada depende de su concentración.
Estas sustancias se caracterizan por su asimetría molecular o cristalina, y se
dice que son ópticamente activas. La medida de la actividad óptica de una
sustancia constituye la base de la polarimetría. Esta técnica proporciona un
método de análisis no destructivo, si bien está reservada exclusivamente a
compuestos orgánicos y organometálicos ópticamente activos.
5. ESPECTROS DE ABSORCIÓN Y EMISIÓN
Los procesos de absorción y emisión puede representarse de modo
sencillo:
x + h   x*
x*
 x + Q (calor)
La primera reacción engloba todos los procesos de absorción de
importancia. La segunda representa la emisión posterior de la energía
absorbida, generalmente debida a la colisión con otros átomos o moléculas. En
general esta disipación no se considera cuando se estudian procesos de
absorción debido a que la cantidad de calor liberado es generalmente
despreciable. Sin embargo su consideración es importante para comprender su
espectro de absorción y para distinguirlo del de fluorescencia y el de otros
espectros.
Para que una radiación electromagnética sea absorbida por la materia
deben cumplirse:
 Debe haber una interacción entre el campo eléctrico de la
radiación electromagnética y alguna carga eléctrica de la
sustancia.
 La energía de la radiación incidente a de ser exactamente
igual a la diferencia de energías entre el estado
fundamental y uno de los estados excitados de la especie
absorbente.
Figura. Diagrama de los niveles de energía de una molécula
Los espectros de emisión se deben a un proceso que es exactamente el
inverso a la absorción:
x*
 x + h
de manera que la sustancia pasa de un estado exaltado de elevada energía a
uno de baja energía produciendo una emisión que puede ser:
Resonancia: fenómeno poco frecuente que tiene lugar
cuando un átomo o molécula que ha absorbido una determinada radiación
vuelve al estado fundamental emitiendo radiación de la misma frecuencia que
la absorbida. Este tipo de emisión se da casi exclusivamente en sistemas con
átomos aislados en los cuales no existe posibilidad de choques con otra
sustancia antes de la emisión.
Fluorescencia y Fosforescencia: son reemisiones de radiación de
longitudes de onda superior, es decir, de menor energía que la radiación
absorbida. Esto es debido a que parte de la radiación absorbida se pierde
generalmente por desactivación vibracional antes de la emisión.
En la fluorescencia el tiempo transcurrido entre la absorción y emisión de
radiación oscila entre 10-4
y 10-8
segundos, de modo que la reemisión parece
instantánea y cesa cuando se elimina la fuente de radiación.
En la fosforescencia el tiempo transcurrido entre la absorción y la
emisión es mucho mayor, variando entre 10-4
y 10 segundos o más.
6. LEY DE ABSORCIÓN DE LA RADIACIÓN
Al interaccionar la radiación electromagnética con la materia se produce
absorción si la frecuencia de la radiación es tal que su energía coincide con la
necesaria para que el sistema pase al nivel de mayor energía y permitido.
La ley fundamental que rigen el comportamiento de la radiación incidente
absorbida al pasar a través de una muestra dada se denomina LEY DE BEER,
donde se establece la relación entre la interacción de la radiación con la
concentración de la muestra.
Beer encontró que un aumento de la concentración del soluto
absorbente produce el mismo efecto que un aumento proporcional en la
distancia que recorre el haz a través de la muestra.
A = a b c
donde A es la absorbancia, a una constante, b es el espesor de la cubeta y c la
concentración.
La Ley de Beer es fundamental en los métodos ópticos de análisis, ya
que nos permite calcular la concentración de una sustancia a partir de la
medida de la radiación absorbida por una disolución de la misma.
La Ley de Beer es la base de análisis cuantitativo, ya que pone de
manifiesto que la absorbancia es directamente proporcional a la concentración
de un soluto. Para aplicar la Ley de Beer es necesario seleccionar la longitud
de onda óptima.
Limitaciones de la Ley de Beer
Esta Ley se cumple con soluciones diluidas (< 0.01 M), ya que en
soluciones de mayor concentración, cada molécula afecta a la distribución de
carga de la molécula vecina; interacción que altera la capacidad de absorción
de las especies.
Desviaciones de la Ley de Beer
Vamos a considerar tres tipos de errores:
 Errores químicos
 Errores instrumentales
 Errores personales
Errores Químicos
Efecto del disolvente:
El efecto que produce el cambio de disolución en un soluto no puede
predecirse de manera general aunque a menudo origina corrimientos
espectrales, ensanchamientos de bandas y desviaciones de la Ley de Beer.
Efectos debidos a sistemas en equilibrio:
Se producen desviaciones de la Ley de Beer cuando un analito se disocia,
asocia o reacciona con le disolvente para originar un producto con un espectro
de absorción diferente.
Efectos debidos a impurezas en el agua destilada o de los reactivos así
como sustancias interferentes en la muestra.
Errores Instrumentales
Desviaciones debidas al uso de radiación no monocromática.
El cumplimiento estricto de la ley de Beer solo tiene lugar cuando se
utiliza una radiación monocromática (radiación de una sola longitud de onda).
Sin embargo, en la práctica no es posible utilizar radiación monocromática, ya
que los dispositivos instrumentales aíslan una banda más o menos simétrica de
longitudes de onda en torno al valor deseado.
Desviaciones debidas a la presencia de radiación parásita.
Se conoce como radiación parásita a toda radiación extraña que llega
al detector, pero que no proviene de la muestra. Puede producirse por la
presencia de polvo, defectos en el sistema óptico (ralladuras, etc.). Aunque
esta radiación parásita existe siempre sus efectos son más importantes a
valores elevados de absorbancia tal como se puede demostrar en la ecuación:
De esta forma, los errores instrumentales llevan siempre a desviaciones
negativas de la Ley de Beer.
Errores Personales
Se pueden producir un gran número de estos errores destacando:
 Cuidado de las cubetas de absorción: deben de estar limpias y sin
huellas. Si trabajamos en el ultravioleta, hay que limpiarlas con ácido
nítrico concentrado, o bien con agua regia. No se limpiara con ácido
sulfúrico concentrado o caliente, porque podría atacar a la cubeta.
 Control de Temperatura: en la mayor parte de las medidas cuantitativas
de absorción se realizan a temperatura ambiente. Pero si el soluto
absorbente interviene en una reacción de equilibrio, el control de la
temperatura puede ser crítico y por ello en algunos casos debe de
controlarse. En general, un aumento de la temperatura, lleva consigo un
desplazamiento de los máximos de absorción (o de las bandas de
absorción) a longitudes de onda mayores en regiones del Ultra Violeta y
del visible, ocurriendo lo contrario en el infrarrojo.
7. INSTRUMENTACIÓN EN LA ESPECTROSCOPÍA ÓPTICA
Existen dos tipos de instrumentación para medidas de absorción UV:
Los fotómetros, son instrumentos sencillos que permiten medir la
intensidad de radiación, ya que van provistos de filtros para seleccionar un
rango estrecho de longitudes de onda, y como detectores, usan fototubos.
Los espectrofotómetros, son instrumentos más o menos sofisticados
que usan monocromadores para seleccionar estas bandas estrechas de
longitud de onda. El monocromador permite una variación continua al
seleccionar las longitudes de onda, y también permite realizar un barrido en
una zona amplia de longitud de onda. Como detectores usan fototubos o tubos
multiplicadores.
Filtros
- Fotómetros
Fototubos
Monocromadores
- Espectrofotómetros
Fototubos o tubos multiplicadores
Componentes básicos de los fotómetros y espectrofotómetros
 Fuentes de energía (lámpara)
 Selectores de longitud de onda (filtros, monocromadores)
 Cubetas
 Detector
 Procesador de señales
Figura. Esquema de los componentes de un espectrofotómetro
La muestra la colocamos entre el seleccionador de longitud de onda y el
detector.
Fuente de energía
Una fuente de radiación debe generar un haz de radiación con potencia
suficiente para que se detecte y se mida con facilidad; y debe ser estable a lo
largo del tiempo.
Pueden ser:
1. Continuas: emiten radiación cuya intensidad varía sólo en función de la
longitud de onda. La lámpara más usada es la de filamento de
Wolframio, que es una fuente térmica que emite en el visible. Otras son
las lámparas de argón y de deuterio, que se usan en el ultravioleta. En
todos los casos, se hace pasar una corriente de electrones a través de
un gas y las colisiones entre ellos provocan la excitación electrónica,
vibracional y rotacional.
2. De Líneas: emiten un número limitado de bandas de radiación, cada una
de las cuales abarca un intervalo muy reducido de longitudes de onda.
Usadas en absorción y fluorescencia atómica. La más usada es la
lámpara de cátodo hueco
3. Láseres: producen radiación de alta intensidad y estrechas anchuras de
banda para cualquier longitud de onda seleccionada. Funciona como un
oscilador; es decir, la radiación producida por el láser se le hace pasar
muchas veces por un medio activo gracias a la acción de un par de
espejos. Esto provoca que la señal emitida esté muy amplificada.
Pueden ser: sólidos (rubí con cromo, neodimio con aluminio e itrio),
gases (helio, neón, argón, criptón, xenón) o de colorantes orgánicos.
Selectores de longitud de onda
Para conseguir medidas de absorbancia exactas, selectivas y sensibles,
es importante poder seleccionar una banda estrecha de  del amplio espectro
que proporciona la fuente de radiación. El ancho de banda es una medida
inversamente proporcional a la calidad del dispositivo, siendo la resolución
mejor cuanto más estrecho es el ancho de banda.
Tipos:
1. Filtros: se fabrican para una sólo longitud de onda. Básicamente,
se utilizan dos clases de filtros:
 Filtros de absorción
 Filtros de interferencia
Los filtros de absorción, se basan en la absorción selectiva de  que no
interesan y generalmente, son de vidrio, en el cual se ha dispersado o disuelto
un pigmento adecuado que permite esta absorción selectiva. Estos filtros sólo
operan en el V.
Los filtros de interferencia, se basan en el fenómeno de interferencia
óptica, es decir, una parte de la radiación que llega es absorbida y otra, se
refleja. Proporciona anchuras de banda más estrechas que los de absorción y
transmitancias de tipo mayores. Estos filtros operan en el UV, Visible e IR.
2. Un Monocromador es un dispositivo que genera un haz de
radiación de gran pureza espectral (anchura de banda estrecha.
Trabajan de forma continua y en un amplio intervalo de longitud
de ondas; es decir, realizan barridos espectrales.
Hay dos tipos de monocromador:
 Monocromador tipo prisma.
 Monocromador tipo red.
Los elementos esenciales de un monocromador, son una rendija de
entrada (determinando el haz de radiación policromática entrante), un elemento
dispersante (que puede ser un prisma o una red de difracción) y una rendija de
salida.
Figura. Tipos de monocromadores
El prisma o red, dispersa la radiación policromática en las  que la
componen, y la rendija de salida transmite la  correspondiente al máximo de
intensidad junto a una banda de  a ambos lados. Las de redes son más
baratas y separan mejor la longitud de onda que las de prisma.
Las características de un monocromador son:
1. Pureza espectral: el haz de salida puede estar contaminado por
radiaciones parásitas. Para minimizar esto se recubre
internamente con pintura negra mate y se sella para que no entre
el polvo.
2. Poseer una buena dispersión.
3. Alto poder de resolución, es decir, que sea capaz de separar
longitudes de ondas adyacentes
4. Alta potencia de salida para que llegue al detector la mayor
energía radiante
5. Cuanto más estrecha sea la apertura de la rendija, mayor
resolución pero menos potencia de salida. La situación de
compromiso se denomina Anchura de banda efectiva.
Cubetas
Son recipiente porta muestras que tienen paredes paralelas y
rectangulares, y se fabrican en diversos materiales, de manera que, permitan el
paso de luz pero no absorban radiación. Por ello, en el UV utilizamos cubetas
de cuarzo y en el Visible usamos las de plástico o vidrios de silicato. Las hay de
diferente recorrido óptico, pero lo normal es de 1 cm de paso de luz.
Detectores
Son elementos que convierten la radiación en un flujo de electrones y
posteriormente, en una corriente o voltaje en el circuito de lectura. El detector
ideal debería tener un amplio intervalo de  con una elevada sensibilidad, una
relación señal – ruido grande, un tiempo de respuesta rápido, mínima señal de
salida en ausencia de iluminación, así como tener una respuesta constante.
Los tres tipos de detectores usados en el UV / V son:
 Células fotovoltaicas
 Fototubos (Tubos fotoemisores)
 Tubos fotomultiplicadores
La característica común a todos estos detectores es que tienen una
superficie activa capaz de absorber radiación, de manera que, la energía
absorbida causa la emisión de electrones y el desarrollo de una fotocorriente.
Células fotovoltaicas, en ellas, la energía radiante genera una corriente en la
interfase entre una capa semiconductora y un metal, y se usan fundamentalmente
en el Visible. Consisten en un electrodo plano (ánodo) de un metal (Cu, Fe o Al) en
el que se deposita un material semiconductor como es el Selenio, y después se
recubre por una fina película de Ag o Au. Esto sirve como electrodo colector.
Cuando al Se llega una corriente o una radiación, se produce la excitación de
electrodos de la interfase Se –Ag (o Se – Au), los cuales pasan al electrodo
colector (Ag). Los electrodos liberados migran a través del circuito hacia el metal,
resultando una corriente de electrodos proporcional al número de fotones que
inciden sobre el semiconductor.
Entre las desventajas están:
 Es difícil amplificar la señal de salida, debido a la pequeña resistencia
interna de la célula; por esto se usan en fotómetros de filtro.
 Manifiestan fatiga (sobre una radiación continuada, la respuesta no siempre
es constante)
Figura. Esquema de una célula fotovoltaica
Fototubos o tubos fotoemisores, consisten en un cátodo semicilíndrico (capa de
metal recubierta de otra capa de óxido alcalino) que es sensible a la luz, y un
ánodo que es un alumbre metálico. Ambos están encerrados herméticamente en
un recipiente cilíndrico con vacío. Cuando la radiación llega al cátodo, éste emite
electrones que son atraídos hacia el ánodo, el cual a través del circuito los
devuelve al cátodo. Esta corriente fotovoltaica producida, causa una caída de
potencial a lo largo de la resistencia que es proporcional a la intensidad de
corriente.
Figura. Esquema de un fototubo
La señal del fototubo es aproximadamente unas diez veces menor a la de las
células fotovoltaicas, pero debido a la posibilidad de amplificar la señal de estos,
éstos resultan más sensibles que las primeras. La sensibilidad del fototubo
depende de la naturaleza de la sustancia que recubre el cátodo y puede variarse
utilizando diferentes metales alcalinos o variando el método de recubrimiento.
Tubos fotomultiplicadores, son una combinación de un cátodo fotoemisivo y una
cadena interna de dínodos fotomultiplicadores de electrones. Cuando la radiación
llega al cátodo de composición similar a la de los fototubos, provoca la emisión de
electrones (electrones primarios), de manera análoga a la de un fototubo, pero en
este caso, los electrones son acelerados, por la aplicación de un potencial positivo
hacia una segunda superficie sensible, de forma que al incidir cada electrón
primario es capaz de producir la emisión de 4 ó 5 electrones secundarios. Estos
electrones son acelerados de nuevo hacia otra superficie sensible que se
encuentra a un potencial posiblemente superior, de forma que el número de
electrones emitidos vuelve a multiplicarse por 4 ó 5. Este proceso se puede repetir
tantas veces como queramos, pero en general los aparatos no llevan más de 10 ó
12 dínodos. La señal de salida puede a su vez amplificarse. Por tanto, es el
detector más sensible en el UV – V.
Figura. Esquema de un tubo fotomultiplicador
Procesador de señales
En general, es un dispositivo electrónico que amplifica la señal eléctrica
del detector; así mismo, permite eliminar componentes indeseados. Puede
también alterar la señal de la corriente, cambiarla de fase, filtrarla. También
puede realizar operaciones matemáticas con la señal como diferenciales,
derivadas, integral...
8. Control de Espectrofotómetros: calibración y verificación
En el caso de la espectrofotometría se pueden realizar dos tipos de
mediciones dependiendo del análisis solicitado:
 Medida directa de absorbancia: en este caso el equipo se puede
considerar que trabaja como cualquiera que mide una magnitud física.
Un ejemplo es la medición del poder colorante del azafrán.
 Medida de concentraciones: en este caso lo que medimos es una
magnitud física (respuesta-absorbancia) con respecto a las entradas de
concentraciones químicas que hacemos en el equipo (calibración
instrumental).
Esta técnica es una de las más utilizadas para el análisis cuantitativo.
Las características más importantes de estos métodos espectrofotométricos
son:
- Tienen una amplia aplicabilidad tanto a sistemas orgánicos como
inorgánicos.
- Sensibilidades en torno a 10-4
 10-5
M, pudiendo en algunos casos
llegar a 10-7
M.
- Tienen de moderada a alta selectividad.
- Tienen una buena precisión.
- Tienen una fácil y adecuada adquisición de datos.
- Son métodos relativamente baratos.
Las aplicaciones de las medidas de absorción al análisis cuantitativo,
son muy numerosas.
 Análisis de especies absorbentes: los componentes que contienen
grupos cromóforos, son susceptibles de esta determinación (alquenos,
alquilos, cetonas). Así mismo, se pueden determinar también
componentes inorgánicos como nitratos, nitrito, ozono, iones de los
metales de transición, yodo, etc.
 Análisis de especies no absorbentes: numerosos reactivos
reaccionan selectivamente con especies no absorbentes originando
productos fuertemente absorbentes en esta región. El uso de tales
reactivos exige que la reacción de formación de los compuestos sea
completa.
Ejemplo de agentes complejantes para la determinación de especies
inorgánicas:
SCN
 Fe3+
, Mo6+
H2O2  Ti4+
, V5+
, Cr3+
Ejemplo de agentes formadores de complejos:
0 – fenantrolina Fe3+
Dimetilglioxima  Ni2+
Dimetilditiocarbonato  Cu2+
Para la determinación de estas especies en análisis cuantitativo, el
procedimiento operatorio que llevamos a cabo es:
- Selección de la longitud de onda donde vamos a realizar medidas de
absorbancia. Las longitudes de onda serán las correspondientes a máximos de
absorción del compuesto, ya que aquí se alcanza una mayor sensibilidad:

En estas zonas de los máximos tenemos un intervalo de  donde la
absorbancia no se modifica demasiado, por lo que las fluctuaciones a la hora
de la medida no crean muchos errores.
- Conocer las variables que afectan a la absorbancia natural del
disolvente, pH de la disolución, temperatura, [electrolitos] y la
presencia de sustancias interferentes.
Los efectos de todas estas variables se deben de conocer, y las
condiciones para el análisis se eligen de manera que la absorbancia no este
afectada por variaciones incontroladas de estos parámetros.
- Medida de la muestra: hay que tener en cuenta la limpieza y
manipulación de las cubetas.
- Determina la relación entre absorbancia y concentración. Una vez
seleccionadas las condiciones realizamos la Calibración usando patrones de
concentraciones conocidas, y que abarquen el intervalo de concentraciones
esperado en las muestras problema:
Y (A)
Y = mx + b
m
b
X (c)
Cuando hay interferencias en la matriz de la muestra es necesario
aplicar el método de adición de patrón (ó adición estándar) lo cual por
extrapolación:
A
*
C
También hemos de considerar que, como cualquier equipo instrumental,
los espectrofotómetros sufren desgastes con el tiempo, lo que viene a llamarse
deriva. Por ello, debemos realizar la Verificación del equipo para comprobar
que el espectrofotómetro se encuentra dentro de las especificaciones y es útil
para obtener los resultados buscados.
En este caso, podemos definir las siguientes operaciones a efectuar:
1. Longitud de onda: se verifica al menos cinco veces los máximos de
absorbancia obtenidos, para una disolución o filtro de holmio. Se usa el
holmio ya que proporciona picos estrechos a 254, 287, 361 y 563 nm.
Se deben establecer criterios de exactitud (λobtenida-λreferencia) y precisión
(repetitividad) a partir de las especificaciones del equipo o de otras
documentaciones existentes (revistas científicas, plan nacional de
calidad,…). Un ejemplo de criterio sería: exactitud menor a ± 1 nm y
precisión menor a ± 1 nm.
2. Absorbancias: para ello se pueden realizar 3 medidas obteniendo las
medias y desviaciones estándar al usar filtros calibrados NBS.
También se puede usar para verificar las absorbancias una disolución
de 50 mg/l de dicromato potásico disuelto en 0.01 N de ácido sulfúrico.
Longitud de onda Absorbancia
235 nm 0.626
257 nm 0.727
313 nm 0.244
350 nm 0.536
En ambos casos se puede usar como criterio de exactitud ≤ 0.005 A y de
precisión ≤ 0.002 A, en la diferencia de absorbancia obtenida y la de referencia.
3. Cubetas: constituyen un elemento fundamental, ya que sus variaciones
en construcción, limpieza y posicionamiento son fuente fundamental de
las desviaciones. Para ello, separamos dos cubetas de referencia que
serán consideradas como nuestros patrones, y realizamos una
verificación consistente en:
- Introducir agua destilada en cubeta patrón y en cubeta a
verificar. Medir dos veces la absorbancia.
- Intercambiar las cubetas y medir la absorbancia dos veces en
aquellos equipos de doble haz.
- Obtener diferencias entre las absorbancias.
- Comprobar frente a criterio: las diferencias no pueden ser
superiores al 1.5% o a 0.006 unidades de absorbancia.

Weitere ähnliche Inhalte

Was ist angesagt?

Analisis instrumental unidad n°2 3
Analisis instrumental unidad n°2 3Analisis instrumental unidad n°2 3
Analisis instrumental unidad n°2 3
sulikaeuge
 
Espectrofotometría ultravioleta visible
Espectrofotometría ultravioleta visibleEspectrofotometría ultravioleta visible
Espectrofotometría ultravioleta visible
akkg
 
Espectroscopia de emisión(2)
Espectroscopia de emisión(2)Espectroscopia de emisión(2)
Espectroscopia de emisión(2)
cathycruzvazquez
 
Determinacic3b3n de-protec3adnas
Determinacic3b3n de-protec3adnasDeterminacic3b3n de-protec3adnas
Determinacic3b3n de-protec3adnas
Omar Reyes Rojas
 

Was ist angesagt? (20)

Espectroscopia infrarroja
Espectroscopia infrarrojaEspectroscopia infrarroja
Espectroscopia infrarroja
 
Analisis instrumental unidad n°2 3
Analisis instrumental unidad n°2 3Analisis instrumental unidad n°2 3
Analisis instrumental unidad n°2 3
 
Fluorescencia
FluorescenciaFluorescencia
Fluorescencia
 
Espectroscopia infrarroja
Espectroscopia infrarrojaEspectroscopia infrarroja
Espectroscopia infrarroja
 
Espectroscopia uv visible, validacion
Espectroscopia uv visible, validacionEspectroscopia uv visible, validacion
Espectroscopia uv visible, validacion
 
Turbidimetria ambiental
Turbidimetria  ambientalTurbidimetria  ambiental
Turbidimetria ambiental
 
La fluorescencia diego
La fluorescencia diegoLa fluorescencia diego
La fluorescencia diego
 
Absorcion atomica
Absorcion atomicaAbsorcion atomica
Absorcion atomica
 
Tecnicas instrumentales ejercicios numericos - 3.1 - determinacion de sulfa...
Tecnicas instrumentales   ejercicios numericos - 3.1 - determinacion de sulfa...Tecnicas instrumentales   ejercicios numericos - 3.1 - determinacion de sulfa...
Tecnicas instrumentales ejercicios numericos - 3.1 - determinacion de sulfa...
 
FTIR Politécnica Charla de Espectroscopia Infrarroja por transformadas de fou...
FTIR Politécnica Charla de Espectroscopia Infrarroja por transformadas de fou...FTIR Politécnica Charla de Espectroscopia Infrarroja por transformadas de fou...
FTIR Politécnica Charla de Espectroscopia Infrarroja por transformadas de fou...
 
Espectroscopía IR
Espectroscopía IREspectroscopía IR
Espectroscopía IR
 
FOTOCOLORIMETRIA
FOTOCOLORIMETRIAFOTOCOLORIMETRIA
FOTOCOLORIMETRIA
 
Quimioluminiscencia, Fluorescencia y fosforescencia
Quimioluminiscencia, Fluorescencia y fosforescenciaQuimioluminiscencia, Fluorescencia y fosforescencia
Quimioluminiscencia, Fluorescencia y fosforescencia
 
Instrumentos de infrarrojo
Instrumentos de infrarrojoInstrumentos de infrarrojo
Instrumentos de infrarrojo
 
Espectrofotometría ultravioleta visible
Espectrofotometría ultravioleta visibleEspectrofotometría ultravioleta visible
Espectrofotometría ultravioleta visible
 
Difracción de rayos x
Difracción de rayos xDifracción de rayos x
Difracción de rayos x
 
Espectroscopia de emisión(2)
Espectroscopia de emisión(2)Espectroscopia de emisión(2)
Espectroscopia de emisión(2)
 
Determinacic3b3n de-protec3adnas
Determinacic3b3n de-protec3adnasDeterminacic3b3n de-protec3adnas
Determinacic3b3n de-protec3adnas
 
Resonancia magnética nuclear
Resonancia magnética nuclearResonancia magnética nuclear
Resonancia magnética nuclear
 
Difractometria de Rayos X
Difractometria de Rayos XDifractometria de Rayos X
Difractometria de Rayos X
 

Andere mochten auch (7)

La luz y las ondas electromagnéticas
La luz y las ondas electromagnéticasLa luz y las ondas electromagnéticas
La luz y las ondas electromagnéticas
 
Energía radiante
Energía radianteEnergía radiante
Energía radiante
 
Tipos de energía
Tipos de energíaTipos de energía
Tipos de energía
 
Capitulo 1 coeficiente de absorción dispersión y extinción
Capitulo 1 coeficiente de absorción dispersión y extinciónCapitulo 1 coeficiente de absorción dispersión y extinción
Capitulo 1 coeficiente de absorción dispersión y extinción
 
Absorcion de energia radiante
Absorcion de energia radianteAbsorcion de energia radiante
Absorcion de energia radiante
 
Laboratorio de espectrofotometría (1)
Laboratorio de espectrofotometría (1)Laboratorio de espectrofotometría (1)
Laboratorio de espectrofotometría (1)
 
Modulo IV: Tecnología del Concreto
Modulo IV: Tecnología del ConcretoModulo IV: Tecnología del Concreto
Modulo IV: Tecnología del Concreto
 

Ähnlich wie Teoria espectrometria

Introducción a los métodos analíticos instrumentales
Introducción a los métodos analíticos instrumentalesIntroducción a los métodos analíticos instrumentales
Introducción a los métodos analíticos instrumentales
Daniel Martín-Yerga
 
CURSO: INSTRUMENTACIÓN Y MÉTODOS DE ANÁLISIS QUÍMICO
CURSO: INSTRUMENTACIÓN Y  MÉTODOS DE ANÁLISIS  QUÍMICO CURSO: INSTRUMENTACIÓN Y  MÉTODOS DE ANÁLISIS  QUÍMICO
CURSO: INSTRUMENTACIÓN Y MÉTODOS DE ANÁLISIS QUÍMICO
Juan Manuel Garcia Ayala
 
Ultravioleta visible analitica (1)
Ultravioleta visible analitica (1)Ultravioleta visible analitica (1)
Ultravioleta visible analitica (1)
mairapa95
 
Principios_de_anlisis_instrumental.pdf
Principios_de_anlisis_instrumental.pdfPrincipios_de_anlisis_instrumental.pdf
Principios_de_anlisis_instrumental.pdf
MagaliPosada
 
Practica 1 conocimiento y operación de un espectrofotometro uv-vis absorción ...
Practica 1 conocimiento y operación de un espectrofotometro uv-vis absorción ...Practica 1 conocimiento y operación de un espectrofotometro uv-vis absorción ...
Practica 1 conocimiento y operación de un espectrofotometro uv-vis absorción ...
Fanny Ortiz
 

Ähnlich wie Teoria espectrometria (20)

Espectroscopio
EspectroscopioEspectroscopio
Espectroscopio
 
CLASE 9. ESPECTROFOTOMETRIA.pptx
CLASE 9. ESPECTROFOTOMETRIA.pptxCLASE 9. ESPECTROFOTOMETRIA.pptx
CLASE 9. ESPECTROFOTOMETRIA.pptx
 
5_MetodosOpticosDeAnálisis.pdf
5_MetodosOpticosDeAnálisis.pdf5_MetodosOpticosDeAnálisis.pdf
5_MetodosOpticosDeAnálisis.pdf
 
Introducción a los métodos analíticos instrumentales
Introducción a los métodos analíticos instrumentalesIntroducción a los métodos analíticos instrumentales
Introducción a los métodos analíticos instrumentales
 
Espectrofotometria_UV_visible_exposicion.pptx
Espectrofotometria_UV_visible_exposicion.pptxEspectrofotometria_UV_visible_exposicion.pptx
Espectrofotometria_UV_visible_exposicion.pptx
 
Espectrofotometría
EspectrofotometríaEspectrofotometría
Espectrofotometría
 
CURSO: INSTRUMENTACIÓN Y MÉTODOS DE ANÁLISIS QUÍMICO
CURSO: INSTRUMENTACIÓN Y  MÉTODOS DE ANÁLISIS  QUÍMICO CURSO: INSTRUMENTACIÓN Y  MÉTODOS DE ANÁLISIS  QUÍMICO
CURSO: INSTRUMENTACIÓN Y MÉTODOS DE ANÁLISIS QUÍMICO
 
Absorción atómica
Absorción atómicaAbsorción atómica
Absorción atómica
 
espectrofotometra-131223011255-phpapp01.pptx
espectrofotometra-131223011255-phpapp01.pptxespectrofotometra-131223011255-phpapp01.pptx
espectrofotometra-131223011255-phpapp01.pptx
 
Clase FTIR 2022.pdf
Clase FTIR 2022.pdfClase FTIR 2022.pdf
Clase FTIR 2022.pdf
 
fibra óptica
fibra ópticafibra óptica
fibra óptica
 
AQI 12 2021-II UNMSM.pdf
AQI 12 2021-II UNMSM.pdfAQI 12 2021-II UNMSM.pdf
AQI 12 2021-II UNMSM.pdf
 
Ultravioleta visible analitica (1)
Ultravioleta visible analitica (1)Ultravioleta visible analitica (1)
Ultravioleta visible analitica (1)
 
Principios_de_anlisis_instrumental.pdf
Principios_de_anlisis_instrumental.pdfPrincipios_de_anlisis_instrumental.pdf
Principios_de_anlisis_instrumental.pdf
 
ANALISIS DE LA DISTRIBUCION DE LAS MOLECULAS
ANALISIS DE LA DISTRIBUCION DE LAS MOLECULASANALISIS DE LA DISTRIBUCION DE LAS MOLECULAS
ANALISIS DE LA DISTRIBUCION DE LAS MOLECULAS
 
Tema 2 PQ317 2019-2 Métodos Opticos.pdf
Tema 2 PQ317 2019-2 Métodos Opticos.pdfTema 2 PQ317 2019-2 Métodos Opticos.pdf
Tema 2 PQ317 2019-2 Métodos Opticos.pdf
 
ESPECTOFOTOMETRO (1).pptx
ESPECTOFOTOMETRO (1).pptxESPECTOFOTOMETRO (1).pptx
ESPECTOFOTOMETRO (1).pptx
 
Practica 1 conocimiento y operación de un espectrofotometro uv-vis absorción ...
Practica 1 conocimiento y operación de un espectrofotometro uv-vis absorción ...Practica 1 conocimiento y operación de un espectrofotometro uv-vis absorción ...
Practica 1 conocimiento y operación de un espectrofotometro uv-vis absorción ...
 
tema2absorcionatomica.pdf
tema2absorcionatomica.pdftema2absorcionatomica.pdf
tema2absorcionatomica.pdf
 
Año de la promoción de la industria responsable y del compromiso climático (a...
Año de la promoción de la industria responsable y del compromiso climático (a...Año de la promoción de la industria responsable y del compromiso climático (a...
Año de la promoción de la industria responsable y del compromiso climático (a...
 

Kürzlich hochgeladen

Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdfGribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
frank0071
 
5.2 DERIVADAS PARCIALES (64RG45G45G45G).pptx
5.2 DERIVADAS PARCIALES (64RG45G45G45G).pptx5.2 DERIVADAS PARCIALES (64RG45G45G45G).pptx
5.2 DERIVADAS PARCIALES (64RG45G45G45G).pptx
llacza2004
 
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdfHobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
frank0071
 
Terapia Cognitivo Conductual CAPITULO 2.
Terapia Cognitivo Conductual CAPITULO 2.Terapia Cognitivo Conductual CAPITULO 2.
Terapia Cognitivo Conductual CAPITULO 2.
ChiquinquirMilagroTo
 

Kürzlich hochgeladen (20)

CASO CLÍNICO INFECCIONES Y TUMORES.pptx
CASO CLÍNICO INFECCIONES Y TUMORES.pptxCASO CLÍNICO INFECCIONES Y TUMORES.pptx
CASO CLÍNICO INFECCIONES Y TUMORES.pptx
 
Fresas y sistemas de pulido en odontología
Fresas y sistemas de pulido en odontologíaFresas y sistemas de pulido en odontología
Fresas y sistemas de pulido en odontología
 
Mapa Conceptual Modelos de Comunicación .pdf
Mapa Conceptual Modelos de Comunicación .pdfMapa Conceptual Modelos de Comunicación .pdf
Mapa Conceptual Modelos de Comunicación .pdf
 
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docxPRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
 
el amor en los tiempos del colera (resumen).pptx
el amor en los tiempos del colera (resumen).pptxel amor en los tiempos del colera (resumen).pptx
el amor en los tiempos del colera (resumen).pptx
 
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdfGribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
 
2. Hormonas y Ciclo estral de los animales
2. Hormonas y Ciclo estral de los animales2. Hormonas y Ciclo estral de los animales
2. Hormonas y Ciclo estral de los animales
 
5.2 DERIVADAS PARCIALES (64RG45G45G45G).pptx
5.2 DERIVADAS PARCIALES (64RG45G45G45G).pptx5.2 DERIVADAS PARCIALES (64RG45G45G45G).pptx
5.2 DERIVADAS PARCIALES (64RG45G45G45G).pptx
 
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdfHobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
 
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
 
La Célula, unidad fundamental de la vida
La Célula, unidad fundamental de la vidaLa Célula, unidad fundamental de la vida
La Célula, unidad fundamental de la vida
 
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
 
Moda colonial de 1810 donde podemos ver las distintas prendas
Moda colonial de 1810 donde podemos ver las distintas prendasModa colonial de 1810 donde podemos ver las distintas prendas
Moda colonial de 1810 donde podemos ver las distintas prendas
 
La biodiversidad de Guanajuato (resumen)
La biodiversidad de Guanajuato (resumen)La biodiversidad de Guanajuato (resumen)
La biodiversidad de Guanajuato (resumen)
 
Schuster, Nicole. - La metrópolis y la arquitectura del poder ayer hoy y mana...
Schuster, Nicole. - La metrópolis y la arquitectura del poder ayer hoy y mana...Schuster, Nicole. - La metrópolis y la arquitectura del poder ayer hoy y mana...
Schuster, Nicole. - La metrópolis y la arquitectura del poder ayer hoy y mana...
 
Matemáticas Aplicadas usando Python
Matemáticas Aplicadas   usando    PythonMatemáticas Aplicadas   usando    Python
Matemáticas Aplicadas usando Python
 
Terapia Cognitivo Conductual CAPITULO 2.
Terapia Cognitivo Conductual CAPITULO 2.Terapia Cognitivo Conductual CAPITULO 2.
Terapia Cognitivo Conductual CAPITULO 2.
 
Pelos y fibras. Criminalistica pelos y fibras
Pelos y fibras. Criminalistica pelos y fibrasPelos y fibras. Criminalistica pelos y fibras
Pelos y fibras. Criminalistica pelos y fibras
 
Diario experiencias Quehacer Científico y tecnológico vf.docx
Diario experiencias Quehacer Científico y tecnológico vf.docxDiario experiencias Quehacer Científico y tecnológico vf.docx
Diario experiencias Quehacer Científico y tecnológico vf.docx
 
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptxMapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
 

Teoria espectrometria

  • 1. MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS 1. INTRODUCCIÓN Para la determinación de un analito hay métodos clásicos y métodos instrumentales. Estos últimos tienen unas ventajas sobre los primeros: 1.) Permiten realizar análisis difíciles o imposibles por los otros métodos con una elevada selectividad y sensibilidad. Además, mientras en los métodos clásicos solo podemos determinar un analito por análisis, en los instrumentales podemos determinar simultáneamente varios analitos en un análisis. 2.) Suelen ser más rápidos y baratos que los clásicos. Es fácil la automatización de estos métodos instrumentales. 3.) Los instrumentos analíticos pueden conectarse a ordenadores, lo que permite un óptimo control del instrumento y manejo de datos. 4.) Desarrollo de instrumentos inteligentes. A partir de ahora solo vamos a hablar de métodos instrumentales. Estos métodos tienen ciertas desventajas: 1.) Requieren ser manejados por técnicos expertos. 2.) Es necesario una calibración previa del equipo. Esta calibración previa se hace a base de métodos químicos, por lo cual la exactitud del método instrumental depende de la exactitud del método químico empleado. 3.) Esta calibración suele ser cara. Existe una gran cantidad de técnicas instrumentales. Estas pueden clasificarse en:  Espectroscópicas  Electroquímicas
  • 2.  Cromatográficas  Acopladas o conjuntadas  Diversas 2. DEFINICIÓN Los métodos espectroscópicos son un amplio grupo de métodos analíticos que se basan en las interacciones de la radiación electromagnética con la materia. La radiación electromagnética es un tipo de energía que toma varias formas, de las cuales las más fácilmente reconocibles son la luz y el calor radiante. Sus manifestaciones más difícilmente reconocibles incluyen los rayos gamma y los rayos X, así como la radiación ultravioleta, de microondas y de radiofrecuencia. Actualmente el uso de métodos espectroscópicos está generalizado, debido a su rapidez, a la gran gama de instrumentación disponible y sus grandes posibilidades de automatización. En muchos casos es posible la resolución de un problema analítico sin necesidad de recurrir a métodos de otro tipo. 3. PROPIEDADES DE LA RADIACIÓN ELECTROMAGNÉTICA Muchas de las propiedades de la radiación electromagnética se explican adecuadamente con un modelo clásico de onda sinusoidal, que utiliza parámetros como longitud de onda, la frecuencia, la velocidad y la amplitud. A diferencia de otros fenómenos ondulatorios, como el sonido, la radiación electromagnética, no necesita un medio de apoyo para transmitirse y, por tanto, se propaga fácilmente a través del vacío.
  • 3. Figura. Representación de la radiación electromagnética como una onda sinusoidal Para caracterizar una onda pueden usarse los siguientes parámetros ondulatorios: Longitud de onda, λ : es la distancia entre máximos o mínimos sucesivos. Se expresa en cualquier unidad de longitud, siendo las más frecuentes el metro, centímetro, angstrom, nanometro y micrometro. 1 angstrom (A) = 10-10 metros 1 nanometro (nm) = 10-9 metros 1 micrometro (mm) = 10-6 metros Frecuencia,  : es el número de ciclos por unidad de tiempo; por ejemplo, veces que pasa por un determinado punto en 1 segundo. La unidad de frecuencia es el segundo recíproco, s-1 o hertz (Hz). La relación entre los parámetros mencionados es: c  = ------  siendo c la velocidad de propagación, que en el vacío es de 2,9979 x 1010 cm/s.
  • 4. El modelo ondulatorio falla al intentar explicar fenómenos asociados con la absorción o la emisión de energía radiante. Para comprender estos procesos, hay que acudir a un modelo corpuscular en el que la radiación electromagnética se contempla como flujo de partículas energéticas denominados fotones, en los que la energía de un fotón es proporcional a la frecuencia de la radiación. Este doble punto de vista de la radiación como partícula y como onda no es mutuamente excluyente, sino complementario. De hecho, la dualidad onda-corpúsculo se aplica al comportamiento de haces de electrones, protones y otras partículas elementales, y se racionaliza completamente por medio de la mecánica ondulatoria. La energía del fotón es proporcional a la frecuencia de la radiación (relación de Einstein-Planck): hc E = h = ---- = hc  donde h la constante de Planck (6,63 x 10-34 J . s). La relación anterior indica que la energía de un fotón de radiación monocromática ideal (una sola frecuencia) depende únicamente de su longitud de onda o de su frecuencia, de forma que un haz de radiación puede ser más o menos intenso en función de la cantidad de fotones por unidad de área, pero la energía del fotón es siempre la misma para una determinada frecuencia. En la siguiente figura se muestran las regiones más importantes del es- pectro electromagnético. Es necesario tener en cuenta que las zonas de separación entre regiones no están establecidas de modo rígido, y al pasar de una región a otra no existen discontinuidades en las propiedades de la radiación.
  • 5. Figura. Espectro electromagnético 4. CLASIFICACIÓN DE LOS MÉTODOS ÓPTICOS Los métodos ópticos se dividen en: 1.) Métodos ópticos espectroscópicos: son aquellos en los que existe intercambio de energía entre la radiación electromagnética y la materia. Estos son debidos a transiciones entre distintos niveles energéticos. Son los métodos más utilizados. 2.) Métodos ópticos no espectroscópicos: se basan en una interacción entre radiación electromagnética y la materia que produce como resultado un cambio en la dirección o en las propiedades físicas de la radiación electromagnética. En estos métodos los mecanismos de interacción son la reflexión, refracción, difracción, dispersión, interferencias, polarización o la dispersión refractiva. Espectroscópicos Nivel molecular: UV-Visible, IR, microondas Absorción Nivel atómico: absorción atómica, rayos X Nivel molecular: fluorimetría, fosforimetría, quimioluminiscencia Emisión Nivel atómico: Emisión atómica, ICP, fluorescencia de rayos X
  • 6. No espectroscópicos Dispersión: turbidimetría, nefelometría Refracción: refractometría, interferometría Difracción: rayos X Rotación óptica: polarimetría Los métodos de absorción han sido, hasta el momento, los de uso más generalizado. Se basan en la absorción selectiva de radiación por la misma especie a determinar o por un producto de transformación de dicha especie. En los métodos de absorción molecular las transiciones se producen entre niveles electrónicos, vibracionales y rotacionales, por absorción de radiación ultravioleta, visible, infrarroja y de microondas. El espectro en las regiones visible y ultravioleta está constituido por bandas representativas de un gran número de transiciones. Como, con la instrumentación ordinaria, la resolución de las diferentes bandas no puede tener lugar las aplicaciones cualitativas de estas técnicas son bastante limitadas. Sin embargo, la sensibilidad es relativamente alta, característica adecuada para aplicaciones cuantitativas. La absorción de energía correspondiente al infrarrojo produce cambios en la energía de vibración y rotación de los enlaces en las moléculas. Como los distintos grupos funcionales están constituidos por configuraciones atómicas definidas, la absorción de los diferentes grupos tiene lugar a longitudes de onda características. De aquí, la valiosa información cualitativa y estructural que se obtiene con este tipo de espectros. El talón de Aquiles de esta técnica es su aspecto cuantitativo, pues la sensibilidad es relativamente pequeña, salvo para ciertos grupos químicos, tales como hidróxido e isocianato que presentan fuertes absorciones. Uno de los progresos más notables que ha experimentado la espec- trofotometría infrarroja en época reciente ha sido el empleo del sistema de transformadas de Fourier, modalidad con la que se mejoran características en
  • 7. cuanto a rapidez, precisión y posibilidad de automatización. La absorción de radiación a nivel atómico origina transiciones entre niveles externos o entre niveles internos de los átomos, según que la radiación absorbida sea ultravioleta-visible y de rayos X respectivamente. La mayor utilidad de la espectroscopia de absorción de rayos X se presenta en el estudio de espesores de materiales, pues en el terreno puramente analítico las aplicaciones son escasas, debido fundamentalmente a su baja sensibilidad. El fundamento físico-químico de la espectrofotometría de absorción atómica reside en el hecho de que cuando una radiación de una determinada longitud de onda se pone en contacto con átomos en fase de vapor, éstos absorben radiaciones energéticas correspondientes a sus líneas de resonancia, pasando a estados excitados en cantidad proporcional a su concentración. La atomización se produce con frecuencia en una llama o con métodos electrotérmicos y la radiación incidente se origina en las llamadas lámparas de cátodo hueco, que están construidas utilizando el mismo elemento a determinar. La técnica se caracteriza por su sencillez, rapidez y selectividad. Por otra parte, el instrumental necesario suele ser bastante asequible desde el punto de vista económico y la cantidad de muestra necesaria para una determinación es muy pequeña. Los métodos de emisión son menos utilizados que los de absorción y en el esquema anterior se indican algunos. En ellos se utiliza la radiación electromagnética emitida por la materia, independientemente de las causas que originan dicha emisión. Se produce luminiscencia cuando una especie molecular, que ha ad- quirido un estado electrónico y vibracional excitado mediante una radiación externa (fotoluminiscencia) o como consecuencia de una reacción química
  • 8. (quimioluminiscencia), pierde el exceso de energía vibracional mediante colisiones y a continuación vuelve al estado fundamental, emitiendo radiación ultravioleta o visible. La característica más importante de estas técnicas desde el punto de vista analítico es su gran sensibilidad. La fotoluminiscencia puede dividirse en dos tipos, fluorimetría y fosforimetría. De todas las técnicas luminiscentes, la más importante, sin duda, es la fluorimetría, modernamente se ha desarrollado una modalidad muy prometedora como fluorimetría de láser (con la que es posible el análisis de compuestos fluorescentes a niveles de partes por trillón). En cuanto a la fosforimetría, puede indicarse que en los últimos tiempos se ha apreciado un notable incremento en su utilización, debido a mejoras que permiten trabajar a temperatura ambiente. La quimioluminiscencia no es una técnica de empleo masivo, si bien se ofrecen cada vez mejores posibilidades en el análisis de trazas y en inmunoensayos. En la espectrometría de emisión, la excitación de la muestra se lleva a cabo mediante un arco o una chíspa eléctrica. Generalmente la energía necesaria para la excitación es tan alta que las especies moleculares se disocian, con lo cual se emiten espectros atómicos o iónicos característicos. Obviamente, estas técnicas no serán de utilidad para la determinación del estado de combinación química de los elementos. La excitación por arco o chispa presenta ventajas e inconvenientes, lo cual delimita sus campos de aplicación. Así, el arco proporciona una energía mayor lo que hace que sea más sensible, aunque su reproducibilidad es peor que la de la chispa, de donde se infiere que en análisis cualitativo se prefiera el arco y en análisis cuantitativo la chispa. Cuando se utiliza una llama como fuente de excitación, la técnica se denomina fotometría de llama. Debido a que la llama es menos energética que el arco o la chispa, la fotometría de llama limita su campo de aplicación a
  • 9. unos pocos elementos; los más fácilmente excitables, como alcalinos y alcalinotérreos. La utilización de un plasma como fuente de excitación, ICP, presenta indudables ventajas relacionadas con su alta sensibilidad, gran intervalo de linealidad y buena selectividad. La fluorescencia atómica es una técnica relativamente reciente y se puede considerar relacionada con la espectrofotometría de absorción atómica, pues en lugar de medir la absorción por átomos formados en la llama, se mide la emisión de resonancia o fluorescencia de resonancia que tiene lugar en todas direcciones después de la absorción. Su principal ventaja frente a la absorción atómica radica en que la sensibilidad es directamente proporcional a la intensidad de la fuente luminosa fenómeno que no ocurre en absorción atómica. La fluorescencia de rayos X consiste en generar rayos X en una muestra usando otros rayos X (primarios, más energéticos) para su excitación. Los rayos X emitidos (secundarios) son característicos de la muestra excitada. El método es, para el análisis cualitativo y cuantitativo más importante que todos los demás métodos de rayos X. El análisis cualitativo se basa en la identificación de las radiaciones fluorescentes producidas y el cuantitativo en la medida de su intensidad, con ayuda de la correspondiente curva de calibrado. El método es rápido, de buena sensibilidad y bastante exactitud, si bien, las mayores ventajas son su especificidad y simplicidad. La turbidimetría y la nefelometría son técnicas analíticas basadas en la dispersión de la luz por partículas en suspensión en el seno de una disolución. Como consecuencia de la interacción entre la radiación y las partículas, el sistema no se eleva a un nivel energéticamente excitado, sino que la radiación incidente induce un dipolo eléctrico oscilante, que actúa como una nueva fuente emisora de radiación.
  • 10. Pueden realizarse dos tipos de medidas. Si la dispersión es lo sufi- cientemente grande como para originar una disminución apreciable en la intensidad de la radiación incidente, puede observarse el rayo transmitido en el mismo sentido que el incidente, denominándose turbidimetría a la correspondiente técnica analítica. Si se trabaja con una suspensión que, o es muy diluida, o está constituida por partículas relativamente pequeñas, la relación entre la intensidad de radiación transmitida e incidente será prácticamente la unidad, por lo que no podrá realizarse la medición como en el caso anterior. Deberá medirse la intensidad de radiación en un cierto ángulo con respeto al haz incidente, operando normalmente con un ángulo de 90o . Esta técnica analítica recibe el nombre de nefelometría, y se caracteriza por su mayor sensibilidad respecto a la turbidimetría. La técnica basada en la determinación del índice de refracción es la refractometría. Entre las ventajas que presenta esta técnica cabe citar su carácter no destructivo, empleo de pequeñas cantidades de muestra y mediciones rápidas y sencillas. Cuando se miden diferencias entre el índice de refracción de la muestra y el de una sustancia patrón se tiene la interferometría, un poco más compleja que la refractometría, pero con la ventaja de proporcionar mayor precisión. La difracción de rayos X es el método de más utilidad para estudiar estructuras cristalinas de sólidos. Cuando se hace incidir un haz mono- cromático de rayos X sobre una muestra cristalina se obtiene un espectro de rayos X difractados característicos y la disposición de sus líneas o círculos puede usarse con fines analíticos. Como se mencionó al comienzo de este capítulo, la radiación elec- tromagnética puede resolverse en dos componentes que están polarizados en planos perpendiculares entre si. Por otra parte, un cierto número de sustancias giran el plano de vibración de una radiación polarizada, y la magnitud de la rotación debida a una sustancia determinada depende de su concentración. Estas sustancias se caracterizan por su asimetría molecular o cristalina, y se
  • 11. dice que son ópticamente activas. La medida de la actividad óptica de una sustancia constituye la base de la polarimetría. Esta técnica proporciona un método de análisis no destructivo, si bien está reservada exclusivamente a compuestos orgánicos y organometálicos ópticamente activos. 5. ESPECTROS DE ABSORCIÓN Y EMISIÓN Los procesos de absorción y emisión puede representarse de modo sencillo: x + h   x* x*  x + Q (calor) La primera reacción engloba todos los procesos de absorción de importancia. La segunda representa la emisión posterior de la energía absorbida, generalmente debida a la colisión con otros átomos o moléculas. En general esta disipación no se considera cuando se estudian procesos de absorción debido a que la cantidad de calor liberado es generalmente despreciable. Sin embargo su consideración es importante para comprender su espectro de absorción y para distinguirlo del de fluorescencia y el de otros espectros. Para que una radiación electromagnética sea absorbida por la materia deben cumplirse:  Debe haber una interacción entre el campo eléctrico de la radiación electromagnética y alguna carga eléctrica de la sustancia.  La energía de la radiación incidente a de ser exactamente igual a la diferencia de energías entre el estado fundamental y uno de los estados excitados de la especie absorbente.
  • 12. Figura. Diagrama de los niveles de energía de una molécula Los espectros de emisión se deben a un proceso que es exactamente el inverso a la absorción: x*  x + h de manera que la sustancia pasa de un estado exaltado de elevada energía a uno de baja energía produciendo una emisión que puede ser: Resonancia: fenómeno poco frecuente que tiene lugar cuando un átomo o molécula que ha absorbido una determinada radiación vuelve al estado fundamental emitiendo radiación de la misma frecuencia que la absorbida. Este tipo de emisión se da casi exclusivamente en sistemas con átomos aislados en los cuales no existe posibilidad de choques con otra sustancia antes de la emisión.
  • 13. Fluorescencia y Fosforescencia: son reemisiones de radiación de longitudes de onda superior, es decir, de menor energía que la radiación absorbida. Esto es debido a que parte de la radiación absorbida se pierde generalmente por desactivación vibracional antes de la emisión. En la fluorescencia el tiempo transcurrido entre la absorción y emisión de radiación oscila entre 10-4 y 10-8 segundos, de modo que la reemisión parece instantánea y cesa cuando se elimina la fuente de radiación. En la fosforescencia el tiempo transcurrido entre la absorción y la emisión es mucho mayor, variando entre 10-4 y 10 segundos o más. 6. LEY DE ABSORCIÓN DE LA RADIACIÓN Al interaccionar la radiación electromagnética con la materia se produce absorción si la frecuencia de la radiación es tal que su energía coincide con la necesaria para que el sistema pase al nivel de mayor energía y permitido. La ley fundamental que rigen el comportamiento de la radiación incidente absorbida al pasar a través de una muestra dada se denomina LEY DE BEER, donde se establece la relación entre la interacción de la radiación con la concentración de la muestra. Beer encontró que un aumento de la concentración del soluto absorbente produce el mismo efecto que un aumento proporcional en la distancia que recorre el haz a través de la muestra. A = a b c donde A es la absorbancia, a una constante, b es el espesor de la cubeta y c la concentración.
  • 14. La Ley de Beer es fundamental en los métodos ópticos de análisis, ya que nos permite calcular la concentración de una sustancia a partir de la medida de la radiación absorbida por una disolución de la misma. La Ley de Beer es la base de análisis cuantitativo, ya que pone de manifiesto que la absorbancia es directamente proporcional a la concentración de un soluto. Para aplicar la Ley de Beer es necesario seleccionar la longitud de onda óptima. Limitaciones de la Ley de Beer Esta Ley se cumple con soluciones diluidas (< 0.01 M), ya que en soluciones de mayor concentración, cada molécula afecta a la distribución de carga de la molécula vecina; interacción que altera la capacidad de absorción de las especies. Desviaciones de la Ley de Beer Vamos a considerar tres tipos de errores:  Errores químicos  Errores instrumentales  Errores personales Errores Químicos Efecto del disolvente: El efecto que produce el cambio de disolución en un soluto no puede predecirse de manera general aunque a menudo origina corrimientos espectrales, ensanchamientos de bandas y desviaciones de la Ley de Beer. Efectos debidos a sistemas en equilibrio: Se producen desviaciones de la Ley de Beer cuando un analito se disocia, asocia o reacciona con le disolvente para originar un producto con un espectro de absorción diferente.
  • 15. Efectos debidos a impurezas en el agua destilada o de los reactivos así como sustancias interferentes en la muestra. Errores Instrumentales Desviaciones debidas al uso de radiación no monocromática. El cumplimiento estricto de la ley de Beer solo tiene lugar cuando se utiliza una radiación monocromática (radiación de una sola longitud de onda). Sin embargo, en la práctica no es posible utilizar radiación monocromática, ya que los dispositivos instrumentales aíslan una banda más o menos simétrica de longitudes de onda en torno al valor deseado. Desviaciones debidas a la presencia de radiación parásita. Se conoce como radiación parásita a toda radiación extraña que llega al detector, pero que no proviene de la muestra. Puede producirse por la presencia de polvo, defectos en el sistema óptico (ralladuras, etc.). Aunque esta radiación parásita existe siempre sus efectos son más importantes a valores elevados de absorbancia tal como se puede demostrar en la ecuación: De esta forma, los errores instrumentales llevan siempre a desviaciones negativas de la Ley de Beer. Errores Personales Se pueden producir un gran número de estos errores destacando:  Cuidado de las cubetas de absorción: deben de estar limpias y sin huellas. Si trabajamos en el ultravioleta, hay que limpiarlas con ácido nítrico concentrado, o bien con agua regia. No se limpiara con ácido sulfúrico concentrado o caliente, porque podría atacar a la cubeta.
  • 16.  Control de Temperatura: en la mayor parte de las medidas cuantitativas de absorción se realizan a temperatura ambiente. Pero si el soluto absorbente interviene en una reacción de equilibrio, el control de la temperatura puede ser crítico y por ello en algunos casos debe de controlarse. En general, un aumento de la temperatura, lleva consigo un desplazamiento de los máximos de absorción (o de las bandas de absorción) a longitudes de onda mayores en regiones del Ultra Violeta y del visible, ocurriendo lo contrario en el infrarrojo. 7. INSTRUMENTACIÓN EN LA ESPECTROSCOPÍA ÓPTICA Existen dos tipos de instrumentación para medidas de absorción UV: Los fotómetros, son instrumentos sencillos que permiten medir la intensidad de radiación, ya que van provistos de filtros para seleccionar un rango estrecho de longitudes de onda, y como detectores, usan fototubos. Los espectrofotómetros, son instrumentos más o menos sofisticados que usan monocromadores para seleccionar estas bandas estrechas de longitud de onda. El monocromador permite una variación continua al seleccionar las longitudes de onda, y también permite realizar un barrido en una zona amplia de longitud de onda. Como detectores usan fototubos o tubos multiplicadores. Filtros - Fotómetros Fototubos Monocromadores - Espectrofotómetros Fototubos o tubos multiplicadores
  • 17. Componentes básicos de los fotómetros y espectrofotómetros  Fuentes de energía (lámpara)  Selectores de longitud de onda (filtros, monocromadores)  Cubetas  Detector  Procesador de señales Figura. Esquema de los componentes de un espectrofotómetro La muestra la colocamos entre el seleccionador de longitud de onda y el detector. Fuente de energía Una fuente de radiación debe generar un haz de radiación con potencia suficiente para que se detecte y se mida con facilidad; y debe ser estable a lo largo del tiempo.
  • 18. Pueden ser: 1. Continuas: emiten radiación cuya intensidad varía sólo en función de la longitud de onda. La lámpara más usada es la de filamento de Wolframio, que es una fuente térmica que emite en el visible. Otras son las lámparas de argón y de deuterio, que se usan en el ultravioleta. En todos los casos, se hace pasar una corriente de electrones a través de un gas y las colisiones entre ellos provocan la excitación electrónica, vibracional y rotacional. 2. De Líneas: emiten un número limitado de bandas de radiación, cada una de las cuales abarca un intervalo muy reducido de longitudes de onda. Usadas en absorción y fluorescencia atómica. La más usada es la lámpara de cátodo hueco 3. Láseres: producen radiación de alta intensidad y estrechas anchuras de banda para cualquier longitud de onda seleccionada. Funciona como un oscilador; es decir, la radiación producida por el láser se le hace pasar muchas veces por un medio activo gracias a la acción de un par de espejos. Esto provoca que la señal emitida esté muy amplificada. Pueden ser: sólidos (rubí con cromo, neodimio con aluminio e itrio), gases (helio, neón, argón, criptón, xenón) o de colorantes orgánicos. Selectores de longitud de onda Para conseguir medidas de absorbancia exactas, selectivas y sensibles, es importante poder seleccionar una banda estrecha de  del amplio espectro que proporciona la fuente de radiación. El ancho de banda es una medida inversamente proporcional a la calidad del dispositivo, siendo la resolución mejor cuanto más estrecho es el ancho de banda. Tipos: 1. Filtros: se fabrican para una sólo longitud de onda. Básicamente, se utilizan dos clases de filtros:  Filtros de absorción  Filtros de interferencia
  • 19. Los filtros de absorción, se basan en la absorción selectiva de  que no interesan y generalmente, son de vidrio, en el cual se ha dispersado o disuelto un pigmento adecuado que permite esta absorción selectiva. Estos filtros sólo operan en el V. Los filtros de interferencia, se basan en el fenómeno de interferencia óptica, es decir, una parte de la radiación que llega es absorbida y otra, se refleja. Proporciona anchuras de banda más estrechas que los de absorción y transmitancias de tipo mayores. Estos filtros operan en el UV, Visible e IR. 2. Un Monocromador es un dispositivo que genera un haz de radiación de gran pureza espectral (anchura de banda estrecha. Trabajan de forma continua y en un amplio intervalo de longitud de ondas; es decir, realizan barridos espectrales. Hay dos tipos de monocromador:  Monocromador tipo prisma.  Monocromador tipo red. Los elementos esenciales de un monocromador, son una rendija de entrada (determinando el haz de radiación policromática entrante), un elemento dispersante (que puede ser un prisma o una red de difracción) y una rendija de salida.
  • 20. Figura. Tipos de monocromadores El prisma o red, dispersa la radiación policromática en las  que la componen, y la rendija de salida transmite la  correspondiente al máximo de intensidad junto a una banda de  a ambos lados. Las de redes son más baratas y separan mejor la longitud de onda que las de prisma. Las características de un monocromador son: 1. Pureza espectral: el haz de salida puede estar contaminado por radiaciones parásitas. Para minimizar esto se recubre internamente con pintura negra mate y se sella para que no entre el polvo. 2. Poseer una buena dispersión. 3. Alto poder de resolución, es decir, que sea capaz de separar longitudes de ondas adyacentes
  • 21. 4. Alta potencia de salida para que llegue al detector la mayor energía radiante 5. Cuanto más estrecha sea la apertura de la rendija, mayor resolución pero menos potencia de salida. La situación de compromiso se denomina Anchura de banda efectiva. Cubetas Son recipiente porta muestras que tienen paredes paralelas y rectangulares, y se fabrican en diversos materiales, de manera que, permitan el paso de luz pero no absorban radiación. Por ello, en el UV utilizamos cubetas de cuarzo y en el Visible usamos las de plástico o vidrios de silicato. Las hay de diferente recorrido óptico, pero lo normal es de 1 cm de paso de luz. Detectores Son elementos que convierten la radiación en un flujo de electrones y posteriormente, en una corriente o voltaje en el circuito de lectura. El detector ideal debería tener un amplio intervalo de  con una elevada sensibilidad, una relación señal – ruido grande, un tiempo de respuesta rápido, mínima señal de salida en ausencia de iluminación, así como tener una respuesta constante. Los tres tipos de detectores usados en el UV / V son:  Células fotovoltaicas  Fototubos (Tubos fotoemisores)  Tubos fotomultiplicadores La característica común a todos estos detectores es que tienen una superficie activa capaz de absorber radiación, de manera que, la energía absorbida causa la emisión de electrones y el desarrollo de una fotocorriente. Células fotovoltaicas, en ellas, la energía radiante genera una corriente en la interfase entre una capa semiconductora y un metal, y se usan fundamentalmente en el Visible. Consisten en un electrodo plano (ánodo) de un metal (Cu, Fe o Al) en
  • 22. el que se deposita un material semiconductor como es el Selenio, y después se recubre por una fina película de Ag o Au. Esto sirve como electrodo colector. Cuando al Se llega una corriente o una radiación, se produce la excitación de electrodos de la interfase Se –Ag (o Se – Au), los cuales pasan al electrodo colector (Ag). Los electrodos liberados migran a través del circuito hacia el metal, resultando una corriente de electrodos proporcional al número de fotones que inciden sobre el semiconductor. Entre las desventajas están:  Es difícil amplificar la señal de salida, debido a la pequeña resistencia interna de la célula; por esto se usan en fotómetros de filtro.  Manifiestan fatiga (sobre una radiación continuada, la respuesta no siempre es constante) Figura. Esquema de una célula fotovoltaica Fototubos o tubos fotoemisores, consisten en un cátodo semicilíndrico (capa de metal recubierta de otra capa de óxido alcalino) que es sensible a la luz, y un ánodo que es un alumbre metálico. Ambos están encerrados herméticamente en un recipiente cilíndrico con vacío. Cuando la radiación llega al cátodo, éste emite electrones que son atraídos hacia el ánodo, el cual a través del circuito los devuelve al cátodo. Esta corriente fotovoltaica producida, causa una caída de potencial a lo largo de la resistencia que es proporcional a la intensidad de corriente.
  • 23. Figura. Esquema de un fototubo La señal del fototubo es aproximadamente unas diez veces menor a la de las células fotovoltaicas, pero debido a la posibilidad de amplificar la señal de estos, éstos resultan más sensibles que las primeras. La sensibilidad del fototubo depende de la naturaleza de la sustancia que recubre el cátodo y puede variarse utilizando diferentes metales alcalinos o variando el método de recubrimiento. Tubos fotomultiplicadores, son una combinación de un cátodo fotoemisivo y una cadena interna de dínodos fotomultiplicadores de electrones. Cuando la radiación llega al cátodo de composición similar a la de los fototubos, provoca la emisión de electrones (electrones primarios), de manera análoga a la de un fototubo, pero en este caso, los electrones son acelerados, por la aplicación de un potencial positivo hacia una segunda superficie sensible, de forma que al incidir cada electrón primario es capaz de producir la emisión de 4 ó 5 electrones secundarios. Estos electrones son acelerados de nuevo hacia otra superficie sensible que se encuentra a un potencial posiblemente superior, de forma que el número de electrones emitidos vuelve a multiplicarse por 4 ó 5. Este proceso se puede repetir tantas veces como queramos, pero en general los aparatos no llevan más de 10 ó 12 dínodos. La señal de salida puede a su vez amplificarse. Por tanto, es el detector más sensible en el UV – V.
  • 24. Figura. Esquema de un tubo fotomultiplicador Procesador de señales En general, es un dispositivo electrónico que amplifica la señal eléctrica del detector; así mismo, permite eliminar componentes indeseados. Puede también alterar la señal de la corriente, cambiarla de fase, filtrarla. También puede realizar operaciones matemáticas con la señal como diferenciales, derivadas, integral...
  • 25. 8. Control de Espectrofotómetros: calibración y verificación En el caso de la espectrofotometría se pueden realizar dos tipos de mediciones dependiendo del análisis solicitado:  Medida directa de absorbancia: en este caso el equipo se puede considerar que trabaja como cualquiera que mide una magnitud física. Un ejemplo es la medición del poder colorante del azafrán.  Medida de concentraciones: en este caso lo que medimos es una magnitud física (respuesta-absorbancia) con respecto a las entradas de concentraciones químicas que hacemos en el equipo (calibración instrumental). Esta técnica es una de las más utilizadas para el análisis cuantitativo. Las características más importantes de estos métodos espectrofotométricos son: - Tienen una amplia aplicabilidad tanto a sistemas orgánicos como inorgánicos. - Sensibilidades en torno a 10-4  10-5 M, pudiendo en algunos casos llegar a 10-7 M. - Tienen de moderada a alta selectividad. - Tienen una buena precisión. - Tienen una fácil y adecuada adquisición de datos. - Son métodos relativamente baratos. Las aplicaciones de las medidas de absorción al análisis cuantitativo, son muy numerosas.  Análisis de especies absorbentes: los componentes que contienen grupos cromóforos, son susceptibles de esta determinación (alquenos, alquilos, cetonas). Así mismo, se pueden determinar también componentes inorgánicos como nitratos, nitrito, ozono, iones de los metales de transición, yodo, etc.
  • 26.  Análisis de especies no absorbentes: numerosos reactivos reaccionan selectivamente con especies no absorbentes originando productos fuertemente absorbentes en esta región. El uso de tales reactivos exige que la reacción de formación de los compuestos sea completa. Ejemplo de agentes complejantes para la determinación de especies inorgánicas: SCN  Fe3+ , Mo6+ H2O2  Ti4+ , V5+ , Cr3+ Ejemplo de agentes formadores de complejos: 0 – fenantrolina Fe3+ Dimetilglioxima  Ni2+ Dimetilditiocarbonato  Cu2+ Para la determinación de estas especies en análisis cuantitativo, el procedimiento operatorio que llevamos a cabo es: - Selección de la longitud de onda donde vamos a realizar medidas de absorbancia. Las longitudes de onda serán las correspondientes a máximos de absorción del compuesto, ya que aquí se alcanza una mayor sensibilidad: 
  • 27. En estas zonas de los máximos tenemos un intervalo de  donde la absorbancia no se modifica demasiado, por lo que las fluctuaciones a la hora de la medida no crean muchos errores. - Conocer las variables que afectan a la absorbancia natural del disolvente, pH de la disolución, temperatura, [electrolitos] y la presencia de sustancias interferentes. Los efectos de todas estas variables se deben de conocer, y las condiciones para el análisis se eligen de manera que la absorbancia no este afectada por variaciones incontroladas de estos parámetros. - Medida de la muestra: hay que tener en cuenta la limpieza y manipulación de las cubetas. - Determina la relación entre absorbancia y concentración. Una vez seleccionadas las condiciones realizamos la Calibración usando patrones de concentraciones conocidas, y que abarquen el intervalo de concentraciones esperado en las muestras problema: Y (A) Y = mx + b m b X (c) Cuando hay interferencias en la matriz de la muestra es necesario aplicar el método de adición de patrón (ó adición estándar) lo cual por extrapolación:
  • 28. A * C También hemos de considerar que, como cualquier equipo instrumental, los espectrofotómetros sufren desgastes con el tiempo, lo que viene a llamarse deriva. Por ello, debemos realizar la Verificación del equipo para comprobar que el espectrofotómetro se encuentra dentro de las especificaciones y es útil para obtener los resultados buscados. En este caso, podemos definir las siguientes operaciones a efectuar: 1. Longitud de onda: se verifica al menos cinco veces los máximos de absorbancia obtenidos, para una disolución o filtro de holmio. Se usa el holmio ya que proporciona picos estrechos a 254, 287, 361 y 563 nm. Se deben establecer criterios de exactitud (λobtenida-λreferencia) y precisión (repetitividad) a partir de las especificaciones del equipo o de otras documentaciones existentes (revistas científicas, plan nacional de calidad,…). Un ejemplo de criterio sería: exactitud menor a ± 1 nm y precisión menor a ± 1 nm. 2. Absorbancias: para ello se pueden realizar 3 medidas obteniendo las medias y desviaciones estándar al usar filtros calibrados NBS. También se puede usar para verificar las absorbancias una disolución de 50 mg/l de dicromato potásico disuelto en 0.01 N de ácido sulfúrico.
  • 29. Longitud de onda Absorbancia 235 nm 0.626 257 nm 0.727 313 nm 0.244 350 nm 0.536 En ambos casos se puede usar como criterio de exactitud ≤ 0.005 A y de precisión ≤ 0.002 A, en la diferencia de absorbancia obtenida y la de referencia. 3. Cubetas: constituyen un elemento fundamental, ya que sus variaciones en construcción, limpieza y posicionamiento son fuente fundamental de las desviaciones. Para ello, separamos dos cubetas de referencia que serán consideradas como nuestros patrones, y realizamos una verificación consistente en: - Introducir agua destilada en cubeta patrón y en cubeta a verificar. Medir dos veces la absorbancia. - Intercambiar las cubetas y medir la absorbancia dos veces en aquellos equipos de doble haz. - Obtener diferencias entre las absorbancias. - Comprobar frente a criterio: las diferencias no pueden ser superiores al 1.5% o a 0.006 unidades de absorbancia.