Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Low Power Wireless Technologies and Standards for the Internet of Things

9.816 Aufrufe

Veröffentlicht am

Presentation on low power wireless technologies and standards for the Internet of Things (iOT), given at the BCS Communications Management Association AGM on 5th April 2016

Veröffentlicht in: Technologie

Low Power Wireless Technologies and Standards for the Internet of Things

  1. 1. Low Power  Wireless  connection   to  Your  Business  “Things” BCS  Communications  Management  Association AGM Duncan Purves Connect2 Systems duncan@connect2.io
  2. 2. The  IoT  landscape  -­ One  size  doesn’t  fit  all Source: Goldman Sachs, IoT Primer, September 3, 2014; ‘Internet of Things: Making sense of the next mega-trend’ Broad  variety  of  wireless   standards,  industry  bodies,   technologies  for  different  types  of   networks: § Body  Area  Network  (BAN) § Body  Sensor  Network  (BSN) § Medical  Body  Area  Network   (MBAN) § Personal  Area  Network  (PAN) § Home  Area  Network  (HAN) § Nearby  Area  Network  (NAN) § Local  Area  Network  (LAN) § Wide  Area  Network  (WAN) § Global  Area  Network  (GAN)
  3. 3. Diversity – Industry  &  Standards  Bodies
  4. 4. Layer  1/2  Wireless  Network  Standards § IEEE  802.11  (WLAN) Ø Most  wireless-­capable   residential  devices  operate  at  a  frequency  of  2.4   GHz  under  802.11b  and  802.11g  or  5 GHz  under  802.11a. Ø Some  home  networking  devices  operate  in  both  radio-­band  signals  and   fall  within  the  802.11n   or  802.11ac   standards § IEEE  802.15  (WPAN) Ø Working  group  of  Institute  of  Electrical  and  Electronics  Engineers  (IEEE)   which  specifies  wireless  personal  area  network  (WPAN)  standards Ø Includes  seven  task  groups   Ø 802.15.1   (Bluetooth) Ø 802.15.3   (High  Rate  WPAN) Ø 802.15.4   (Low  Rate  WPAN) Ø 802.15.6   (WBAN) Ø 802.15.7   (Visible   Light  Communication)
  5. 5. Higher  Layer  Standards The  IEEE  802.15.4   technology  is  used  for  a  variety  of  different  higher   layer  standard  e.g.: § ZigBee § Wireless  Hart § MiWi § ISA100.11a § 6LoWPAN Ø IPv6 over  Low  power  Wireless  Personal  Area  Networks Ø Specified  by  Internet  Engineering  Task  Force  (IETF)
  6. 6. 6LoWPAN § Open  Standard   networking  technology   specification  Developed  by  the    Internet   Engineering  Task  Force  (IETF) § Every  node  has  its  own  IPv6  address § Originally  conceived  to  support  IEEE   802.15.4   low-­power  wireless  networks  in   the  2.4-­GHz  band § Now  being  adapted  and  used  over  a  variety   of  other  networking  media  including: Ø Sub-­1  GHz  low-­power  RF Ø Bluetooth  Smart  (BLE) Ø Power  Line  Control  (PLC) Ø Low-­power   Wi-­Fi § 6LoWPAN   adaptation  layer  provides: Ø IPv6  packet  encapsulation Ø IPv6  packet  fragmentation  and  reassembly Ø IPv6  header  compression Ø Link  layer  packet  forwarding COAP,  MQTT Websocket,  etc. IPv6  with  6LoWPAN IEEE  802.15.4  MAC IEEE  802.15.4  PHY LoWPAN  Adaption TCP UDP Application Transport Network Data  Link Physical 6LoWPAN  Stack  Example
  7. 7. 6LoWPAN  Network  Example Internet Server Cellular 3G,  LTE Server Router Server Node IPv6 IPv6  or  IPv4
  8. 8. Commercially  available  WSN  solution
  9. 9. Linear  Technologies  – SmartMesh  IPTM § Fully  Redundant  Wireless   Mesh  Routing Ø Compliant  to  6LoWPAN  and  802.15.4e  standards  (2.4  GHz  radio) § >99.999%   Data  Reliability Ø Time-­synchronised   +  channel  hopping § Ultra-­low   power Ø Devices  sleep  between  scheduled  communications,  typically   a  duty  cycle  of  <  1% § Automatic  node  joining  and  network  formation § Secure Ø End-­to-­end   128  bit  AES  encryption,  message  integrity   checking,  and  device  authentication http://www.linear.com/products/smartmesh_ip
  10. 10. Street-­based  wireless  sensors  and  parking  meters  collect   real-­time  parking-­space  occupancy  readings  and  payment   activity Streetline  Parking  Management Streetline,  Inc.  is  the  leading  provider  of  Smart  Parking  solutions  to  cities,   garages,  airports,  universities  and  other  private  parking  providers.  
  11. 11. Building  Monitoring § Low  power  motes  at  The   Metropolitan  Museum  of  Art   monitoring  temp,  humidity § The  wireless  sensor  network   helps  preserve  the  works  of   art
  12. 12. HANDBRAKE STATUS ENGAGED BEARING TEMPERATURE REPLACE WHEELSET information  from  the  edge™ IONX  Freight  Rail  Monitoring IONX  LLC  is  a  developer  and  provider  of  ultralow  power  wireless   telematics  solutions  for  railcars,  providing  GPS  tracking,  asset  status  and   condition  monitoring  
  13. 13. “Thread  was  designed  with  one  goal  in   mind:   To  create  the  very  best  way  to  connect   and  control  products  in  the  home” Thread  Group
  14. 14. Thread  Design  Features § Specification  released  July  14,  2015 § Security  Architecture  to  make  it   simple  and  secure  to  add  and   remove  products § Designed  for  very  low  power   operation   § Uses  6LoWPAN   and  carries  IPv6   natively § Runs  over  standard  802.15.4   radios § Based  on  a  robust  mesh  network   with  no  single  point  of  failure § Designed  to  support  250+  products   per  network  for  the  home
  15. 15. Thread
  16. 16. Thread Thread  defines  how  data  is  sent  in  network  but  not  how  to  interpret  it
  17. 17. EnOcean § An  energy  harvesting  wireless  technology § Combines  micro  energy  converters  with  ultra  low  power  electronics § Enables  wireless  communications   between  battery  less  wireless  sensors,  switches,   controllers  and  gateways § Ratified  as  the  international  standard  ISO/IEC   14543-­3-­10 § Wireless  range  up  to  300  meters  in  the  open  and  up  to  30  meters  inside  buildings § Data  packet  only  14  bytes  long  and  are  transmitted  at  125  kbit/s § RF  energy  is  only  transmitted  for  the  1's  of  the  binary  data,  reducing  the  amount  of   power  required § Transmission  frequencies  used  for  the  devices  are  902 MHz,  928.35 MHz,  868.3 MHz   and  315 MHz https://www.enocean.com/en/home/
  18. 18. EnOcean Alliance § EnOcean,  Texas  Instruments,  Omnio,  Sylvania,  Masco,  and  MK  Electric  formed  the   EnOcean  Alliance  in  April  2008  as  a  non-­profit,   mutual  benefit  corporation § Aims  to  internationalise  this  technology,   and  is  dedicated  to  creating  interoperability   between  the  products  of  OEM  partners § More  than  250  companies  currently  belong  to  the  EnOcean  Alliance https://www.enocean-­alliance.org/en/home/
  19. 19. ZigBee ZigBee  Alliance   § Non-­profit  association   established  in  2002 § Driving  the  development  of  ZigBee  standards ZigBee  uses  the  PHY  and  MAC  defined  by  802.15.4 Markets: § Smart  Home § Connected  Lighting § Smart  Meters  -­ ZigBee  Smart  Energy Ø UK  DECC  announced  SMETS  2  which  cites  ZigBee  Smart  Energy  1.x § Retail
  20. 20. ZigBee  Stack  Layers Application   Layer Network  Layer Media  Access  Control  Layer  (MAC) Physical  Layer  (PHY) ZigBee IEEE   802.15.4 ZigBee   Device   Objects Application   Support  Sub  Layer Application   Framework Application Object  1 Application Object  N ……….....
  21. 21. ZigBee  Pro § Support  for  larger  networks  comprised  of  thousands  of  devices § Global  operation  in  2.4  GHz  Band  (IEEE  802.15.4) § Frequency  agile  operating  over  16  channels  in  the  2.4GHz  band § Regional  operation  in  the  915Mhz  (Americas)  and  868Mhz  (Europe) § Optional  -­ Green  Power  to  connect  energy  harvesting  or  self-­powered  devices
  22. 22. ZigBee  Application  Profiles § ZigBee  defines  application-­level  compatibility  with  application  profiles § Allows  multiple  OEM  vendors  to  create  interoperable  products § Describes  how  various  application  objects  connect  and  work  together,   such  as  lights  and  switches,  thermostats  and  heating  units § Application  profiles  can  be  public  or  private § Public  Profiles: Ø ZigBee  Building  Automation Ø ZigBee  Health  Care Ø ZigBee  Home  Automation Ø ZigBee  Input  Device Ø ZigBee  Network  Devices Ø ZigBee  Remote  Control Ø ZigBee  Retail  Services Ø ZigBee  Smart  Energy Ø ZigBee  Telecom  Services Ø ZigBee  3D  Sync  
  23. 23. ZigBee  3.0 § Unification  of  the  Alliance’s  wireless  standards  into  a  single  standard § Initial  release  of  ZigBee  3.0  includes: Ø ZigBee  Home  Automation, Ø ZigBee  Light  Link Ø ZigBee  Building  Automation Ø ZigBee  Retail  Services Ø ZigBee  Health  Care Ø ZigBee  Telecommunication  services § Currently  undergoing  testing § Enables  communication  and  interoperability  among  devices § Uses  ZigBee  PRO  networking
  24. 24. ZigBee  IP,  ZigBee  2030.5 and  920IP ZigBee  IP: § IPv6-­based   wireless  mesh  networking § Designed  to  support  ZigBee  2030.5   -­ formerly  ZigBee  Smart  Energy  2 Ø IP-­based  implementation  of  IEEE  2030.5-­2013   for  energy  management  in  Home  Area   Networks  (HANs) § Updated  to  include  920IP,  which  provides   specific  support  for Ø ECHONET  Lite Ø Japanese  Home  Energy   Management  systems
  25. 25. ZigBee,  EnOcean  &  Thread  Group ZigBee  and  EnOcean  Alliances  collaborate1 § Combining  the  benefits  of  EnOcean  energy  harvesting  wireless  solutions   with  ZigBee  3.0  for  worldwide  applications § Define  the technical  specifications  required  to  combine  standardized   EnOcean  Equipment  Profiles  (EEPs)  with  the ZigBee  3.0  solution ZigBee  Alliance  and  Thread  Group  collaborate2,3 § Creating  End-­to-­End  IoT  Product  Development  Solution § Brings  ZigBee’s  Applications  Library  to  Thread  Group’s  IP  Network  Protocol § Roadmap  for  specifications,  branding,  and  a  test  and  certification  program 1.  ZigBee  Press  Release,  Dec  2015: http://www.zigbee.org/zigbee-­and-­enocean-­alliances-­collaborate-­to-­combine-­benefits-­of-­enocean-­energy-­harvesting-­wireless-­with-­zigbee-­3-­0/ 2.  .  ZigBee  Press  Release,  Apr  2015 http://www.zigbee.org/zigbee-­alliance-­press-­release-­zigbee-­alliance-­and-­thread-­group-­collaborate-­to-­aid-­development-­of-­connected-­home-­products/ 3.  2.  .  ZigBee  Press  Release,  Jan  2016 http://www.zigbee.org/zigbee-­alliance-­creating-­end-­to-­end-­iot-­product-­development-­solution-­that-­brings/
  26. 26. ZigBee  – Smart  Street  Lighting § Mayflower,  part  of  SSE,  have  installed  250,000   nodes  across  UK § 150,000   nodes  across  the  Hampshire  County § Since  2010  it  has  reduced  Hampshire’s  street  lighting  energy   consumption  by  21GW/hr per  annum Ø Equates  to  a  reduction  of  41%  -­ or  enough   electricity  to  power  3,500  homes  for  a  year Source:  Mayflower  Complete  Lighting  Control:  http://www.mayflowercontrol.com/
  27. 27. Wireless  Wide  Area  Networks Cellular  Networks § GPRS,  EDGE § UMTS  (3G)  HSPA+ § LTE  (4G)  Long  Term  Evolution Low-­Power  Wide-­Area   Network (LPWAN) § Ultra  Narrow  Band  (UNB)  from  Sigfox § Weightless,  from  the  Weightless  SIG § LoRaWAN,  Long  Range  WAN,  from  the  LoRa  Alliance Cellular  IoT § LTE-­M  LTE  for  M2M  (1.4  MHz) § EC-­GSM    Extended  Coverage  GSM § Narrowband  IoT
  28. 28. Sigfox § French  M2M/IoT   Network  Operator  and  technology  company § Uses UNB  (Ultra  Narrow  Band)  based  radio  technology  to  connect   devices  to  global  network § Seeking  to  develop  an  international  presence  with  partners § Seeks  to  differentiate  itself  as  a  low  cost  alternative  to  cellular  and  a   low  power  solution
  29. 29. Sigfox Technology § Uses  ISM  bands  (license-­free  frequency  bands)   § Uses  the  most  popular  European  ISM  band  on  868  MHz  (as  defined  by   ETSI  and  CEPT)   § Uses  ISM  band  902MHz   in  the  USA § Up  to  140  messages  per  object  per  day § Payload  size  for  each  message  is  12  bytes § European  regulation  governing  the  868MHz   band  enforces  a   transmission  duty  cycle  of  1% Ø A  unique  device  is  therefore  not  allowed  to  emit  more  than  1%  of  the  time  each   hour Ø Since  emission  of  a  message  can  take  up  to  ~6  seconds,  this  allows  up  to  6   messages  per  hour § Long  range  30-­50km   in  rural  areas § Range  reduced  to  between  3  and  10km  in  urban  areas § Communication  with  buried,  underground  equipment  possible
  30. 30. Sigfox  Networks  Operators Vodafone,  Huawei  Trial  Pre-­Standard   NB-­IoT
  31. 31. Sigfox  UK  Partner  Arqiva Coverage § Birmingham § Bristol § Edinburgh § Glasgow § Leeds § Leicester § Liverpool § London § Manchester § Sheffield
  32. 32. Weightless Weightless  is  both  the  name  of  a  group,  the  Weightless  Special  Interest   Group  (SIG),  and  the  technology Weightless  SIG  is  a  non-­profit  global  standards  organisation Delivers wireless  connectivity  for  low  power,  wide  area  networks  (LPWAN)
  33. 33. Weightless  Architectural  overview Internet Network   Manager Base  station   interface Air  interface Synchronisation   database Client  information   /  management   system
  34. 34. Three  Open  Standards  – Weightless-­W,  -­N,  -­P Weightless-­W § Designed  for  TV  White   Space operation Ø 470MHz–790MHz Ø 150MHz  of  spectrum   available  in  US  and  soon  UK   and  Singapore § Data  rate  – 1  kbits/s  to   10Mbits/s § 5km  indoor  range § 128-­bit  encryption  and   authentication  based  on  a   shared  secret  key Weightless-­N § Designed  for  license-­ exempt  ISM spectrum operation Ø Available  globally  now  in   868MHz  and  915MHz  bands § Uses  ultra  narrow  band   (UNB)  technology § Uplink  Data  rate  -­ Up  to   500bits/s § Up  to  10  km  range § Star  network  architecture § 128-­bit  encryption  and   authentication  based  on  a   shared  secret  key 34 Weightless-­P   (New) § Operates  license-­exempt   sub-­GHz  ISM/SRD bands: Ø 169/433/470/780/868/915/9 23  MHz  global   deployment § Uses  narrow  band   modulation  scheme § Adaptive  data  rate  -­ 200bps   to  100kbps § 2km  range  in  urban   environment § Bi-­ Directional Ø Network-­originated  and   device-­originated  traffic § Support   for  over-­the-­air   firmware  upgrade  and   security  key  negotiation  or   replacement § 128-­bit  encryption  and   authentication
  35. 35. Nwave  -­ Weightless-­N    Network  Deployments § Copenhagen  &  Esbjerg Ø Smart  City  network § London Ø Has  been  deployed  in  conjunction  with  the  Digital  Catapult
  36. 36. LoRaWAN   &  LoRa  Alliance § LoRaWAN  is  a  Low  Power  Wide  Area  Network  (LPWAN)  specification § Intended  for  wireless  battery  operated  ‘Things’  in  regional,  national  or   global  network § Allows  low  bit  rate  communication  from  and  to  connected  objects § This  technology  is  standardized  by  the  LoRa  Alliance
  37. 37. LoRa  Alliance § An  open,  non-­profit  association  of  members § Founded  in  March  2015   (at  Mobile  World  Congress)
  38. 38. LoRaWAN Ø Secure  bi-­directional  communication Ø Data  rates  range  from  0.3  kbps  to  50  kbps Ø Network  architecture  is  typically  laid  out  in  a  star-­of-­stars  topology Ø Gateways  are  a  transparent  bridge  relaying  messages  between  end-­devices  and  a   central  network  server  in  the  back-­end http://lora-­alliance.org
  39. 39. LoRa/LoRaWAN  Deployments § Orange  selects  Semtech’s LoRa  RF  for  low-­power  wide  area   networks  in  France’s  smart  cities Ø http://www.iot-­now.com/2015/10/12/37839-­orange-­selects-­semtechs-­lora-­rf-­for-­low-­power-­wide-­area-­networks-­in-­frances-­ smart-­cities/ § KPN  launches  LoRa  network  in  Rotterdam,  The  Hague Ø http://www.telecompaper.com/news/kpn-­launches-­lora-­network-­in-­rotterdam-­the-­hague-­-­1111547 § Semtech  and  Tata  Communications  Partner  to  Build  Internet  of   Things  Network  in  India Ø http://www.businesswire.com/news/home/20151105005436/en/Semtech-­Tata-­Communications-­Partner-­Build-­Internet-­ Network § Wireless  Sensor  Networks  Monitor  Active  Volcanoes  in  Japan Ø http://electronicdesign.com/iot/wireless-­sensor-­networks-­monitor-­active-­volcanoes-­japan § Bouygues  unveils  dedicated  IoT  subsidiary  for  new  LoRa  network Ø http://www.mobileworldlive.com/featured-­content/home-­banner/bouygues-­telecom-­unveils-­iot-­subsidiary/ § SK  Telecom  plans  nationwide  LPWA  network  based  on  LoRa Ø http://www.mobileworldlive.com/asia/asia-­news/skt-­plans-­nationwide-­lpwa-­network-­this-­year/
  40. 40. The  Things  Network  – based  on  LoRaWAN
  41. 41. The  Things  Network  Oxford  &  Flood  Network Source:  Ben  Ward,  TTN  Oxford  and  Flood  Network: http://thethingsnetwork.org/c/oxford http://flood.network/
  42. 42. Cellular  IoT LTE  was  designed  in  3GPP  Rel.  8  to  provide  affordable  mobile  broadband   and  has  been  developed  by  subsequent  3GPP  releases Three  tracks  are  being  standardized  in  3GPP  for  Cellular  IoT: § LTE-­M an  evolution  of  LTE  optimized  for  IoT Ø First  released  in  Rel.  12  in  Q4  2014 Ø Further  optimization  will  be  included  in  Rel.  13 § EC-­GSM Extended  Coverage  GSM Ø Evolutionary   approach  being  standardized  in  GSM  Edge  Radio  Access  Network  (GERAN)  Rel.  13 § NB-­IoT Narrowband  IoT   Ø Part  of  3GPP  RAN  Rel.  13   Ø Proposals  for  the  new  NB-­IoT  standardization  were  agreed  September,  2015  with  specifications   expected  to  be  completed  by  Q2  2016 Ø There  were  originally   two  competing  solutions: - Narrowband  Cellular   IoT  (NB-­CIoT)  backed  by  Huawei  Technologies,  Vodafone,  China  Unicom - Narrowband  LTE  (NB-­LTE)  200  kHz  narrowband  evolution   of  LTE-­M  – backed  by  Ericsson,   Nokia,  Intel
  43. 43. 3GPP  Release  12  updates  for  LTE-­M § Rel.  12  looks  at  how  to  reduce  complexity  and  accommodate  LTE-­M  requirements  and  a   new  Category  of  UE  (Cat  0)  was  introduced,  thereby  providing   significant  cost  reductions: § Antennas Ø There  is  the  capability   for  only  one  receive  antenna  compared  to  two  receive  antennas  for  other   device  categories § Lower  data  rate  requirement  (to  1  Mbs) Ø The  complexity  and  cost  for  both  processing  power  and  memory  will  be  reduced  significantly § Half  Duplex  Operation Ø Half  duplex  devices  are  supported  as  an  optional   feature  -­ this  provides  cost  savings 3GPP  Release 8 8 12 13 Cat  4 Cat  1 Cat  0 “Cat  1.4 MHz” Downlink  peak  rate  (Mbs) 150 10 1 1 Uplink  Peak rate 50 5 1 1 Number  of  antennas 2 2 1 1 Duplex Mode Full Full Half Half UE  receive  bandwidth 20 20 20 1.4 UE  Transmit  power  (dBm) 23 23 23 20
  44. 44. LTE-­M  features  planned  for  3GPP  Release  13 There  are  several  features  that  are  being  proposed  and  prepared  for  the  next  release  of   the  3GPP  standards  in  terms  of  LTE  M2M  capabilities: § Reduce  bandwidth  to  1.4  MHz  for  uplink  and  downlink § Reduce  transmit  power  to  20dBm § Reduce  support  for  downlink  transmission  modes § Relax  the  requirements  that  require  high  levels  of  processing 3GPP  Release 8 8 12 13 Cat  4 Cat  1 Cat  0 “Cat  1.4 MHz” Downlink  peak  rate  (Mbs) 150 10 1 1 Uplink  Peak rate 50 5 1 1 Number  of  antennas 2 2 1 1 Duplex Mode Full Full Half Half UE  receive  bandwidth 20 20 20 1.4 UE  Transmit  power  (dBm) 23 23 23 20
  45. 45. 3GPP  Cellular  NB-­IoT  Features § Network  can  be  deployed  in  very  small  bandwidth Ø 180  kHz  RF  bandwidth  for  both  downlink  and  uplink § Improved  indoor  coverage  (20  dB  enhancement) § Ultra  low  device  cost  (<$5) § Low  device  power  consumption  (>10  year  battery  life) § Support  for  massive  number  of  low  throughput  devices
  46. 46. 3GPP  NB-­IoT  Modes  of  Operation NB-­IoT  should  support  3  different  modes  of  operation:   § ‘Stand-­alone  operation’  utilizing  for  example  the  spectrum  currently   being  used  by  GERAN  systems  as  a  replacement  of  one  or  more   GSM  carriers § ‘Guard  band  operation’ utilizing  the  unused  resource  blocks  within  a   LTE  carrier’s  guard-­band   § ‘In-­band  operation’ utilizing  resource  blocks  within  a  normal  LTE   carrier
  47. 47. Cellular  NB-­IoT  Proof  of  Concept From  – “Vodafone  and  NB-­IoT”: http://www.gsma.com/connectedliving/wp-­content/uploads/2015/12/Presentation-­3_Vodafone-­keynote-­v5.pdf
  48. 48. Cellular  NB-­IoT  Proof  of  Concept From  – “Vodafone  and  NB-­IoT”: http://www.gsma.com/connectedliving/wp-­content/uploads/2015/12/Presentation-­3_Vodafone-­keynote-­v5.pdf
  49. 49. NB-­IoT  -­ Vodafone  Timeline From  – “Vodafone  and  NB-­IoT”: http://www.gsma.com/connectedliving/wp-­content/uploads/2015/12/Presentation-­3_Vodafone-­keynote-­v5.pdf
  50. 50. Summary There  are  many  competing   technologies  and  standards! One Size does Not  fit  All
  51. 51. About  Connect2  Systems We  specialise  in  helping  helping  companies  integrate: § Sensors,  data,  networks  and  control  systems § Wireless  Sensor  Network  products With  IoT  Application  Platforms  and  Enterprise  Systems We  offer: § Custom  hardware  and  embedded  software  services § Remote  Device  Management  Solution  for  constrained  IoT  devices