SlideShare ist ein Scribd-Unternehmen logo
1 von 13
Downloaden Sie, um offline zu lesen
Module 1
INTRODUCTION TO QUANTITATIVE
TECHNIQUES
Topic:
Continuity and Differentiation
(Basic Mathematics)
(1)
ype Using standaYd Form
-a maY-1
a o
Theorem Um
X- a
16 4-2 = 4 2 =
3
m
Um
Examle4 Find Gm M 2 - 2
- 2 - b
Um - b
Examble 2 Evaluate m
b
8b 3 b 8
3- b
m - b
For cAice
Ans: LJi - bJb
Find Gm
- b
T im = 8o am mEN,
nd
-22
a Um
m - a
Find the Value of a 4 m
3/-1-I Ans:Eva luate m
.
- 2
Comtmuity at a point
A Functi on () 1S
Scd to be Coimuous at a
puint X =a of its domain ifF
m ( ) = +(a) .
X a
Thus
i s continuous at x=a) 2 um f(«) =
la)
im ) = m F = l a ) LH.L = R.H.L = Value ot the funcion
Xat
Algeba of lsntinunus tunch on Let and q be tuwo eal uncims, Coinuovs at
= a. Let be a real mumber. Then
Conhnuous at = a (i is Cmtimuovs at Xza
(in' + IS Conhnuous at = a (iw is cnthnuus at n= a
1S ntinuvs at x =a provialed fla)E (V) s Coninunus at x a, pTovided g(4) o
(V
Examle 4 Test the Ccrinuity o he unchm(») at oigin,where
= o
Soluhon e ob seve hat
= Um (-h) =
um -h)
LHL 4+ X=o)= m t(x) =
m +o-h) =um f(-h) - -
(3)
m= üm
ho
- -1,
and, RHL at x = o) Um ( ) = im +l0+h) = Um h=m
m 1
h
im
ho
Ths we havee Am ) Um +(
Csminu us at the OYi gin
Hence ( is mot
Example 2 D s u s s he Cntinü
he funckn() at ael/2 where
< L
F() Ans: Discaninvn
-
S-4 is Cominus
at x =1.
4x3 < 2
Example 3 Shos hat (x) =
unchom is lomhnuus
Examle 4
D E t e m 1 n e e
the Value of k fr which he toll0LIngtunchon
is Cnhnunns
a t 3
3
3
3
(4-)Soluion Smce ( is CntinuUuus at - 3 .
m + ) e+(3
3
L F 3) - k]
=> m k
x)x+3) UmX+3) =K 6=ku m m
3
3 - 3
Exambles. Find the Value ohe Constant s o hat he uncHon aiven belosis
Canhnuuv s at e -1
Ane: A=-4
2a b x>1
Example C. T he funch on F given F(A) s
Sa -2b
COninus at e 1,ind the values a a and b LAns: a e
3, be2
-4 +a < 4
Example 7. Let
x-4 is Cntnuuus at e4- ind
=4-
a b the Values 6 a omd
4+b 7 4
Ans: a21, b -1J
-+
(S)Derivative ot a fumctiom
Let unch on, Then he Value y depends uon they ) be a given Canhnubs
value af and it chamges with a
change in he value of . we use theward.increment to
denote a Small choamqe a . imeeage. or clecvease m the value ot and y
Let Ayy be am increment im Co Ye.spomodung to an imcnu m ent Ax n x. Then
y f ) omol y+Ay = ( * )
On
Subtracng re e
Ay tAx)-$()
A (+Aw)-
A A
Ay Um
+ A ) - f(n)
Gm
A
Ax o A o A
the dei vahve oy difeYenha1 Caciuent
The above imi t exists nitely is called
denote o by
o y ( itm Yesheck to and it is cdenoteol by
dc
ditferenhafm.
The rocess P nding he clerivak ve. is knoLn a
The Value st ( ) obtuneol by puhng X= a is called the
Serivative at a pnnt
derivaive ot (») at a and it is dlenoted by'(a) a
Geametrically, he derivative ot a unchm ( ) at a
puint = a nupausemhs the slobe
o the tangent to the Curve x) at Ca,tla))
(6)
Example 1 Shous that the unchum is diffexnhable at 3 and dbtain s
derivetive at - 3.
Solu hum nave
3 + h ) - ( 3 )
+h6h -1 hré
whith aplroache 6ah->o
Hene (is ditternhable at x 3 amd it derivahive at x23 is f (3- 6.
Example2 hinol the slope ot the tanqent to he CuTve y = #)e J i at the puint
9, 2)
By geometnical interpstahiun, he slape of the tanqent ts the Curve
y J at 1,) = (1)
Sutm
Um F h) -
fl1) ath-
h
4+h-3 m th-3 h +3m
1+h +3
-+h)-9 m
h o ath +3
+ot3
slakHencetha tangest Line toY Jat 1,2) h slope-
Ans. 8here x) +2+1
Example 3. hnd 3 hy deinition
Examble 4. oleiniton, nd'2 and s)when () ax+1x+4 Lns:1,11
Example4.
ExambleS. Fav the funchum given b ) =
6x+8, rove that
S) 3 t(2) =
(8)
Example 6. I the unchon ) = A+1x-4 (5) =
9, find a. LAns:à=9J
Devivatives of Some Shandard +unctims
2) =d
4 log24)a7o d(a =
a l0gea.3.
6. Ce)6
eCloa.) logaS d
Rule2 Cctt) c
tw]
hundamertal Rule tur Ditterentahim
Rule 4
Rule 3
Example 1. Dfteeniate the fsllouima umchoms
i 2 e+4-14. CI (J*
Soluiom (1 Let
Cx) + (T) - 2 (e) +4 9
d
--1
+(-1 x e 4
- - +
Let
= (J*+ 2.
2 L
ey (x)d (2) +()
Example 2 Fimd the derivatives o
X+1 Cx-2) (b) 3+3+e-2 ee(a
Ans (ay 3
(C S+6) lx-3) (b 3loa3 + e
(C 3x-16 x21
Rule oduct Rule T ( ) amd x) anL two derenhable fun cions, then
( . g ) is also dierenable Such Hhat
F ) g(x»= t . Lat)+ 3) )d
Example 4 DTereniate the olMowing uneions'
73 (b (+3). log C ( Su+6) A+23
(a
Solu Hm Let y =
/3e4)
, e) +e.d (la) e )d
e - e s
2
(b Let y= +Bx). log
+3). og*) +loqx (+3x) = +3x)-L + log 2x+3)
d
+3)t(20+3) log
(C Let ye(S1t6)Cx*+2)
' y (sx+t). a (+2) + 2) d ( s 46)d
= (3) (x-sx * 6) +6+2).(2x-5)
3-15x+ 18 +2'-Sx*t 4x -10
ST-2ox+18x+ 4- -10
Example 2 ind the derivatives
(C ( 31 +2) (x+2)2
(a) e (b +3+1).log
3 - 2 - 4
(C
Ans. (a e ( t I ) ( b (2.+3) log + +3 +1 (C 3-2% 4
Rule uotient Rule T (a) and gx) a dtfeeniable funch uns wTt. hen
are also diferenhable Su hat
gx) 4)
-
ttx).Cgt)
dd L0
Example 1 Diferenhate the flouang unchons
(a |4+ log
-
Soluion Let y x -
(a
-
dyd
(x-1)a+)-(at 1) (M-)=-1--=
- 1 ) 2
2
(-1)*(X-1)
(b Letyy= og
d
)0gx)- -log *) 4 ) . - log x+1)= (%+1)-2M+)}log
( ) (+
Examlple 2 Hind the cderivatives ot
b) ++Y Ans:(as (4)(b)(b) apx +2sp(a
antb
ax+b)J
Kle 6Derivati o a ncion t a funchon (Choin Rule)
T+y lt) and t= g(x) ther d =a
d
This may be further extended to thne uncthm
T lt), t u) and u h(x hen
dy dlt y d
ddu
d dt
1 Ty =lo9 + J a + )
nd d
d
As y e loq(xta+)
Example
Soluim
- loglog(xrdd*a) a +d
(a 4 )
Ja+x
Examble 2. Hnd the derivative ut e
Let y
e-
e d. (eyle+2")-e'+2)4;(C.2)Soluim.
(c
(ee)CeN-e') - (e+)(e'+*)(e"_e)-( e ë . 4
e - ) (e-x)
Examle3 Hind the derivatives of-
Ans( a - /(a
Ans loe x Clog4)
(b og +lb910 loq,+ lg
rove that (1-x) AL +y = o
(C T+ y A
+
(d T y C1-e)JI-Shous hat
d
2.(Ans
(e
2 -2
+e
Ans
e -2

Weitere ähnliche Inhalte

Was ist angesagt?

CAPS_Discipline_Training
CAPS_Discipline_TrainingCAPS_Discipline_Training
CAPS_Discipline_Training
Hannah Butler
 
Pythagorean theorem and distance formula
Pythagorean theorem and distance formulaPythagorean theorem and distance formula
Pythagorean theorem and distance formula
50147146
 
Powerpoint
PowerpointPowerpoint
Powerpoint
44983850
 
Midterm Study Guide
Midterm Study GuideMidterm Study Guide
Midterm Study Guide
vhiggins1
 
Day 9 examples u4w14
Day 9 examples u4w14Day 9 examples u4w14
Day 9 examples u4w14
jchartiersjsd
 
Datamining 3rd Naivebayes
Datamining 3rd NaivebayesDatamining 3rd Naivebayes
Datamining 3rd Naivebayes
sesejun
 

Was ist angesagt? (20)

The Moore-Spiegel Oscillator
The Moore-Spiegel OscillatorThe Moore-Spiegel Oscillator
The Moore-Spiegel Oscillator
 
CAPS_Discipline_Training
CAPS_Discipline_TrainingCAPS_Discipline_Training
CAPS_Discipline_Training
 
Pythagorean theorem and distance formula
Pythagorean theorem and distance formulaPythagorean theorem and distance formula
Pythagorean theorem and distance formula
 
Math34 Trigonometric Formulas
Math34 Trigonometric  FormulasMath34 Trigonometric  Formulas
Math34 Trigonometric Formulas
 
Integrals
IntegralsIntegrals
Integrals
 
Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
Math34 Trigonometric Formulas
Math34 Trigonometric  FormulasMath34 Trigonometric  Formulas
Math34 Trigonometric Formulas
 
Powerpoint
PowerpointPowerpoint
Powerpoint
 
Math34 Trigonometric Formulas
Math34 Trigonometric  FormulasMath34 Trigonometric  Formulas
Math34 Trigonometric Formulas
 
3.1 extrema on an interval
3.1 extrema on an interval3.1 extrema on an interval
3.1 extrema on an interval
 
Midterm Study Guide
Midterm Study GuideMidterm Study Guide
Midterm Study Guide
 
Day 9 examples u4w14
Day 9 examples u4w14Day 9 examples u4w14
Day 9 examples u4w14
 
Remainder and Factor Theorem
Remainder and Factor TheoremRemainder and Factor Theorem
Remainder and Factor Theorem
 
REMEDIAL MATHAMETICS PHARM D 1ST YEAR FORMULA'S
REMEDIAL MATHAMETICS PHARM D 1ST YEAR FORMULA'SREMEDIAL MATHAMETICS PHARM D 1ST YEAR FORMULA'S
REMEDIAL MATHAMETICS PHARM D 1ST YEAR FORMULA'S
 
Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)
 
Datamining 3rd Naivebayes
Datamining 3rd NaivebayesDatamining 3rd Naivebayes
Datamining 3rd Naivebayes
 
3rd Semester Electronic and Communication Engineering (June/July-2015) Questi...
3rd Semester Electronic and Communication Engineering (June/July-2015) Questi...3rd Semester Electronic and Communication Engineering (June/July-2015) Questi...
3rd Semester Electronic and Communication Engineering (June/July-2015) Questi...
 
Day 6 examples
Day 6 examplesDay 6 examples
Day 6 examples
 
Differntiation
 Differntiation Differntiation
Differntiation
 
Polinômios 2
Polinômios 2Polinômios 2
Polinômios 2
 

Ähnlich wie Continuity and differentiation

Notes and formulae mathematics
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematics
Zainonie Ma'arof
 
Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
Ah Ching
 

Ähnlich wie Continuity and differentiation (19)

Sect5 4
Sect5 4Sect5 4
Sect5 4
 
X10659 (ma8353)
X10659 (ma8353)X10659 (ma8353)
X10659 (ma8353)
 
C 14-met-mng-aei-102-engg maths-1
C 14-met-mng-aei-102-engg maths-1C 14-met-mng-aei-102-engg maths-1
C 14-met-mng-aei-102-engg maths-1
 
Notes and formulae mathematics
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematics
 
final15
final15final15
final15
 
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
 
Maths05
Maths05Maths05
Maths05
 
4th Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...
4th Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...4th Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...
4th Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...
 
Math iecep
Math iecepMath iecep
Math iecep
 
Question bank -xi (hots)
Question bank -xi (hots)Question bank -xi (hots)
Question bank -xi (hots)
 
Core 2 revision notes
Core 2 revision notesCore 2 revision notes
Core 2 revision notes
 
Notes and Formulae Mathematics SPM
Notes and Formulae Mathematics SPM Notes and Formulae Mathematics SPM
Notes and Formulae Mathematics SPM
 
Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
 
Mathematics formulas
Mathematics formulasMathematics formulas
Mathematics formulas
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
 
Unit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractionsUnit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractions
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 

Mehr von Dr. Hari Arora (9)

Mathematics 06-00092 (1)
Mathematics 06-00092 (1)Mathematics 06-00092 (1)
Mathematics 06-00092 (1)
 
Exponentialentropyonintuitionisticfuzzysets (1)
Exponentialentropyonintuitionisticfuzzysets (1)Exponentialentropyonintuitionisticfuzzysets (1)
Exponentialentropyonintuitionisticfuzzysets (1)
 
Neutrosophic multi criteria_decision_mak
Neutrosophic multi criteria_decision_makNeutrosophic multi criteria_decision_mak
Neutrosophic multi criteria_decision_mak
 
Cam scanner 05 02-2021 18.13
Cam scanner 05 02-2021 18.13Cam scanner 05 02-2021 18.13
Cam scanner 05 02-2021 18.13
 
Revisedsimilarity
RevisedsimilarityRevisedsimilarity
Revisedsimilarity
 
Revisedsimilarity
RevisedsimilarityRevisedsimilarity
Revisedsimilarity
 
03.time series presentation
03.time series presentation03.time series presentation
03.time series presentation
 
Ch 2
Ch 2Ch 2
Ch 2
 
Convergence
ConvergenceConvergence
Convergence
 

Kürzlich hochgeladen

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Kürzlich hochgeladen (20)

80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 

Continuity and differentiation

  • 1. Module 1 INTRODUCTION TO QUANTITATIVE TECHNIQUES Topic: Continuity and Differentiation (Basic Mathematics)
  • 2. (1) ype Using standaYd Form -a maY-1 a o Theorem Um X- a 16 4-2 = 4 2 = 3 m Um Examle4 Find Gm M 2 - 2 - 2 - b Um - b Examble 2 Evaluate m b 8b 3 b 8 3- b m - b For cAice Ans: LJi - bJb Find Gm - b T im = 8o am mEN, nd -22 a Um m - a Find the Value of a 4 m 3/-1-I Ans:Eva luate m . - 2
  • 3. Comtmuity at a point A Functi on () 1S Scd to be Coimuous at a puint X =a of its domain ifF m ( ) = +(a) . X a Thus i s continuous at x=a) 2 um f(«) = la) im ) = m F = l a ) LH.L = R.H.L = Value ot the funcion Xat Algeba of lsntinunus tunch on Let and q be tuwo eal uncims, Coinuovs at = a. Let be a real mumber. Then Conhnuous at = a (i is Cmtimuovs at Xza (in' + IS Conhnuous at = a (iw is cnthnuus at n= a 1S ntinuvs at x =a provialed fla)E (V) s Coninunus at x a, pTovided g(4) o (V Examle 4 Test the Ccrinuity o he unchm(») at oigin,where = o Soluhon e ob seve hat = Um (-h) = um -h) LHL 4+ X=o)= m t(x) = m +o-h) =um f(-h) - -
  • 4. (3) m= üm ho - -1, and, RHL at x = o) Um ( ) = im +l0+h) = Um h=m m 1 h im ho Ths we havee Am ) Um +( Csminu us at the OYi gin Hence ( is mot Example 2 D s u s s he Cntinü he funckn() at ael/2 where < L F() Ans: Discaninvn - S-4 is Cominus at x =1. 4x3 < 2 Example 3 Shos hat (x) = unchom is lomhnuus Examle 4 D E t e m 1 n e e the Value of k fr which he toll0LIngtunchon is Cnhnunns a t 3 3 3 3
  • 5. (4-)Soluion Smce ( is CntinuUuus at - 3 . m + ) e+(3 3 L F 3) - k] => m k x)x+3) UmX+3) =K 6=ku m m 3 3 - 3 Exambles. Find the Value ohe Constant s o hat he uncHon aiven belosis Canhnuuv s at e -1 Ane: A=-4 2a b x>1 Example C. T he funch on F given F(A) s Sa -2b COninus at e 1,ind the values a a and b LAns: a e 3, be2 -4 +a < 4 Example 7. Let x-4 is Cntnuuus at e4- ind =4- a b the Values 6 a omd 4+b 7 4 Ans: a21, b -1J -+
  • 6. (S)Derivative ot a fumctiom Let unch on, Then he Value y depends uon they ) be a given Canhnubs value af and it chamges with a change in he value of . we use theward.increment to denote a Small choamqe a . imeeage. or clecvease m the value ot and y Let Ayy be am increment im Co Ye.spomodung to an imcnu m ent Ax n x. Then y f ) omol y+Ay = ( * ) On Subtracng re e Ay tAx)-$() A (+Aw)- A A Ay Um + A ) - f(n) Gm A Ax o A o A the dei vahve oy difeYenha1 Caciuent The above imi t exists nitely is called denote o by o y ( itm Yesheck to and it is cdenoteol by dc ditferenhafm. The rocess P nding he clerivak ve. is knoLn a The Value st ( ) obtuneol by puhng X= a is called the Serivative at a pnnt derivaive ot (») at a and it is dlenoted by'(a) a Geametrically, he derivative ot a unchm ( ) at a puint = a nupausemhs the slobe o the tangent to the Curve x) at Ca,tla))
  • 7. (6) Example 1 Shous that the unchum is diffexnhable at 3 and dbtain s derivetive at - 3. Solu hum nave 3 + h ) - ( 3 ) +h6h -1 hré whith aplroache 6ah->o Hene (is ditternhable at x 3 amd it derivahive at x23 is f (3- 6. Example2 hinol the slope ot the tanqent to he CuTve y = #)e J i at the puint 9, 2) By geometnical interpstahiun, he slape of the tanqent ts the Curve y J at 1,) = (1) Sutm Um F h) - fl1) ath- h 4+h-3 m th-3 h +3m 1+h +3 -+h)-9 m h o ath +3 +ot3 slakHencetha tangest Line toY Jat 1,2) h slope-
  • 8. Ans. 8here x) +2+1 Example 3. hnd 3 hy deinition Examble 4. oleiniton, nd'2 and s)when () ax+1x+4 Lns:1,11 Example4. ExambleS. Fav the funchum given b ) = 6x+8, rove that S) 3 t(2) = (8) Example 6. I the unchon ) = A+1x-4 (5) = 9, find a. LAns:à=9J Devivatives of Some Shandard +unctims 2) =d 4 log24)a7o d(a = a l0gea.3. 6. Ce)6 eCloa.) logaS d Rule2 Cctt) c tw] hundamertal Rule tur Ditterentahim Rule 4 Rule 3
  • 9. Example 1. Dfteeniate the fsllouima umchoms i 2 e+4-14. CI (J* Soluiom (1 Let Cx) + (T) - 2 (e) +4 9 d --1 +(-1 x e 4 - - + Let = (J*+ 2. 2 L ey (x)d (2) +()
  • 10. Example 2 Fimd the derivatives o X+1 Cx-2) (b) 3+3+e-2 ee(a Ans (ay 3 (C S+6) lx-3) (b 3loa3 + e (C 3x-16 x21 Rule oduct Rule T ( ) amd x) anL two derenhable fun cions, then ( . g ) is also dierenable Such Hhat F ) g(x»= t . Lat)+ 3) )d Example 4 DTereniate the olMowing uneions' 73 (b (+3). log C ( Su+6) A+23 (a Solu Hm Let y = /3e4) , e) +e.d (la) e )d e - e s 2 (b Let y= +Bx). log +3). og*) +loqx (+3x) = +3x)-L + log 2x+3) d +3)t(20+3) log
  • 11. (C Let ye(S1t6)Cx*+2) ' y (sx+t). a (+2) + 2) d ( s 46)d = (3) (x-sx * 6) +6+2).(2x-5) 3-15x+ 18 +2'-Sx*t 4x -10 ST-2ox+18x+ 4- -10 Example 2 ind the derivatives (C ( 31 +2) (x+2)2 (a) e (b +3+1).log 3 - 2 - 4 (C Ans. (a e ( t I ) ( b (2.+3) log + +3 +1 (C 3-2% 4 Rule uotient Rule T (a) and gx) a dtfeeniable funch uns wTt. hen are also diferenhable Su hat gx) 4) - ttx).Cgt) dd L0 Example 1 Diferenhate the flouang unchons (a |4+ log - Soluion Let y x - (a -
  • 12. dyd (x-1)a+)-(at 1) (M-)=-1--= - 1 ) 2 2 (-1)*(X-1) (b Letyy= og d )0gx)- -log *) 4 ) . - log x+1)= (%+1)-2M+)}log ( ) (+ Examlple 2 Hind the cderivatives ot b) ++Y Ans:(as (4)(b)(b) apx +2sp(a antb ax+b)J Kle 6Derivati o a ncion t a funchon (Choin Rule) T+y lt) and t= g(x) ther d =a d This may be further extended to thne uncthm T lt), t u) and u h(x hen dy dlt y d ddu d dt 1 Ty =lo9 + J a + ) nd d d As y e loq(xta+) Example Soluim - loglog(xrdd*a) a +d
  • 13. (a 4 ) Ja+x Examble 2. Hnd the derivative ut e Let y e- e d. (eyle+2")-e'+2)4;(C.2)Soluim. (c (ee)CeN-e') - (e+)(e'+*)(e"_e)-( e ë . 4 e - ) (e-x) Examle3 Hind the derivatives of- Ans( a - /(a Ans loe x Clog4) (b og +lb910 loq,+ lg rove that (1-x) AL +y = o (C T+ y A + (d T y C1-e)JI-Shous hat d 2.(Ans (e 2 -2 +e Ans e -2