SlideShare ist ein Scribd-Unternehmen logo
1 von 14
Chap. 10. Fourier Series, Integrals, and TransformsChap. 10. Fourier Series, Integrals, and Transforms
- Fourier series: series of cosine and sine terms
- for general periodic functions (even discontinuous periodic func.)
- for ODE, PDE problems
(more universal than Taylor series)
10.1. Periodic Functions. Trigonometric Series10.1. Periodic Functions. Trigonometric Series
- Periodic function: f(x+p) = f(x) for all x; period=p
- Examples) Periodic instabilities in rheological processesPeriodic instabilities in rheological processes
Spinning process
Tubular film blowing process
Flow
direction
film thickness
at die
at take-up
- f(x + np) = f(x) for all x (n: integer)
- h(x) = af(x) + bg(x) (f & g with period p; a & b: constants)  h(x) with period p.
Trigonometric SeriesTrigonometric Series
- Trigonometric series of function f(x) with period p=2:
(ak,bk: constant coefficients)
10.2. Fourier Series10.2. Fourier Series
- Representation of periodic function f(x) in terms of cosine and sine functions
Euler Formulas for the Fourier Coefficients
0 1 1 2 2f (x) a a cosx b sin x a cos2x b sin 2x= + + + + +L
0 n n
n 1
f (x) a (a cosnx b sin nx)
∞
=
⇒ = + +∑ These series converge,
its sum will be a function of period 2
 Fourier SeriesFourier Series
0 n n
n 1
f (x) a (a cosnx b sin nx)
∞
=
= + +∑ (Periodic function of period 2)
(1) Determination of the coefficient term a0
(2) Determination of the coefficients an of the cosine terms
0 n n
n 1
0 n n 0
n 1
f (x)dx a (a cosnx b sin nx) dx
a dx a cosnx dx b sin nx dx 2 a
π π
π π
π π π
π π π
π
∞
− −
=
∞
− − −
=
 
= + + 
 
 = + + = ÷
 
∑∫ ∫
∑∫ ∫ ∫
0
1
a f (x)dx
2
π
ππ −
= ∫
0 n n
n 1
0 n
n 1
n
n 1
f (x)cosmx dx a (a cosnx b sin nx) cosmxdx
1 1
a cosmxdx a cos(n m)xdx cos(n m)xdx
2 2
1 1
a sin(n m)xdx sin(n m)xdx
2 2
π π
π π
π π π
π π π
π π
π π
∞
− −
=
∞
− − −
=
∞
− −
=
 
= + + 
 
  
= + + + −  ÷
  
  
+ + + −  ÷
  
∑∫ ∫
∑∫ ∫ ∫
∑ ∫ ∫
m
1
a f(x)cosmx dx (m 1,2,3,...)
π
ππ −
= =∫
(Except n=m)(Except n=m)
(3) Determination of the coefficients bn of the cosine terms
Summary of These Calculations: Fourier Coefficients, Fourier Series
Fourier Coefficients:
Fourier Series:
,...)2,1n(dxnxsin)x(f
1
b
,...)2,1n(dxnxcos)x(f
1
a
dx)x(f
2
1
a
n
n
0
=
π
=
=
π
=
π
=
∫
∫
∫
π
π−
π
π−
π
π−
( )0 n n
n 1
f (x) a a cosnx b sin nx
∞
=
= + +∑
( )0 n n
n 1
f (x)sin mx dx a a cosnx b sin nx sin mx dx
π π
π π
∞
− −
=
 
= + + 
 
∑∫ ∫
,...)3,2,1m(dxmxsin)x(f
1
bm =
π
= ∫
π
π−
Ex.1Ex.1) Rectangular Wave
f(x) = -k (-<x<0) & k (0<x<); f(x+2)=f(x)
(See Figure. 238 for partial sums of Fourier series )






+++
π
=⇒






π
==
π
==
π
=
π−
π
=


 +−
π
=
π
=
=


 +−
π
=
π
=
=
π
=
∫∫∫
∫∫∫
∫
π
π−
π
π−
π
π−
π
π−
π
π−
x5sin
5
1
x3sin
3
1
xsin
k4
)x(f
,...
5
k4
b,0b,
3
k4
b,0b,
k4
b
)ncos1(
n
k2
dxnxsin)k(dxnxsin)k(
1
dxnxsin)x(f
1
b
0dxnxcos)k(dxnxcos)k(
1
dxnxcos)x(f
1
a
0dx)x(f
2
1
a
54321
0
0
n
0
0
n
0
k
-  x
f(x)
-k
Orthogonality of the Trigonometric SystemOrthogonality of the Trigonometric System
- Trigonometric system is orthogonal on the interval -  x  
Convergence and Sum of Fourier SeriesConvergence and Sum of Fourier Series
Theorem 1Theorem 1: A periodic function f(x) (period 2, -  x  )
~ piecewise continuous
~ with a left-hand derivative and right-hand derivative at each point
 Fourier series of f(x) is convergent. Its sum is f(x).
)nmincluding(0dxnxsinmxcos
)nm(0dxnxsinmxsin),nm(0dxnxcosmxcos
==
≠=≠=
∫
∫∫
π
π−
π
π−
π
π−
)M)x(''f(dxnxcos)x(''f
n
1
n
nxcos)x('f
dxnxsin)x('f
n
1
n
nxsin)x(f
dxnxcos)x(f
1
a
22
n
<
π
−
π
=
π
−
π
=
π
=
∫
∫∫
π
π−
π
π−
π
π−
π
π−
π
π−
2n222n
n
M2
b,
n
M2
Mdx
n
1
dxnxcos)x(''f
n
1
a ==
π
<
π
= ∫∫
π
π−
π
π−






+++++++ 22220
3
1
3
1
2
1
2
1
11M2a~)x(fConvergent !
At discontinuous point, Fourier series
converge to the average, (f(x+)+f(x-))/2)
10.3. Functions of Any Period p=2L10.3. Functions of Any Period p=2L
- Transition from period p=2 to period p=2L
- Function f(x) with period p=2L:
(Trigonometric SeriesTrigonometric Series)
( ) ( )
)v(g)x(f
LxL
Lv
xv
L
n
v
→
≤≤−
π
=⇔π≤≤π−
π
=
,...)2,1n(dx
L
xn
sin)x(f
L
1
b
,...)2,1n(dx
L
xn
cos)x(f
L
1
a,dx)x(f
L2
1
a
L
L
n
L
L
n
L
L
0
=




 π
=
=




 π
==
∫
∫∫
−
−−
0 n n
n 1
n n
f (x) a a cos x b sin x
L L
π π∞
=
    
= + + ÷ ÷  ÷
    
∑
,...)2,1n(dvnvsin)v(f
1
b
,...)2,1n(dvnvcos)v(g
1
a,dv)v(g
2
1
a
n
n0
=
π
=
=
π
=
π
=
∫
∫∫
π
π−
π
π−
π
π−
( )0 n n
n 1
g(v) a a cosnv b sin nv
∞
=
= + +∑
Ex.1Ex.1) Periodic square wave
f(x) = 0 (-2 < x < -1); k (-1 < x < 1); 0 (1 < x < 2) p=2L=4, L=2
Ex. 2Ex. 2) Half-wave rectifier
u(t) = 0 (-L < t < 0); Esint (0 < t < L)
p = 2L = 2/
k
-1 1 x
f(x)
0dx
2
xn
sink
2
1
b
,...)11,7,3n(
n
k2
a,...),9,5,1n(
n
k2
a
2
n
sin
n
k2
dx
2
xn
cosk
2
1
a,
2
k
dxk
4
1
dx)x(f
L2
1
a
1
1
n
nn
1
1
n
1
1
L
L
0
=




 π
=
=
π
−==
π
=⇒
π
π
=




 π
====
∫
∫∫∫
−
−−−






−
π
+
π
−
π
π
+= x
2
5
cos
5
1
x
2
3
cos
3
1
x
2
cos
k2
2
k
)x(f
k
-/ 0
u(t)
/
10.4. Even and Odd Functions. Half-Range Expansions10.4. Even and Odd Functions. Half-Range Expansions
- If a function is even or odd  more compact form of Fourier series
Even and Odd FunctionsEven and Odd Functions
Even function y=g(x): g(-x) = g(x) for all x (symmetric w.r.t. y-axis)
Odd function y=g(x): g(-x) = -g(x) for all x
Three Key FactsThree Key Facts
(1) For even function, g(x),
(2) For odd function, h(x),
(3) Production of an even and an odd function  odd function
let q(x) = g(x)h(x), then q(-x) = g(-x)h(-x) = -g(x)h(x) = -q(x)
x
g(x)
Even function
x
g(x)
Odd function
∫∫ =
−
L
0
L
L
dx)x(g2dx)x(g
0dx)x(h
L
L
=∫−
In the Fourier series,
f(x) even  f(x)sin(nx/L) odd, then bn=0
f(x) odd  f(x)cos(nx/L) odd, then a0 & an=0
Theorem 1Theorem 1: Fourier cosine series, Fourier sine seriesFourier cosine series, Fourier sine series
(1) Fourier cosine series for even function with period 2L
(2) Fourier sine series for odd function with period 2L






=




 π
== ∫∫
L
0
n
L
0
0 ,...)2,1n(dx
L
xn
cos)x(f
L
2
a,dx)x(f
L
1
a∑
∞
=





 π
+=
1n
n0
L
xn
cosaa)x(f
( ) 





=
π
=
π
= ∫∫
ππ
0
n
0
0 ,...)2,1n(dxnxcos)x(f
2
a,dx)x(f
1
a( )∑
∞
=
+=
1n
n0 nxcosaa)x(f
For even function with period 2






=




 π
= ∫
L
0
n ,...)2,1n(dx
L
xn
sin)x(f
L
2
b∑
∞
=





 π
=
1n
n
L
xn
sinb)x(f
( ) 





=
π
= ∫
π
0
n ,...)2,1n(dxnxsin)x(f
2
b( )∑
∞
=
=
1n
n nxsinb)x(f
For odd function with period 2
Theorem 2Theorem 2: Sum of functionsSum of functions
- Fourier coefficients of a sum of f1 + f2
 sums of the corresponding Fourier coefficients of f1 and f2.
- Fourier coefficients of cf  c times the corresponding coefficients of f.
Ex. 1Ex. 1) Rectangular pulse
Ex. 2Ex. 2) Sawtooth wave: f(x) = x +  (- < x < ) and f(x + ) = f(x)
for f2 = :  
for odd f1 = x 






+++
π
=⇒ x5sin
5
1
x3sin
3
1
xsin
k4
)x(f + k+ k
previous result by Ex.1 in 10.2
2k
-  x
f(x)
-  x
f(x)
)f,xf(fff 2121 π==+=
π
π
−= ncos
2
bn






−+−+π=⇒ x3sin
3
1
x2sin
2
1
xsin2)x(f
Half-Range ExpansionsHalf-Range Expansions
Ex. 1Ex. 1) “Triangle” and its-half-range expansions
x
f(x)
L
f(x)
L x
even periodic extension feven periodic extension f11
(period: 2L)
L
f(x)
x
odd periodic extension fodd periodic extension f22
(period: 2L)
x
f(x)
L/2 L0
k
Lx
2
L
)xL(
L
k2
;
2
L
x0x
L
k2
)x(f <<−<<=
(a) Even periodic extension: use ∑
∞
=





 π
+=
1n
n0
L
xn
cosaa)x(f
(b) Odd periodic extension: use ∑
∞
=





 π
=
1n
n
L
xn
sinb)x(f
10.7. Approximation by Trigonometric Polynomials10.7. Approximation by Trigonometric Polynomials
- Fourier series ~ applied to approximation theoryapproximation theory
- Trigonometric polynomial of degree N:
- Total square error:
- Determination of the coefficients of F(x) for minimum E
( )∑=
++≈
N
1n
nn0 nxsinbnxcosaa)x(f
( )∑=
++=
N
1n
nn0 nxsinBnxcosAA)x(F (Minimize the error by usage of the F(x) !)
∫
π
π−
−= dx)Ff(E 2
∫∫∫
π
π−
π
π−
π
π−
+−= dxFfFdx2dxfE 22
( )2
N
2
1
2
N
2
1
2
0
2
BBAAA2dxF ++++++π=∫
π
π−






 =π== ∫∫∫
π
π−
π
π−
π
π−
0dx)mx)(sinnx(cos;nxdxsinnxdxcos 22
( )NN11NN1100 bBbBaAaAaA2fFdx ++++++π=∫
π
π−







π
=
π
= ∫∫
π
π−
π
π−
,dxnxcos)x(f
1
a,dx)x(f
2
1
a n0






++π+





++π−=⇒ ∑∑∫ ==
π
π−
N
1n
2
n
2
n
2
0
N
1n
nnnn00
2
)BA(A2)bBaA(aA22dxfE
nnnn
N
1n
0
n
0
n
2
0
2*
bB,aAwhen)ba(a2dxfE ==





++π−= ∑∫ =
π
π−
( ) ( )





−+−+−π=− ∑=
N
1n
2
nn
2
nn
2
00
*
)bB()aA(aA2EE (E - E*  0)(E - E*  0)
Theorem 1Theorem 1: Minimum square error
- Total square error, E, is minimum iff coefficients of F are the Fourier coefficients of f.
- Minimum value is E*
- From E*, better approximation as N increases
Bessel inequalityBessel inequality:
Parseval’s equality:
Ex. 1Ex. 1) Square error for the sawtooth wave
∫∑
π
π−
∞
= π
≤++ dxf
1
)ba(a2 2
1n
0
n
0
n
2
0 for any f(x)
∫∑
π
π−
∞
= π
=++ dxf
1
)ba(a2 2
1n
0
n
0
n
2
0

Weitere ähnliche Inhalte

Was ist angesagt?

Half range sine cosine fourier series
Half range sine cosine fourier seriesHalf range sine cosine fourier series
Half range sine cosine fourier series
Hardik Parmar
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
Sanjay Singh
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
Viraj Patel
 

Was ist angesagt? (20)

Fourier series and its applications by md nazmul islam
Fourier series and its applications by md nazmul islamFourier series and its applications by md nazmul islam
Fourier series and its applications by md nazmul islam
 
Fourier Series - Engineering Mathematics
Fourier Series -  Engineering MathematicsFourier Series -  Engineering Mathematics
Fourier Series - Engineering Mathematics
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series and applications of fourier transform
Fourier series and applications of fourier transformFourier series and applications of fourier transform
Fourier series and applications of fourier transform
 
Half range sine cosine fourier series
Half range sine cosine fourier seriesHalf range sine cosine fourier series
Half range sine cosine fourier series
 
2.4 derivations and languages
2.4 derivations and languages2.4 derivations and languages
2.4 derivations and languages
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
Langrange Interpolation Polynomials
Langrange Interpolation PolynomialsLangrange Interpolation Polynomials
Langrange Interpolation Polynomials
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolation
 
Normal forms
Normal formsNormal forms
Normal forms
 
Half range sine and cosine series
Half range sine and cosine seriesHalf range sine and cosine series
Half range sine and cosine series
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
1532 fourier series
1532 fourier series1532 fourier series
1532 fourier series
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
Computational logic Propositional Calculus proof system
Computational logic Propositional Calculus proof system Computational logic Propositional Calculus proof system
Computational logic Propositional Calculus proof system
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
 
Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian series
 
Fourier integral
Fourier integralFourier integral
Fourier integral
 
Over view of Laplace Transform and its Properties
Over view of Laplace Transform and its Properties Over view of Laplace Transform and its Properties
Over view of Laplace Transform and its Properties
 

Andere mochten auch

fourier series
fourier seriesfourier series
fourier series
8laddu8
 
007a velocity by instantaneousaxis
007a velocity by instantaneousaxis007a velocity by instantaneousaxis
007a velocity by instantaneousaxis
physics101
 
Aplicaicones de las series de fourier
Aplicaicones de las series de fourierAplicaicones de las series de fourier
Aplicaicones de las series de fourier
norelis15
 
numerical differentiation&integration
numerical differentiation&integrationnumerical differentiation&integration
numerical differentiation&integration
8laddu8
 
seven cylinder engine
seven cylinder engine seven cylinder engine
seven cylinder engine
Nilesh Thorwe
 
Clutch(single and multi plate)
Clutch(single and multi plate)Clutch(single and multi plate)
Clutch(single and multi plate)
10me027
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
8laddu8
 

Andere mochten auch (20)

fourier series
fourier seriesfourier series
fourier series
 
Clutches & brakes
Clutches & brakesClutches & brakes
Clutches & brakes
 
007a velocity by instantaneousaxis
007a velocity by instantaneousaxis007a velocity by instantaneousaxis
007a velocity by instantaneousaxis
 
Ch 4 CED (Concept in Engineering Design)
Ch 4 CED (Concept in Engineering Design)Ch 4 CED (Concept in Engineering Design)
Ch 4 CED (Concept in Engineering Design)
 
Fourier series expansion
Fourier series expansionFourier series expansion
Fourier series expansion
 
Aplicaicones de las series de fourier
Aplicaicones de las series de fourierAplicaicones de las series de fourier
Aplicaicones de las series de fourier
 
Fourier series and fourier integral
Fourier series and fourier integralFourier series and fourier integral
Fourier series and fourier integral
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
numerical differentiation&integration
numerical differentiation&integrationnumerical differentiation&integration
numerical differentiation&integration
 
Important Questions of fourier series with theoretical study Engg. Mathem...
Important Questions  of  fourier series with theoretical study   Engg. Mathem...Important Questions  of  fourier series with theoretical study   Engg. Mathem...
Important Questions of fourier series with theoretical study Engg. Mathem...
 
SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4
 
seven cylinder engine
seven cylinder engine seven cylinder engine
seven cylinder engine
 
Gate material civil engineering, environmental engineering
Gate material   civil engineering, environmental engineeringGate material   civil engineering, environmental engineering
Gate material civil engineering, environmental engineering
 
AEM Fourier series
 AEM Fourier series AEM Fourier series
AEM Fourier series
 
Solved numerical problems of fourier series
Solved numerical problems of fourier seriesSolved numerical problems of fourier series
Solved numerical problems of fourier series
 
Fourier series and transforms
Fourier series and transformsFourier series and transforms
Fourier series and transforms
 
Indian Films Women Sex Roles
Indian Films Women Sex RolesIndian Films Women Sex Roles
Indian Films Women Sex Roles
 
Clutch(single and multi plate)
Clutch(single and multi plate)Clutch(single and multi plate)
Clutch(single and multi plate)
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
 
Automobile Engineering Lecture Notes
Automobile Engineering Lecture NotesAutomobile Engineering Lecture Notes
Automobile Engineering Lecture Notes
 

Ähnlich wie 1531 fourier series- integrals and trans

Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
shivamvadgama50
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
JelaiAujero
 
Difrentiation
DifrentiationDifrentiation
Difrentiation
lecturer
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Krishna Gali
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
JohnReyManzano2
 

Ähnlich wie 1531 fourier series- integrals and trans (20)

Derivatives
DerivativesDerivatives
Derivatives
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Limit and continuity
Limit and continuityLimit and continuity
Limit and continuity
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
3. Functions II.pdf
3. Functions II.pdf3. Functions II.pdf
3. Functions II.pdf
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1
 
Difrentiation
DifrentiationDifrentiation
Difrentiation
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
 

Mehr von Dr Fereidoun Dejahang

Mehr von Dr Fereidoun Dejahang (20)

27 j20 my news punch -dr f dejahang 27-01-2020
27 j20 my news punch -dr f dejahang  27-01-202027 j20 my news punch -dr f dejahang  27-01-2020
27 j20 my news punch -dr f dejahang 27-01-2020
 
28 dej my news punch rev 28-12-2019
28 dej my news punch rev 28-12-201928 dej my news punch rev 28-12-2019
28 dej my news punch rev 28-12-2019
 
16 fd my news punch rev 16-12-2019
16 fd my news punch rev 16-12-201916 fd my news punch rev 16-12-2019
16 fd my news punch rev 16-12-2019
 
029 fast-tracking projects
029 fast-tracking projects029 fast-tracking projects
029 fast-tracking projects
 
028 fast-tracking projects &amp; cost overrun
028 fast-tracking projects &amp; cost overrun028 fast-tracking projects &amp; cost overrun
028 fast-tracking projects &amp; cost overrun
 
027 fast-tracked projects-materials
027 fast-tracked projects-materials027 fast-tracked projects-materials
027 fast-tracked projects-materials
 
026 fast react-productivity improvement
026 fast react-productivity improvement026 fast react-productivity improvement
026 fast react-productivity improvement
 
025 enterprise resources management
025 enterprise resources management025 enterprise resources management
025 enterprise resources management
 
022 b construction productivity-write
022 b construction productivity-write022 b construction productivity-write
022 b construction productivity-write
 
022 a construction productivity (2)
022 a construction productivity (2)022 a construction productivity (2)
022 a construction productivity (2)
 
021 construction productivity (1)
021 construction productivity (1)021 construction productivity (1)
021 construction productivity (1)
 
019 competencies-managers
019 competencies-managers019 competencies-managers
019 competencies-managers
 
018 company productivity
018 company productivity018 company productivity
018 company productivity
 
017 communication
017 communication017 communication
017 communication
 
016 communication in construction sector
016 communication in construction sector016 communication in construction sector
016 communication in construction sector
 
015 changes-process model
015 changes-process model015 changes-process model
015 changes-process model
 
014 changes-cost overrun measurement
014 changes-cost overrun measurement014 changes-cost overrun measurement
014 changes-cost overrun measurement
 
013 changes in construction projects
013 changes in construction projects013 changes in construction projects
013 changes in construction projects
 
012 bussiness planning process
012 bussiness planning process012 bussiness planning process
012 bussiness planning process
 
011 business performance management
011 business performance management011 business performance management
011 business performance management
 

Kürzlich hochgeladen

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Kürzlich hochgeladen (20)

Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 

1531 fourier series- integrals and trans

  • 1. Chap. 10. Fourier Series, Integrals, and TransformsChap. 10. Fourier Series, Integrals, and Transforms - Fourier series: series of cosine and sine terms - for general periodic functions (even discontinuous periodic func.) - for ODE, PDE problems (more universal than Taylor series) 10.1. Periodic Functions. Trigonometric Series10.1. Periodic Functions. Trigonometric Series - Periodic function: f(x+p) = f(x) for all x; period=p - Examples) Periodic instabilities in rheological processesPeriodic instabilities in rheological processes Spinning process Tubular film blowing process Flow direction film thickness at die at take-up
  • 2. - f(x + np) = f(x) for all x (n: integer) - h(x) = af(x) + bg(x) (f & g with period p; a & b: constants)  h(x) with period p. Trigonometric SeriesTrigonometric Series - Trigonometric series of function f(x) with period p=2: (ak,bk: constant coefficients) 10.2. Fourier Series10.2. Fourier Series - Representation of periodic function f(x) in terms of cosine and sine functions Euler Formulas for the Fourier Coefficients 0 1 1 2 2f (x) a a cosx b sin x a cos2x b sin 2x= + + + + +L 0 n n n 1 f (x) a (a cosnx b sin nx) ∞ = ⇒ = + +∑ These series converge, its sum will be a function of period 2  Fourier SeriesFourier Series 0 n n n 1 f (x) a (a cosnx b sin nx) ∞ = = + +∑ (Periodic function of period 2)
  • 3. (1) Determination of the coefficient term a0 (2) Determination of the coefficients an of the cosine terms 0 n n n 1 0 n n 0 n 1 f (x)dx a (a cosnx b sin nx) dx a dx a cosnx dx b sin nx dx 2 a π π π π π π π π π π π ∞ − − = ∞ − − − =   = + +     = + + = ÷   ∑∫ ∫ ∑∫ ∫ ∫ 0 1 a f (x)dx 2 π ππ − = ∫ 0 n n n 1 0 n n 1 n n 1 f (x)cosmx dx a (a cosnx b sin nx) cosmxdx 1 1 a cosmxdx a cos(n m)xdx cos(n m)xdx 2 2 1 1 a sin(n m)xdx sin(n m)xdx 2 2 π π π π π π π π π π π π π π ∞ − − = ∞ − − − = ∞ − − =   = + +       = + + + −  ÷       + + + −  ÷    ∑∫ ∫ ∑∫ ∫ ∫ ∑ ∫ ∫ m 1 a f(x)cosmx dx (m 1,2,3,...) π ππ − = =∫ (Except n=m)(Except n=m)
  • 4. (3) Determination of the coefficients bn of the cosine terms Summary of These Calculations: Fourier Coefficients, Fourier Series Fourier Coefficients: Fourier Series: ,...)2,1n(dxnxsin)x(f 1 b ,...)2,1n(dxnxcos)x(f 1 a dx)x(f 2 1 a n n 0 = π = = π = π = ∫ ∫ ∫ π π− π π− π π− ( )0 n n n 1 f (x) a a cosnx b sin nx ∞ = = + +∑ ( )0 n n n 1 f (x)sin mx dx a a cosnx b sin nx sin mx dx π π π π ∞ − − =   = + +    ∑∫ ∫ ,...)3,2,1m(dxmxsin)x(f 1 bm = π = ∫ π π−
  • 5. Ex.1Ex.1) Rectangular Wave f(x) = -k (-<x<0) & k (0<x<); f(x+2)=f(x) (See Figure. 238 for partial sums of Fourier series )       +++ π =⇒       π == π == π = π− π =    +− π = π = =    +− π = π = = π = ∫∫∫ ∫∫∫ ∫ π π− π π− π π− π π− π π− x5sin 5 1 x3sin 3 1 xsin k4 )x(f ,... 5 k4 b,0b, 3 k4 b,0b, k4 b )ncos1( n k2 dxnxsin)k(dxnxsin)k( 1 dxnxsin)x(f 1 b 0dxnxcos)k(dxnxcos)k( 1 dxnxcos)x(f 1 a 0dx)x(f 2 1 a 54321 0 0 n 0 0 n 0 k -  x f(x) -k
  • 6. Orthogonality of the Trigonometric SystemOrthogonality of the Trigonometric System - Trigonometric system is orthogonal on the interval -  x   Convergence and Sum of Fourier SeriesConvergence and Sum of Fourier Series Theorem 1Theorem 1: A periodic function f(x) (period 2, -  x  ) ~ piecewise continuous ~ with a left-hand derivative and right-hand derivative at each point  Fourier series of f(x) is convergent. Its sum is f(x). )nmincluding(0dxnxsinmxcos )nm(0dxnxsinmxsin),nm(0dxnxcosmxcos == ≠=≠= ∫ ∫∫ π π− π π− π π− )M)x(''f(dxnxcos)x(''f n 1 n nxcos)x('f dxnxsin)x('f n 1 n nxsin)x(f dxnxcos)x(f 1 a 22 n < π − π = π − π = π = ∫ ∫∫ π π− π π− π π− π π− π π− 2n222n n M2 b, n M2 Mdx n 1 dxnxcos)x(''f n 1 a == π < π = ∫∫ π π− π π−       +++++++ 22220 3 1 3 1 2 1 2 1 11M2a~)x(fConvergent ! At discontinuous point, Fourier series converge to the average, (f(x+)+f(x-))/2)
  • 7. 10.3. Functions of Any Period p=2L10.3. Functions of Any Period p=2L - Transition from period p=2 to period p=2L - Function f(x) with period p=2L: (Trigonometric SeriesTrigonometric Series) ( ) ( ) )v(g)x(f LxL Lv xv L n v → ≤≤− π =⇔π≤≤π− π = ,...)2,1n(dx L xn sin)x(f L 1 b ,...)2,1n(dx L xn cos)x(f L 1 a,dx)x(f L2 1 a L L n L L n L L 0 =      π = =      π == ∫ ∫∫ − −− 0 n n n 1 n n f (x) a a cos x b sin x L L π π∞ =      = + + ÷ ÷  ÷      ∑ ,...)2,1n(dvnvsin)v(f 1 b ,...)2,1n(dvnvcos)v(g 1 a,dv)v(g 2 1 a n n0 = π = = π = π = ∫ ∫∫ π π− π π− π π− ( )0 n n n 1 g(v) a a cosnv b sin nv ∞ = = + +∑
  • 8. Ex.1Ex.1) Periodic square wave f(x) = 0 (-2 < x < -1); k (-1 < x < 1); 0 (1 < x < 2) p=2L=4, L=2 Ex. 2Ex. 2) Half-wave rectifier u(t) = 0 (-L < t < 0); Esint (0 < t < L) p = 2L = 2/ k -1 1 x f(x) 0dx 2 xn sink 2 1 b ,...)11,7,3n( n k2 a,...),9,5,1n( n k2 a 2 n sin n k2 dx 2 xn cosk 2 1 a, 2 k dxk 4 1 dx)x(f L2 1 a 1 1 n nn 1 1 n 1 1 L L 0 =      π = = π −== π =⇒ π π =      π ==== ∫ ∫∫∫ − −−−       − π + π − π π += x 2 5 cos 5 1 x 2 3 cos 3 1 x 2 cos k2 2 k )x(f k -/ 0 u(t) /
  • 9. 10.4. Even and Odd Functions. Half-Range Expansions10.4. Even and Odd Functions. Half-Range Expansions - If a function is even or odd  more compact form of Fourier series Even and Odd FunctionsEven and Odd Functions Even function y=g(x): g(-x) = g(x) for all x (symmetric w.r.t. y-axis) Odd function y=g(x): g(-x) = -g(x) for all x Three Key FactsThree Key Facts (1) For even function, g(x), (2) For odd function, h(x), (3) Production of an even and an odd function  odd function let q(x) = g(x)h(x), then q(-x) = g(-x)h(-x) = -g(x)h(x) = -q(x) x g(x) Even function x g(x) Odd function ∫∫ = − L 0 L L dx)x(g2dx)x(g 0dx)x(h L L =∫−
  • 10. In the Fourier series, f(x) even  f(x)sin(nx/L) odd, then bn=0 f(x) odd  f(x)cos(nx/L) odd, then a0 & an=0 Theorem 1Theorem 1: Fourier cosine series, Fourier sine seriesFourier cosine series, Fourier sine series (1) Fourier cosine series for even function with period 2L (2) Fourier sine series for odd function with period 2L       =      π == ∫∫ L 0 n L 0 0 ,...)2,1n(dx L xn cos)x(f L 2 a,dx)x(f L 1 a∑ ∞ =       π += 1n n0 L xn cosaa)x(f ( )       = π = π = ∫∫ ππ 0 n 0 0 ,...)2,1n(dxnxcos)x(f 2 a,dx)x(f 1 a( )∑ ∞ = += 1n n0 nxcosaa)x(f For even function with period 2       =      π = ∫ L 0 n ,...)2,1n(dx L xn sin)x(f L 2 b∑ ∞ =       π = 1n n L xn sinb)x(f ( )       = π = ∫ π 0 n ,...)2,1n(dxnxsin)x(f 2 b( )∑ ∞ = = 1n n nxsinb)x(f For odd function with period 2
  • 11. Theorem 2Theorem 2: Sum of functionsSum of functions - Fourier coefficients of a sum of f1 + f2  sums of the corresponding Fourier coefficients of f1 and f2. - Fourier coefficients of cf  c times the corresponding coefficients of f. Ex. 1Ex. 1) Rectangular pulse Ex. 2Ex. 2) Sawtooth wave: f(x) = x +  (- < x < ) and f(x + ) = f(x) for f2 = :   for odd f1 = x        +++ π =⇒ x5sin 5 1 x3sin 3 1 xsin k4 )x(f + k+ k previous result by Ex.1 in 10.2 2k -  x f(x) -  x f(x) )f,xf(fff 2121 π==+= π π −= ncos 2 bn       −+−+π=⇒ x3sin 3 1 x2sin 2 1 xsin2)x(f
  • 12. Half-Range ExpansionsHalf-Range Expansions Ex. 1Ex. 1) “Triangle” and its-half-range expansions x f(x) L f(x) L x even periodic extension feven periodic extension f11 (period: 2L) L f(x) x odd periodic extension fodd periodic extension f22 (period: 2L) x f(x) L/2 L0 k Lx 2 L )xL( L k2 ; 2 L x0x L k2 )x(f <<−<<= (a) Even periodic extension: use ∑ ∞ =       π += 1n n0 L xn cosaa)x(f (b) Odd periodic extension: use ∑ ∞ =       π = 1n n L xn sinb)x(f
  • 13. 10.7. Approximation by Trigonometric Polynomials10.7. Approximation by Trigonometric Polynomials - Fourier series ~ applied to approximation theoryapproximation theory - Trigonometric polynomial of degree N: - Total square error: - Determination of the coefficients of F(x) for minimum E ( )∑= ++≈ N 1n nn0 nxsinbnxcosaa)x(f ( )∑= ++= N 1n nn0 nxsinBnxcosAA)x(F (Minimize the error by usage of the F(x) !) ∫ π π− −= dx)Ff(E 2 ∫∫∫ π π− π π− π π− +−= dxFfFdx2dxfE 22 ( )2 N 2 1 2 N 2 1 2 0 2 BBAAA2dxF ++++++π=∫ π π−        =π== ∫∫∫ π π− π π− π π− 0dx)mx)(sinnx(cos;nxdxsinnxdxcos 22 ( )NN11NN1100 bBbBaAaAaA2fFdx ++++++π=∫ π π−        π = π = ∫∫ π π− π π− ,dxnxcos)x(f 1 a,dx)x(f 2 1 a n0
  • 14.       ++π+      ++π−=⇒ ∑∑∫ == π π− N 1n 2 n 2 n 2 0 N 1n nnnn00 2 )BA(A2)bBaA(aA22dxfE nnnn N 1n 0 n 0 n 2 0 2* bB,aAwhen)ba(a2dxfE ==      ++π−= ∑∫ = π π− ( ) ( )      −+−+−π=− ∑= N 1n 2 nn 2 nn 2 00 * )bB()aA(aA2EE (E - E*  0)(E - E*  0) Theorem 1Theorem 1: Minimum square error - Total square error, E, is minimum iff coefficients of F are the Fourier coefficients of f. - Minimum value is E* - From E*, better approximation as N increases Bessel inequalityBessel inequality: Parseval’s equality: Ex. 1Ex. 1) Square error for the sawtooth wave ∫∑ π π− ∞ = π ≤++ dxf 1 )ba(a2 2 1n 0 n 0 n 2 0 for any f(x) ∫∑ π π− ∞ = π =++ dxf 1 )ba(a2 2 1n 0 n 0 n 2 0