Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Presentación conjuntos.pdf

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 11 Anzeige

Weitere Verwandte Inhalte

Ähnlich wie Presentación conjuntos.pdf (20)

Aktuellste (20)

Anzeige

Presentación conjuntos.pdf

  1. 1. Integrante: Diosnell Vargas Facilitador: Wilmar Marrufo Sección:IN0114 Conjuntos y valores absolutos Republica Bolivariana De Venezuela Ministerio Del poder Popular Para La Educacion Universitaria Universidad Politécnica Terriotorial Andres Eloy Blanco Trayecto Inicial
  2. 2. Definición de Conjuntos. Operaciones con conjuntos. Números Reales Desigualdades. Definición de Valor Absoluto Desigualdades con Valor Absoluto 1. 1. 1. 1. 1. 1. 1. 1. INDICE
  3. 3. CONJUNTOS En matemáticas llamamos conjuntos a la colección o agrupación de elementos siempre y cuando exista una condición para que tales elementos pertenezcan a los conjuntos, los elementos del conjunto también se les denomina objetos del conjunto. Los conjuntos también son otro tipo de objeto pero de otra categoría, esto lo veremos en un capitulo mas avanzado de conjuntos. Si bien, el concepto de conjunto se podría atribuir con objetos reales como una agrupación de animales, personas, países, capitales del mundo, tipos de palomas, en fin cualquier cosa que tenga algo en común en la vida real para agruparlos, no fue hasta el siglo XIX comenzo a aplicarse el concepto de conjunto como un objeto abstracto donde sus elementos se conformaban por ejemplo con números, otros conjuntos, agrupaciones de signos matemáticos, etc. Algunos ejemplos sencillos de conjuntos son: Los miembros de una familia Una colección de piedras Un equipo de fútbol Un rebaño de ovejas
  4. 4. OPERACIONES CON CONJUNTOS Unión de conjuntos Supongamos que tenemos los conjuntos M y N definidos como se muestra en la siguiente figura: Podemos crear otro conjunto conformado con los elementos que pertenezcan a M o a N A este nuevo conjunto le llamamos unión de M y N , y lo notamos de la siguiente manera: M U N En la imagen de abajo puedes observar el resultado de unir los conjuntos M y N. Al elegir qué elementos estarán en la unión de nuestros conjuntos M y N, debes preguntarte cuáles están en el conjunto M “o” en el conjunto N. El resultado de la operación será el conjunto conformado por todos los elementos del conjunto universal U , que cumplan la condición de estar en uno o en otro. Tenemos en este caso: M U N ={a,c,b,g,e,1,}: Intersección de conjuntos Sigamos tomando como ejemplo los conjuntos M y N definidos anteriormente. Podemos determinar un nuevo conjunto conformado por los elementos que nuestros conjuntos M y N tienen en común. A este nuevo conjunto le llamamos intersección de M y N , y lo notamos de la siguiente manera M N: . 15 Para determinar que elementos pertenecen a la intersección de los conjuntos M y N te puedes preguntar qué elementos están en M “y” en N Todos los elementos del conjunto U que cumplan esta condición deberán estar en el conjunto M.N En la figura de la arriba puedes ver la intersección de nuestros conjuntos M y N: . M . N= {b}. Diferencia de conjuntos Además de la unión y la intersección podemos realizar la diferencia de conjuntos. En este caso se deben seleccionar los elementos de un conjunto que no estén en el otro. Por ejemplo, si realizas la operación M menos ,N debes seleccionar los elementos M de que no están en N . Representamos la diferencia M menos N así:M/N . Observa que en este caso M/N={a,c}.
  5. 5. Numeros Reales Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en números naturales, enteros, racionales e irracionales. En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y podemos representarlo en la recta real. Los números reales son todos los números que encontramos más frecuentemente dado que los números complejos no se encuentran de manera accidental, sino que tienen que buscarse expresamente. Los números reales se representan mediante la letra R ↓ Dominio de los números reales Entonces, tal y como hemos dicho, los números reales son los números comprendidos entre los extremos infinitos. Es decir, no incluiremos estos infinitos en el conjunto. Números reales en la recta real Esta recta recibe el nombre de recta real dado que podemos representar en ella todos los números reales.
  6. 6. Desigualdad matemática es una proposición de relación de orden existente entre dos expresiones algebraicas conectadas a través de los signos: desigual que ≠, mayor que >, menor que <, menor o igual que ≤, así como mayor o igual que ≥, resultando ambas expresiones de valores distintos. Desigualdad Por tanto, la relación de desigualdad establecida en una expresión de esta índole, se emplea para denotar que dos objetos matemáticos expresan valores desiguales. Algo a notar en las expresiones de desigualdad matemática es que, aquellas que emplean: mayor que > Menor que < Menor o igual que ≤ Mayor o igual que ≥ 1. 2. 3. 4. Estas son desigualdades que nos revelan en qué sentido la una desigualdad no es igual. Ahora bien, los casos de aquellas desigualdades formuladas como: Menor que < Mayor que > Son desigualdades conocidas como desigualdades “estrictas”. En tanto, que los casos de desigualdades formuladas como: Menor o igual que ≤ Mayor o igual que ≥ Son desigualdades conocidas como desigualdades “no estrictas o más bien, amplias”. La desigualdad matemática es una expresión que está formada por dos miembros. El miembro de la izquierda, al lado izquierdo del signo igual y el miembro de la derecha, al lado derecho del signo de igualdad. Veamos el ejemplo siguiente: 3x + 3 < 9
  7. 7. valor absoluto El valor absoluto de un número real es la magnitud de este, independientemente del signo que le preceda. El valor absoluto de un número, en otras palabras, es el valor que resulta de eliminar el signo correspondiente a este. Para verlo en términos más formales, tenemos las siguientes condiciones que deben cumplirse, donde el x entre dos barras significa que estamos hallando el valor absoluto de x: |x|=x si x≥ 0 Es decir, el valor absoluto de un número positivo es este mismo número. En cambio, el valor absoluto de un número negativo es igual a este número, pero con un signo negativo delante. Es decir, multiplicado por -1. Asimismo, el valor absoluto de -10 es -(-10)=10. Así, debemos destacar que el valor absoluto siempre es positivo. El valor absoluto de un número a se escribe como (a) y su valor numerico sin signo ejemplos: El valor absoluto de x, (x), es - x si x es negativo y es x si x es positivo Ò 0
  8. 8. Desigualdades con valor absolutos Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. Desigualdades de valor absoluto (<): La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos. En otras palabras, para cualesquiera numéros reales a y b , si | a | < b , entonces a < b Y a > - b .
  9. 9. Desigualdades de valor absoluto (>): La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4. Así, x < -4 O x > 4. El conjunto solución es Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. En otras palabras, para cualesquiera numéros reales a y b , si | a | > b , entonces a > b O a < - b .
  10. 10. Ejercicio Desigualdades Resuelva la desigualdad 2 + x < 9 x + 6 y dibuje la gráfica de la solución en la línea recta 1. 2.
  11. 11. Bibliografia https://www.mat.uson.mx/~jldiaz/Documents/Desigualdades/SistemasN.pdf 1. https://www.conoce3000.com/html/espaniol/Libros/Matematica01/Cap10-03- OperacionesConjuntos.php 1. https://content.nroc.org/DevelopmentalMath.HTML5/U10L3T2/TopicText/es/textbook.html 1. https://www.superprof.es/apuntes/escolar/matematicas/aritmetica/reales/los-numeros- reales.html 1.

×