SlideShare ist ein Scribd-Unternehmen logo
1 von 47
Linear Combination,
Span and
Linearly Independent and
Linearly Dependent
-by Dhaval Shukla(141080119050)
Abhishek Singh(141080119051)
Abhishek Singh(141080119052)
Aman Singh(141080119053)
Azhar Tai(141080119054)
-Group No. 9
-Prof. Ketan Chavda
-Mechanical Branch
-2nd Semester
Linear Combination
1 2 3 r
1 1 2 2 3 3 r
i
A vector V is called a Linear Combination of
vectors v , v , v ,......., v
if V can be expressed as
v k k k ..... k
where k are scalar such that 1 i r
rv v v v    
 
Linear Combination
 

  
.v,....,v,v,vofnCombinatio
LinearaisVthenconsistentis1inequationofsystemtheIf2
1k.....kkkv
v,.....,v,v,vofnCombinatioLinearaasVExpress1
:followasisv.....,,v,v,v
orsgiven vectofnCombinatioLinearacalledisVvectoraIf
r321
r332211
r321
r321
 rvvvv
Linear Combination
2
3
2
2
2
1
2
267p
4510p
592pofnCombinatioLinear
aas1588ppolynomialtheExpress1:
xx
xx
xx
xxEx




1 1 2 2 3 3
2 2 2
1 2
2
3
:1 Let p k k k
8 8 15 k (2 9 5 ) k (10 5 4 )
k (7 6 2 )
n
Sol p p p
x x x x x x
x x
  
          
 
Linear Combination
2
1 2 3 1 2 3
2
1 2 3
1 2 3
1 2 3
1 2 3
8 8 15 (2k 10k 7k ) (9k 5k 6k )
(5k 4k 2k )
by comparison we get,
2k 10k 7k 8
9k 5k 6k 8
5k 4k 2k 15
now, turning the above equatio
x x x
x
         
 

   
   
   
 ns into an Augmented Matrix:
82 10 7
89 5 6
155 4 2
 
 
 
  
Linear Combination
1
2 1 3 1
performing R / 2
7
1 5
42
9 5 6 8
5 4 2 15
performing R 9R , R 5R
7
1 5
2 4
51
0 50 28
2
5
31
0 21
2

 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
  
Linear Combination
2
7
2
51 14
100 25
31
2
3 2
7
2
51 14
100 25
479 169
100 25
1
performing R ( )
50
1 5 4
0 1
0 21 5
now performing R 21R
1 5 4
0 1
0 0

 
 
 
 
 
  
 
 
 
 
 
 
Linear Combination
100
3 479
7
2
51 14
100 25
676
479
7
1 2 32
51 14
2 3100 25
676
3 479
performing R ( )
1 5 4
0 1
0 0 1
Hence, here sysem is consistent
k 5k k 4
k k
k
 
 
 
 
 
 

    
   
 
Linear Combination
613
2 479
7347
1 479
by solving above equations
k and
k
which is proven

  
  

Linear Combination
1
2 3
1 1 2 2 3 3
1 2 3
: 2 Express v (6,11,6) as Linear Combination of v (2,1,4),
v (1, 1,3), v (3,2,5).
: 2
- Let v k v k v k v
(6,11,6) k (2,1,4) k (1, 1,3) k (3,2,5)
(6,11,6
n
Ex
Sol
 
  
  
   
1 2 3 1 2 3 1 2 3
1 2 3
1 2 3
1 2 3
) (2k k 3k ) (k k 2k ) (4k 3k 5k )
2k k 3k 6
k 2k 7k 11
5k 7k 7k 7
        
   
   
   
Linear Combination
1
72 4
3 3 3
2 1 3 1
Therefore,
3 2 4 7
2 2 7 12
5 7 7 7
Performing R / 3
1
2 2 7 12
5 7 7 7
Now, performing R 2R and R 5R

 
 
 
  

 
 
 
 
 
  
Linear Combination
72 4
3 3 3
10 13 22
3 3 3
11 1 14
3 3 3
2
72 4
3 3 3
13 11
10 5
11 1 14
3 3 3
11
3 23
1
0
0
Now, R ( 3/10)
1
0 1
0
Now doing R R


 

 
 
 
 
 
 
 
 
 
 
 
 
Linear Combination
1
3
2
3
3
3 2
1
3
306
3 23
1 1 2 11
0 1 6
0 0 4
Now, performing R ( )
1 1 2 11
0 1 6
0 0 1 1
So, we get
k
 
 
  
  
 
  
 
  
  

 
Linear Combination
13 11
2 310 5
1978 23171
2 35 115
306 1978 23171
23 5 115
k k
k and k
Now,
(7,12,7)= (3,2,5) (2, 2,7) (4,6,7)
(7,12,7)=(7,12,7)
Which is proven.
   
  

  

Linear Combination
1 2 3
1 1 2 2 3 3
1 2
5 1
:3 Express the matrix A= as a Linear Combination
1 9
1 1 1 1 2 2
of A , A and A .
0 3 0 2 1 1
:3 Let A=k A k A k A
5 1 1 1 1 1
k k
1 9 0 3 0 2
n
Ex
Sol
 
  
     
            
 
    
         
3
1 2 3 1 2 3
3 1 2 3
2 2
k
1 1
k k 2k k k 2k5 1
k 3k 2k k1 9
  
     
      
          
Linear Combination
1 2 3
1 2 3
3
1 2 3
k k 2k 5
-k k 2k 1
-k 1
3k 2k k 9
The Augmented Matrix will be
1 1 2 5
1 1 2 1
0 0 1 1
3 2 1 9
   
   
  
   

 
 
 
  
 
  
Linear Combination
2 1 4 1
2
Now, performing R R and R 3R
1 1 2 5
0 2 4 6
0 0 1 1
0 1 5 6
Now, doing R / 2
1 1 2 5
0 1 2 3
0 0 1 1
0 1 5 6
  
 
 
 
  
 
    

 
 
 
  
 
    
Linear Combination
1 4
1 2 3
Now, R R
1 1 2 5
0 1 2 3
0 0 1 1
0 0 3 3
The system is Inconsistent. Therefore the given
matrix A is not the linear combination of all three
matrices A , A , A .
 
 
 
 
  
 
   

Linear Combination
2
2
1
2
2
2
3
: 4 Express the polynomial p 9 7 15 as a
Linear Combination of p 2 4
p 1 3
p 3 2 5
Ex x x
x x
x x
x x
   
  
  
  
1 1 2 2 3 3
2 2 2
1 2
2
3
: 4 Let p k k k
9 7 15 k (2 4 ) k (1 3 )
k (3 2 5 )
n
Sol p p p
x x x x x x
x x
  
          
 
Linear Combination
2
1 2 3 1 2 3
2
1 2 3
1 2 3
1 2 3
1 2 3
9 7 15 (2k k 3k ) (k k 2k )
(4k 3k 5k )
by comparison we get,
2k k 3k 9
k k 2k 7
4k 3k 5k 15
now, turning the above equations into
x x x
x
         
 

   
   
   
 an Augmented Matrix:
92 1 3
71 1 2
154 3 5
 
 
 
  
Linear Combination
1 2
2 1 3 1
performing R R
1 1 2 7
2 1 3 9
4 3 5 15
performing R 2R , R 4R
1 1 2 7
0 3 1 5
0 7 3 13
 
   
 
 
  
  
   
 
 
  
Linear Combination
2
51
3 3
3 2
51
3 3
2 4
3 3
performing R / 3
1 1 2 7
0 1
0 7 3 13
now performing R 7R
1 1 2 7
0 1
0 0
Hence, the system is consistent.

   
 
 
  
 
  
 
 
  

Linear Combination
3
3
1 2 3
k 5
2 3 3
2k 4
3 3
3
5 2
2 3 3
2
1
1
k k 2 k 7
k
k 2
k
k 1
k 1 2( 2) 7
k 2
    
  
 
  
 
 
    
  
Linear Combination
2 2 2
2
2 2
Now,
9 7 15 =( 2)(2 4 ) (1)(1 3 )
( 2)(3 2 5 )
9 7 15 = 9 7 15
Which is proven.
x x x x x x
x x
x x x x

        
  
     

Linear Combination
1 2 3
1 1 2 2 3 3
1 2 3
:5 Check whether the following v (6,11,6) as Linear
Combination of v (2,1,4), v (1, 1,3), v (3,2,5).
:5
- Let v k v k v k v
(6,11,6) k (2,1,4) k (1, 1,3) k (3,
n
Ex
Sol

   
  
   
1 2 3 1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
2,5)
(6,11,6) (2k k 3k ) (k k 2k )
(4k 3k 5k )
2k k 3k 6
k k 2k 11
4k 3k 5k 6
      
 
   
   
   
Linear Combination
1 2
2 1 3 1
2 1 3 6
1 1 2 11
4 3 5 6
Now, R R
1 1 2 11
2 1 3 6
4 3 5 6
Now doing R 2R and R 4R
 
 
 
  
 
  
 
 
  
  
Linear Combination
2
161
3 3
3 2
1 1 2 11
0 3 1 16
0 7 3 38
Now, R / ( 3)
1 1 2 11
0 1
0 7 3 38
Now doing R 7R
  
 
  
   
 
  
 
  
   
 
Linear Combination
161
3 3
2 2
3 3
3
3 2
161
3 3
3
1 1 2 11
0 1
0 0
Now, performing R ( )
1 1 2 11
0 1
0 0 1 1
So, we get
k 1
 
 
  
   
 
  
 
  
  

 
Linear Combination
2 1k 5 and k 4
Now,
(6,11,6)=4(3,2,5) ( 5)(2, 2,7) 1(4,6,7)
(6,11,6)=(6,11,6)
Which is proven.
   

   

Span
 
 
1 2 3
1 2 3
The set of all the vectors that are linear combination
of the vectors in the set S= v , v , v ,....., v is
called span of S and denoted by Span S or span
v , v , v ,....., v .
r
r

Span
2
1
2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
2
1 2 3 1
:6 Determine whether the polynomial p 2 ,
p 1 , p 2 span P .
:6
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +b ) k (2
n
Ex x
x x x
Sol
x x
x x
 
    
 
 
  2 2
2 3
2
1 2 3 1 1 3 1 2 3
1 1
1 3 2
1 2 3 3
) k (1 ) k (2 )
b +b b ) (2k ) (2k k ) (2k 3k k )
2k b
2k k b
2k 3k k b
x x x x
x x
    
     
 
  
   
Span
3
1 2 3
Now, matrix will be
2 0 0
2 0 1
2 3 1
det(A)=6 0
Here det(A) 0 therefore matrix is non-Singular
therefore the system is consistent. And so, the
vectors v , v , v span R .

 
 
 
  
 
 
Span 2
1
2 2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
1 2
:7 Determine whether the polynomial p 1 2 ,
p 5 4 , p 2 2 2 span P .
:7
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +
n
Ex x x
x x x x
Sol
x x
x
  
       
 
 
2 2 2
3 1 2
2
3
2
1 2 3 1 2 3 1 2 3
2
1 2 3
1 2
b k (1 2 ) k (5 4 )
k ( 2 2 2 )
b +b +b (k 5k 2k ) ( k k 2k )
(2k 4 k 2k )
k 5k 2k
x x x x x
x x
x x x
x
      
  
      
  
   3 1
1 2 3 2
1 2 3 3
b
k k 2k b
2k 4k 2k b

    
   
Span
1
2
3
1 3
3
2
1
2 1 3 1
Therefore,
2 1 2 4 b
1 0 1 1 b
1 1 0 1 b
Performing R R
1 1 0 1 b
1 0 1 1 b
2 1 2 4 b
Now, performing R R and R 2R

 
 
 
  
 
 
 
 
  
  
Span
3
2 3
1 3
3 2
3
2 3
1 2 3
1 2 3 4 2
1 1 0 1 b
0 1 1 2 b b
0 1 0 2 b 2b
Now, R R
1 1 0 1 b
0 1 1 2 b b
0 0 1 4 b b b
The system is consistent for all choices of b.
Therefore vectors p ,p ,p ,p span P .
 
 
 
   
 
 
 
 
   

Span
2
1
2 2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
1 2
:8 Determine whether the polynomial p 1 2 ,
p 5 4 , p 2 2 2 span P .
:8
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +
n
Ex x x
x x x x
Sol
x x
x
  
       
 
 
2 2 2
3 1 2
2
3
2
1 2 3 1 2 3 1 2 3
2
1 2 3
1 2
b k (1 2 ) k (5 4 )
k ( 2 2 2 )
b +b +b (k 5k 2k ) ( k k 2k )
(2k 4 k 2k )
k 5k 2k
x x x x x
x x
x x x
x
      
  
      
  
   3 1
1 2 3 2
1 2 3 3
b
k k 2k b
2k 4k 2k b

    
   
Span
1 2
Now, matrix will be
1 5 2
1 1 2
2 4 2
det(A)=0
Here det(A)=0. Therefore matrix is Singular
therefore the system is consistent for some choices
of b. And so, the polynomials p , p

 
   
  


3 2, p span P .
Linear Dependence and Linear
Independence
 1 2 3
1 1 2 2 3 3
1
Let S= v , v , v ,...., v be the non-empty set
such that k v k v k v ...... k v 0 (1)
S is called Linearly Independent set if the system
of equation (1) has trivial solutions (means k 0
r
r r

     


2
,
k 0,....., k 0).
S is called Linearly dependent then the system of
equation (1) has non-trivial solution (means at least
one scalar which is non-zero).
r 

Linear Dependence and Linear
Independence
1 2 3
:9 Check whether the following vectors are
Linearly Independent or Linearly Dependent. (4,1, 2),
( 4,10,2), (4,0,1).
:9
- v (4,1, 2), v ( 4,10,2), v (4,0,1)
n
Ex
Sol


    
1 1 2 2 3 3
1 2 3
1 2 3 1 2 1 2 3
1 2 3
1 2
1 2 3
- Let k v k v k v 0
0 k (4,1, 2) k ( 4,10,2) k (4,0,1)
0 (4k 4k 4k ) (k 10k ) ( 2k 2k k )
4k 4k 4k 0
k 10k 0
-2k 2k k 0
  
    
         
   
  
   
Linear Dependence and Linear
Independence
1 2
2 1 3 1
Therefore,
4 4 4 0
1 10 2 0
2 2 1 0
Performing R R
1 10 2 0
4 4 4 0
2 2 1 0
Now, performing R 4R and R 2R

  
 
 
  
 
  
 
 
  
  
Linear Dependence and Linear
Independence
2
3 2
1 1 2 0
0 2 2 0
0 1 1 0
Performing R / ( 2)
1 1 2 0
0 1 1 0
0 1 1 0
Now, performing R 22R
 
 
  
  
 
 
 
 
  
 
Linear Dependence and Linear
Independence
3
11
3
3
11
1 10 2 0
0 1 0
0 0 3 0
Performing R / 3
1 10 2 0
0 1 0
0 0 1 0
Now,
  
 
 
  

  
 
 
  

Linear Dependence and Linear
Independence
1 2 3
3
2 311
3
2
1
1 2 3
k 10k 2k 0
k k 0
k 0
k 0
k 0
Here k , k , k all are of zero values. Therefore
the system of equation has trivial solution.
Therefore it is Linearly Independent.
   
  
 
 
 

Linear Dependence and Linear
Independence
 2 2 2
2
2 2 2
1 2 3
1 1 2 2 3 3
:10 S= 2 , 2 ,2 2 3 Check whether S is
Linearly Independent or Linearly Dependent in P .
:10
- p 2 , p 2 , p 2 3
- Let k p k p k p 0
n
Ex x x x x x x
Sol
x x x x x x
    
      
  
2 2 2
1 2 3
2
1 3 1 2 3 1 2 3
1 3
1 2
1 2 3
0 k (2 ) k ( 2 ) k (2 2 3 )
0 (2k 2k ) (k k 2k ) (k 2k 3k )
2k 2k 0
k 10k 0
k 2k 3k 0
x x x x x x
x x
       
       
  
  
   
Linear Dependence and Linear
Independence
1 2
2 1 3 1
Therefore,
2 0 2 0
1 1 2 0
1 2 3 0
Performing R R
1 1 2 0
2 0 2 0
1 2 3 0
Now, performing R 2R and R R

 
 
 
  
 
 
 
 
  
  
Linear Dependence and Linear
Independence
2
3 2
1 1 2 0
0 2 2 0
0 1 1 0
Performing R / ( 2)
1 1 2 0
0 1 1 0
0 1 1 0
Now, performingR 2R
 
 
  
  
 
 
 
 
  
 
Linear Dependence and Linear
Independence
2 3
1 2 3
3
2
1
1
1
2
3
k k 0
k +k +2k 0
- taking k t 0
k t
k ( t)+2t=0
k t
k 1
k t 1
k 1
Here the system has trivial solution.
Therefore it is Linearly Dependent
  
 
 
  
  
  
   
        
      


Weitere ähnliche Inhalte

Was ist angesagt?

System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equationssaahil kshatriya
 
Null space, Rank and nullity theorem
Null space, Rank and nullity theoremNull space, Rank and nullity theorem
Null space, Rank and nullity theoremRonak Machhi
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations University of Windsor
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectorsAmit Singh
 
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...Smit Shah
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & DimensionManikanta satyala
 
Linear Combination, Matrix Equations
Linear Combination, Matrix EquationsLinear Combination, Matrix Equations
Linear Combination, Matrix EquationsPrasanth George
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectorsRakib Hossain
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace Manikanta satyala
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace2461998
 
Linear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLinear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLambitDontPosts
 
Gram-Schmidt process linear algbera
Gram-Schmidt process linear algberaGram-Schmidt process linear algbera
Gram-Schmidt process linear algberaPulakKundu1
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisRavi Gelani
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal intervalDr. Nirav Vyas
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex VariablesSolo Hermelin
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)tejaspatel1997
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theoremitutor
 
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTINTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTJAYDEV PATEL
 

Was ist angesagt? (20)

System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Null space, Rank and nullity theorem
Null space, Rank and nullity theoremNull space, Rank and nullity theorem
Null space, Rank and nullity theorem
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
 
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Linear Combination, Matrix Equations
Linear Combination, Matrix EquationsLinear Combination, Matrix Equations
Linear Combination, Matrix Equations
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectors
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace
 
Linear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLinear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependency
 
Gram-Schmidt process linear algbera
Gram-Schmidt process linear algberaGram-Schmidt process linear algbera
Gram-Schmidt process linear algbera
 
Galois theory
Galois theoryGalois theory
Galois theory
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTINTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
 
Graph theory presentation
Graph theory presentationGraph theory presentation
Graph theory presentation
 

Andere mochten auch

Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear IndependenceMatthew Leingang
 
Lecture 3 section 1-7, 1-8 and 1-9
Lecture 3   section 1-7, 1-8 and 1-9Lecture 3   section 1-7, 1-8 and 1-9
Lecture 3 section 1-7, 1-8 and 1-9njit-ronbrown
 
linear transformation
linear transformationlinear transformation
linear transformation8laddu8
 
Digital Bangladesh
Digital BangladeshDigital Bangladesh
Digital BangladeshJashim Uddin
 
Spanning trees & applications
Spanning trees & applicationsSpanning trees & applications
Spanning trees & applicationsTech_MX
 
Alternating Current
Alternating CurrentAlternating Current
Alternating Currentamckaytghs
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalharshid panchal
 
Alternating current circuits
Alternating current circuitsAlternating current circuits
Alternating current circuitscse1014
 
Gate mathematics questions all branch by s k mondal
Gate mathematics questions all branch by s k mondalGate mathematics questions all branch by s k mondal
Gate mathematics questions all branch by s k mondalAashishv
 
Pie charts (interpreting and drawing)
Pie charts (interpreting and drawing)Pie charts (interpreting and drawing)
Pie charts (interpreting and drawing)sidraqasim99
 

Andere mochten auch (20)

Alg1 8.3 Linear Combination
Alg1 8.3 Linear CombinationAlg1 8.3 Linear Combination
Alg1 8.3 Linear Combination
 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear Independence
 
Linear (in)dependence
Linear (in)dependenceLinear (in)dependence
Linear (in)dependence
 
Scale factor gis
Scale factor gisScale factor gis
Scale factor gis
 
Pre-Alg 7.6 Triangles
Pre-Alg 7.6 TrianglesPre-Alg 7.6 Triangles
Pre-Alg 7.6 Triangles
 
HSA Prep- Scale Factor M-3
HSA Prep- Scale Factor M-3HSA Prep- Scale Factor M-3
HSA Prep- Scale Factor M-3
 
Ch07 3
Ch07 3Ch07 3
Ch07 3
 
Lecture 3 section 1-7, 1-8 and 1-9
Lecture 3   section 1-7, 1-8 and 1-9Lecture 3   section 1-7, 1-8 and 1-9
Lecture 3 section 1-7, 1-8 and 1-9
 
Scale factor gis
Scale factor gisScale factor gis
Scale factor gis
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Digital bangladesh
Digital bangladeshDigital bangladesh
Digital bangladesh
 
Digital Bangladesh
Digital BangladeshDigital Bangladesh
Digital Bangladesh
 
Spanning trees & applications
Spanning trees & applicationsSpanning trees & applications
Spanning trees & applications
 
Alternating Current
Alternating CurrentAlternating Current
Alternating Current
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
 
Alternating current
Alternating  currentAlternating  current
Alternating current
 
Alternating current circuits
Alternating current circuitsAlternating current circuits
Alternating current circuits
 
Linear Transformations
Linear TransformationsLinear Transformations
Linear Transformations
 
Gate mathematics questions all branch by s k mondal
Gate mathematics questions all branch by s k mondalGate mathematics questions all branch by s k mondal
Gate mathematics questions all branch by s k mondal
 
Pie charts (interpreting and drawing)
Pie charts (interpreting and drawing)Pie charts (interpreting and drawing)
Pie charts (interpreting and drawing)
 

Ähnlich wie Linear Combination, Span And Linearly Independent, Dependent Set

Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfFranciscoJavierCaedo
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44Bilal Ahmed
 
Ch01 composition of_forces
Ch01 composition of_forcesCh01 composition of_forces
Ch01 composition of_forcesFarzeen Shua
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCarlon Baird
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuitsarjav patel
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxDrOmarShAlyozbaky
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachYang Hong
 
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdfJennifer Strong
 
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.PdfKarin Faust
 
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfMathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfJulio Banks
 

Ähnlich wie Linear Combination, Span And Linearly Independent, Dependent Set (20)

Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
3 analytical kinematics
3 analytical kinematics3 analytical kinematics
3 analytical kinematics
 
MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44
 
Determinants
DeterminantsDeterminants
Determinants
 
Ch01 composition of_forces
Ch01 composition of_forcesCh01 composition of_forces
Ch01 composition of_forces
 
transformer
transformertransformer
transformer
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Signals and Systems Assignment Help
Signals and Systems Assignment HelpSignals and Systems Assignment Help
Signals and Systems Assignment Help
 
Servo systems
Servo systemsServo systems
Servo systems
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
 
M1 PART-A
M1 PART-AM1 PART-A
M1 PART-A
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemeChanged pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space Approach
 
H0743842
H0743842H0743842
H0743842
 
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf
 
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
 
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfMathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
 

Mehr von Dhaval Shukla

Time Travelling.... Is It Possible?
Time Travelling.... Is It Possible?Time Travelling.... Is It Possible?
Time Travelling.... Is It Possible?Dhaval Shukla
 
Metallic Glasses (Type of Metallic Materials)
Metallic Glasses (Type of Metallic Materials)Metallic Glasses (Type of Metallic Materials)
Metallic Glasses (Type of Metallic Materials)Dhaval Shukla
 
Crank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder MechanismCrank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder MechanismDhaval Shukla
 
Lamps, Reflectors And Lumen Requirements
Lamps, Reflectors And Lumen RequirementsLamps, Reflectors And Lumen Requirements
Lamps, Reflectors And Lumen RequirementsDhaval Shukla
 
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling CycleAtkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling CycleDhaval Shukla
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic FunctionDhaval Shukla
 
Electromagnetic Transducers (EMT)
Electromagnetic Transducers (EMT)Electromagnetic Transducers (EMT)
Electromagnetic Transducers (EMT)Dhaval Shukla
 
Corporate Social Responsibility (CSR)
Corporate Social Responsibility (CSR)Corporate Social Responsibility (CSR)
Corporate Social Responsibility (CSR)Dhaval Shukla
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature FormulaDhaval Shukla
 
Are We Really Independent?
Are We Really Independent?Are We Really Independent?
Are We Really Independent?Dhaval Shukla
 

Mehr von Dhaval Shukla (10)

Time Travelling.... Is It Possible?
Time Travelling.... Is It Possible?Time Travelling.... Is It Possible?
Time Travelling.... Is It Possible?
 
Metallic Glasses (Type of Metallic Materials)
Metallic Glasses (Type of Metallic Materials)Metallic Glasses (Type of Metallic Materials)
Metallic Glasses (Type of Metallic Materials)
 
Crank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder MechanismCrank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder Mechanism
 
Lamps, Reflectors And Lumen Requirements
Lamps, Reflectors And Lumen RequirementsLamps, Reflectors And Lumen Requirements
Lamps, Reflectors And Lumen Requirements
 
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling CycleAtkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
 
Electromagnetic Transducers (EMT)
Electromagnetic Transducers (EMT)Electromagnetic Transducers (EMT)
Electromagnetic Transducers (EMT)
 
Corporate Social Responsibility (CSR)
Corporate Social Responsibility (CSR)Corporate Social Responsibility (CSR)
Corporate Social Responsibility (CSR)
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature Formula
 
Are We Really Independent?
Are We Really Independent?Are We Really Independent?
Are We Really Independent?
 

Kürzlich hochgeladen

Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 

Kürzlich hochgeladen (20)

Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 

Linear Combination, Span And Linearly Independent, Dependent Set

  • 1. Linear Combination, Span and Linearly Independent and Linearly Dependent -by Dhaval Shukla(141080119050) Abhishek Singh(141080119051) Abhishek Singh(141080119052) Aman Singh(141080119053) Azhar Tai(141080119054) -Group No. 9 -Prof. Ketan Chavda -Mechanical Branch -2nd Semester
  • 2. Linear Combination 1 2 3 r 1 1 2 2 3 3 r i A vector V is called a Linear Combination of vectors v , v , v ,......., v if V can be expressed as v k k k ..... k where k are scalar such that 1 i r rv v v v      
  • 3. Linear Combination       .v,....,v,v,vofnCombinatio LinearaisVthenconsistentis1inequationofsystemtheIf2 1k.....kkkv v,.....,v,v,vofnCombinatioLinearaasVExpress1 :followasisv.....,,v,v,v orsgiven vectofnCombinatioLinearacalledisVvectoraIf r321 r332211 r321 r321  rvvvv
  • 4. Linear Combination 2 3 2 2 2 1 2 267p 4510p 592pofnCombinatioLinear aas1588ppolynomialtheExpress1: xx xx xx xxEx     1 1 2 2 3 3 2 2 2 1 2 2 3 :1 Let p k k k 8 8 15 k (2 9 5 ) k (10 5 4 ) k (7 6 2 ) n Sol p p p x x x x x x x x                
  • 5. Linear Combination 2 1 2 3 1 2 3 2 1 2 3 1 2 3 1 2 3 1 2 3 8 8 15 (2k 10k 7k ) (9k 5k 6k ) (5k 4k 2k ) by comparison we get, 2k 10k 7k 8 9k 5k 6k 8 5k 4k 2k 15 now, turning the above equatio x x x x                           ns into an Augmented Matrix: 82 10 7 89 5 6 155 4 2         
  • 6. Linear Combination 1 2 1 3 1 performing R / 2 7 1 5 42 9 5 6 8 5 4 2 15 performing R 9R , R 5R 7 1 5 2 4 51 0 50 28 2 5 31 0 21 2                                    
  • 7. Linear Combination 2 7 2 51 14 100 25 31 2 3 2 7 2 51 14 100 25 479 169 100 25 1 performing R ( ) 50 1 5 4 0 1 0 21 5 now performing R 21R 1 5 4 0 1 0 0                          
  • 8. Linear Combination 100 3 479 7 2 51 14 100 25 676 479 7 1 2 32 51 14 2 3100 25 676 3 479 performing R ( ) 1 5 4 0 1 0 0 1 Hence, here sysem is consistent k 5k k 4 k k k                        
  • 9. Linear Combination 613 2 479 7347 1 479 by solving above equations k and k which is proven        
  • 10. Linear Combination 1 2 3 1 1 2 2 3 3 1 2 3 : 2 Express v (6,11,6) as Linear Combination of v (2,1,4), v (1, 1,3), v (3,2,5). : 2 - Let v k v k v k v (6,11,6) k (2,1,4) k (1, 1,3) k (3,2,5) (6,11,6 n Ex Sol             1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ) (2k k 3k ) (k k 2k ) (4k 3k 5k ) 2k k 3k 6 k 2k 7k 11 5k 7k 7k 7                     
  • 11. Linear Combination 1 72 4 3 3 3 2 1 3 1 Therefore, 3 2 4 7 2 2 7 12 5 7 7 7 Performing R / 3 1 2 2 7 12 5 7 7 7 Now, performing R 2R and R 5R                        
  • 12. Linear Combination 72 4 3 3 3 10 13 22 3 3 3 11 1 14 3 3 3 2 72 4 3 3 3 13 11 10 5 11 1 14 3 3 3 11 3 23 1 0 0 Now, R ( 3/10) 1 0 1 0 Now doing R R                             
  • 13. Linear Combination 1 3 2 3 3 3 2 1 3 306 3 23 1 1 2 11 0 1 6 0 0 4 Now, performing R ( ) 1 1 2 11 0 1 6 0 0 1 1 So, we get k                          
  • 14. Linear Combination 13 11 2 310 5 1978 23171 2 35 115 306 1978 23171 23 5 115 k k k and k Now, (7,12,7)= (3,2,5) (2, 2,7) (4,6,7) (7,12,7)=(7,12,7) Which is proven.            
  • 15. Linear Combination 1 2 3 1 1 2 2 3 3 1 2 5 1 :3 Express the matrix A= as a Linear Combination 1 9 1 1 1 1 2 2 of A , A and A . 0 3 0 2 1 1 :3 Let A=k A k A k A 5 1 1 1 1 1 k k 1 9 0 3 0 2 n Ex Sol                                          3 1 2 3 1 2 3 3 1 2 3 2 2 k 1 1 k k 2k k k 2k5 1 k 3k 2k k1 9                           
  • 16. Linear Combination 1 2 3 1 2 3 3 1 2 3 k k 2k 5 -k k 2k 1 -k 1 3k 2k k 9 The Augmented Matrix will be 1 1 2 5 1 1 2 1 0 0 1 1 3 2 1 9                              
  • 17. Linear Combination 2 1 4 1 2 Now, performing R R and R 3R 1 1 2 5 0 2 4 6 0 0 1 1 0 1 5 6 Now, doing R / 2 1 1 2 5 0 1 2 3 0 0 1 1 0 1 5 6                                    
  • 18. Linear Combination 1 4 1 2 3 Now, R R 1 1 2 5 0 1 2 3 0 0 1 1 0 0 3 3 The system is Inconsistent. Therefore the given matrix A is not the linear combination of all three matrices A , A , A .                  
  • 19. Linear Combination 2 2 1 2 2 2 3 : 4 Express the polynomial p 9 7 15 as a Linear Combination of p 2 4 p 1 3 p 3 2 5 Ex x x x x x x x x              1 1 2 2 3 3 2 2 2 1 2 2 3 : 4 Let p k k k 9 7 15 k (2 4 ) k (1 3 ) k (3 2 5 ) n Sol p p p x x x x x x x x                
  • 20. Linear Combination 2 1 2 3 1 2 3 2 1 2 3 1 2 3 1 2 3 1 2 3 9 7 15 (2k k 3k ) (k k 2k ) (4k 3k 5k ) by comparison we get, 2k k 3k 9 k k 2k 7 4k 3k 5k 15 now, turning the above equations into x x x x                           an Augmented Matrix: 92 1 3 71 1 2 154 3 5         
  • 21. Linear Combination 1 2 2 1 3 1 performing R R 1 1 2 7 2 1 3 9 4 3 5 15 performing R 2R , R 4R 1 1 2 7 0 3 1 5 0 7 3 13                           
  • 22. Linear Combination 2 51 3 3 3 2 51 3 3 2 4 3 3 performing R / 3 1 1 2 7 0 1 0 7 3 13 now performing R 7R 1 1 2 7 0 1 0 0 Hence, the system is consistent.                         
  • 23. Linear Combination 3 3 1 2 3 k 5 2 3 3 2k 4 3 3 3 5 2 2 3 3 2 1 1 k k 2 k 7 k k 2 k k 1 k 1 2( 2) 7 k 2                         
  • 24. Linear Combination 2 2 2 2 2 2 Now, 9 7 15 =( 2)(2 4 ) (1)(1 3 ) ( 2)(3 2 5 ) 9 7 15 = 9 7 15 Which is proven. x x x x x x x x x x x x                    
  • 25. Linear Combination 1 2 3 1 1 2 2 3 3 1 2 3 :5 Check whether the following v (6,11,6) as Linear Combination of v (2,1,4), v (1, 1,3), v (3,2,5). :5 - Let v k v k v k v (6,11,6) k (2,1,4) k (1, 1,3) k (3, n Ex Sol             1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2,5) (6,11,6) (2k k 3k ) (k k 2k ) (4k 3k 5k ) 2k k 3k 6 k k 2k 11 4k 3k 5k 6                     
  • 26. Linear Combination 1 2 2 1 3 1 2 1 3 6 1 1 2 11 4 3 5 6 Now, R R 1 1 2 11 2 1 3 6 4 3 5 6 Now doing R 2R and R 4R                        
  • 27. Linear Combination 2 161 3 3 3 2 1 1 2 11 0 3 1 16 0 7 3 38 Now, R / ( 3) 1 1 2 11 0 1 0 7 3 38 Now doing R 7R                            
  • 28. Linear Combination 161 3 3 2 2 3 3 3 3 2 161 3 3 3 1 1 2 11 0 1 0 0 Now, performing R ( ) 1 1 2 11 0 1 0 0 1 1 So, we get k 1                           
  • 29. Linear Combination 2 1k 5 and k 4 Now, (6,11,6)=4(3,2,5) ( 5)(2, 2,7) 1(4,6,7) (6,11,6)=(6,11,6) Which is proven.          
  • 30. Span     1 2 3 1 2 3 The set of all the vectors that are linear combination of the vectors in the set S= v , v , v ,....., v is called span of S and denoted by Span S or span v , v , v ,....., v . r r 
  • 31. Span 2 1 2 2 3 2 2 1 2 3 2 1 1 2 2 3 3 2 1 2 3 1 :6 Determine whether the polynomial p 2 , p 1 , p 2 span P . :6 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b +b ) k (2 n Ex x x x x Sol x x x x              2 2 2 3 2 1 2 3 1 1 3 1 2 3 1 1 1 3 2 1 2 3 3 ) k (1 ) k (2 ) b +b b ) (2k ) (2k k ) (2k 3k k ) 2k b 2k k b 2k 3k k b x x x x x x                    
  • 32. Span 3 1 2 3 Now, matrix will be 2 0 0 2 0 1 2 3 1 det(A)=6 0 Here det(A) 0 therefore matrix is non-Singular therefore the system is consistent. And so, the vectors v , v , v span R .              
  • 33. Span 2 1 2 2 2 3 2 2 1 2 3 2 1 1 2 2 3 3 1 2 :7 Determine whether the polynomial p 1 2 , p 5 4 , p 2 2 2 span P . :7 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b + n Ex x x x x x x Sol x x x                2 2 2 3 1 2 2 3 2 1 2 3 1 2 3 1 2 3 2 1 2 3 1 2 b k (1 2 ) k (5 4 ) k ( 2 2 2 ) b +b +b (k 5k 2k ) ( k k 2k ) (2k 4 k 2k ) k 5k 2k x x x x x x x x x x x                        3 1 1 2 3 2 1 2 3 3 b k k 2k b 2k 4k 2k b          
  • 34. Span 1 2 3 1 3 3 2 1 2 1 3 1 Therefore, 2 1 2 4 b 1 0 1 1 b 1 1 0 1 b Performing R R 1 1 0 1 b 1 0 1 1 b 2 1 2 4 b Now, performing R R and R 2R                        
  • 35. Span 3 2 3 1 3 3 2 3 2 3 1 2 3 1 2 3 4 2 1 1 0 1 b 0 1 1 2 b b 0 1 0 2 b 2b Now, R R 1 1 0 1 b 0 1 1 2 b b 0 0 1 4 b b b The system is consistent for all choices of b. Therefore vectors p ,p ,p ,p span P .                       
  • 36. Span 2 1 2 2 2 3 2 2 1 2 3 2 1 1 2 2 3 3 1 2 :8 Determine whether the polynomial p 1 2 , p 5 4 , p 2 2 2 span P . :8 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b + n Ex x x x x x x Sol x x x                2 2 2 3 1 2 2 3 2 1 2 3 1 2 3 1 2 3 2 1 2 3 1 2 b k (1 2 ) k (5 4 ) k ( 2 2 2 ) b +b +b (k 5k 2k ) ( k k 2k ) (2k 4 k 2k ) k 5k 2k x x x x x x x x x x x                        3 1 1 2 3 2 1 2 3 3 b k k 2k b 2k 4k 2k b          
  • 37. Span 1 2 Now, matrix will be 1 5 2 1 1 2 2 4 2 det(A)=0 Here det(A)=0. Therefore matrix is Singular therefore the system is consistent for some choices of b. And so, the polynomials p , p             3 2, p span P .
  • 38. Linear Dependence and Linear Independence  1 2 3 1 1 2 2 3 3 1 Let S= v , v , v ,...., v be the non-empty set such that k v k v k v ...... k v 0 (1) S is called Linearly Independent set if the system of equation (1) has trivial solutions (means k 0 r r r          2 , k 0,....., k 0). S is called Linearly dependent then the system of equation (1) has non-trivial solution (means at least one scalar which is non-zero). r  
  • 39. Linear Dependence and Linear Independence 1 2 3 :9 Check whether the following vectors are Linearly Independent or Linearly Dependent. (4,1, 2), ( 4,10,2), (4,0,1). :9 - v (4,1, 2), v ( 4,10,2), v (4,0,1) n Ex Sol        1 1 2 2 3 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 1 2 3 - Let k v k v k v 0 0 k (4,1, 2) k ( 4,10,2) k (4,0,1) 0 (4k 4k 4k ) (k 10k ) ( 2k 2k k ) 4k 4k 4k 0 k 10k 0 -2k 2k k 0                             
  • 40. Linear Dependence and Linear Independence 1 2 2 1 3 1 Therefore, 4 4 4 0 1 10 2 0 2 2 1 0 Performing R R 1 10 2 0 4 4 4 0 2 2 1 0 Now, performing R 4R and R 2R                          
  • 41. Linear Dependence and Linear Independence 2 3 2 1 1 2 0 0 2 2 0 0 1 1 0 Performing R / ( 2) 1 1 2 0 0 1 1 0 0 1 1 0 Now, performing R 22R                       
  • 42. Linear Dependence and Linear Independence 3 11 3 3 11 1 10 2 0 0 1 0 0 0 3 0 Performing R / 3 1 10 2 0 0 1 0 0 0 1 0 Now,                      
  • 43. Linear Dependence and Linear Independence 1 2 3 3 2 311 3 2 1 1 2 3 k 10k 2k 0 k k 0 k 0 k 0 k 0 Here k , k , k all are of zero values. Therefore the system of equation has trivial solution. Therefore it is Linearly Independent.              
  • 44. Linear Dependence and Linear Independence  2 2 2 2 2 2 2 1 2 3 1 1 2 2 3 3 :10 S= 2 , 2 ,2 2 3 Check whether S is Linearly Independent or Linearly Dependent in P . :10 - p 2 , p 2 , p 2 3 - Let k p k p k p 0 n Ex x x x x x x Sol x x x x x x                2 2 2 1 2 3 2 1 3 1 2 3 1 2 3 1 3 1 2 1 2 3 0 k (2 ) k ( 2 ) k (2 2 3 ) 0 (2k 2k ) (k k 2k ) (k 2k 3k ) 2k 2k 0 k 10k 0 k 2k 3k 0 x x x x x x x x                          
  • 45. Linear Dependence and Linear Independence 1 2 2 1 3 1 Therefore, 2 0 2 0 1 1 2 0 1 2 3 0 Performing R R 1 1 2 0 2 0 2 0 1 2 3 0 Now, performing R 2R and R R                        
  • 46. Linear Dependence and Linear Independence 2 3 2 1 1 2 0 0 2 2 0 0 1 1 0 Performing R / ( 2) 1 1 2 0 0 1 1 0 0 1 1 0 Now, performingR 2R                       
  • 47. Linear Dependence and Linear Independence 2 3 1 2 3 3 2 1 1 1 2 3 k k 0 k +k +2k 0 - taking k t 0 k t k ( t)+2t=0 k t k 1 k t 1 k 1 Here the system has trivial solution. Therefore it is Linearly Dependent                                     