SlideShare ist ein Scribd-Unternehmen logo
1 von 27











An elevator is a type of vertical transport equipment.
Elevators are generally powered by electric motors that either drive
traction cables or counterweight systems like a hoist, or pump
hydraulic fluid to raise a cylindrical piston like a jack.
Because of wheelchair access laws, elevators are often a legal
requirement in new multistory buildings, especially where
wheelchair ramps would be impractical.
A modern day lift consists of a cab mounted on a platform within an
enclosed space called a shaft or sometimes a ― hoistway ―.
Hydraulic lifts use the principles of hydraulics to pressurize an
above ground or in-ground piston to raise and lower the car.
Roped hydraulics use a combination of both ropes and hydraulic
power to raise and lower cars.
Hydraulic lifts are cheaper, but installing cylinders greater than a
certain length becomes impractical for very high lift hoistways.
Hydraulic lifts are usually slower than traction lifts.



•







Machine room-less elevators are designed so that most of the
components fit within the shaft containing the elevator car; and a
small cabinet houses the elevator controller. Other than the
machinery being in the hoistway, the equipment is similar to a normal
traction elevator.
Benefits
creates more usable space
use less energy (70-80% less than hydraulic elevators)
uses no oil
slightly lower cost than other elevators
can operate at faster speeds than hydraulics but not normal traction
Units.

1.
•

•

There are at least four means of moving an elevator:
Traction elevators
Geared and gearless traction elevators
Geared traction machines are driven by AC or DC electric motors.
Geared machines use gears to control mechanical movement of
elevator cars by "rolling" steel hoist ropes over a drive sheave
which is attached to a gearbox driven by a high speed motor. These
machines are generally the best option for basement or overhead
traction use for speeds up to 500 ft/min (2.5 m/s).
Gearless traction machines are low speed, high torque electric
motors powered either by AC or DC. In this case, the drive sheave
is directly attached to the end of the motor. Gearless traction
elevators can reach speeds of up to 2,000 ft/min (10 m/s), or even
higher. A brake is mounted between the motor and drive sheave to
hold the elevator stationary at a floor.
GEARLESS
TRACTION
ELEVATORS

GEARED
TRACTION
ELEVATORS
•

Elevators with more than 100 ft (30 m) of travel
have a system called compensation. This is a
separate set of cables or a chain attached to the
bottom of the counterweight and the bottom of the
elevator cab. This makes it easier to control the
elevator, as it compensates for the differing weight
of cable between the hoist and the cab
2. Hydraulic elevators
Conventional hydraulic elevators. They use an
underground cylinder, are quite common for low
level buildings with 2–5 floors (sometimes but
seldom up to 6–8 floors), and have speeds of up
to 200 feet/minute (1 meter/second).
Holeless hydraulic elevators were developed in
the 1970s, and use a pair of above ground
cylinders, which makes it practical for
environmentally or cost sensitive buildings with
2, 3, or 4 floors.
Roped hydraulic elevators use both above ground
cylinders and a rope system, allowing the
elevator to travel further than the piston has to
move.
The low mechanical complexity of hydraulic elevators in
comparison to traction elevators makes them ideal for low rise, low
traffic installations. They are less energy efficient as the pump
works against gravity to push the car and its passengers upwards;
this energy is lost when the car descends on its own weight. The
high current draw of the pump when starting up also places higher
demands on a building’s electrical system.
3. Traction-Hydraulic Elevators
The traction-hydraulic elevator has overhead traction cables and
counterweight, but is driven by hydraulic power instead of an
overhead traction motor. The weight of the car and its
passengers, plus an advantageous roping ratio, reduces the
demand from the pump to raise the counterweight, thereby
reducing the size of the required machinery.
4. Climbing elevator
A climbing elevator is a self-ascending elevator with its own
propulsion. The propulsion can be done by an electric or a
combustion engine. Climbing elevators are used in guyed masts or
towers, in order to make easy access to parts of these
constructions, such as flight safety lamps for maintenance.
Concept
Elevator air conditioning is fast becoming a popular concept
around the world. The primary reason for installing an elevator air
conditioner is the comfort that it provides while traveling in the
elevator. It stabilizes the condition of the air inside the lift car.
Health
One of the benefits of installing an elevator air conditioner is the
clean air it provides. Air was typically drawn from the elevator shaft
or hoistway into the car using a motorized fan. This air could
contain dust mites, germs and bacteria. With an elevator air
conditioner, the air is much cleaner because it is recirculated within
the car itself and is usually filtered to remove contaminants. A
poorly maintained air-conditioning system may promote the growth
and spread of microorganisms, but as long as the air conditioner is
kept clean, these health hazards can be avoided.
Drawbacks
Heat generated from the cooling process is dissipated
into the hoistway. The elevator cab (or car) is not airtight, and some of this heat will reenter the car and
reduce the overall cooling effect, which may be less
than ideal.
Energy
The air from the lobby constantly leaks into the elevator
shaft due to elevator movements as well as elevator
shaft ventilation requirements. Using this conditioned
air in the elevator does not increase energy costs.
However, by using an independent elevator air
conditioner to achieve better temperature control
inside the car, more energy will be used.
Condensation
Air conditioning poses a problem to elevators because
of the condensation that occurs. The condensed water
produced has to be disposed of; otherwise, it would
create flooding in the elevator car and hoistway.


The following are suggested inside dimensions and rated capacities:
• Office buildings: 6 feet 8 inches wide by 5 feet 5 inches deep; 3,500 pounds.
• Apartment buildings: 6 feet 8 inches wide by 4 feet 3 inches deep; 2,500
pounds
• Hotels/motels: 6 feet 8 inches wide by 5 feet 5 inches deep; 3,500 pounds.
• Service elevators: 5 feet 4 inches wide by 8 feet 5 inches deep; 4,500 pounds.
• Hospital passenger elevators: 6 feet 8 inches wide by 5 feet 5 inches deep;
3,500 pounds.
• Hospital vehicle elevators: 5 feet 9 inches wide by 10 feet deep; 6,000
pounds.

Office buildings:








1. One elevator is required for every 45,000 net usable square feet. The ratio of the
number of floors to the
number of elevators should be two to one or two and a half to one, depending on
the occupancy of the building.
The more dense the population, the more elevators needed.
2. The number of elevators in a single group should not exceed eight and no single
group should serve more
than 16 levels.
3. In buildings of four to eight floors, a separate service elevator should be
considered. Over nine floors, a
service elevator is virtually required.
Hotels/motels:
1. Provide one elevator for every 75 rooms with a minimum of one elevator up to
three floors. Do not exceed
 150 feet from farthest room to elevator.
 2. When room service is provided, allow for one separate service elevator for
every two passenger elevators.
 3. Special-functions, meeting rooms, or lobby areas above entry level can
increase the number of elevators.


Apartment / Condominium/Dormitory
1. One elevator for every 90 units with a maximum distance of 150 feet from
elevators to the most distant unit.
 2. Urban locations or high-price units might require one elevator for every 60
units.
 3. Make one elevator oversize (at least 3,500 pounds) to accommodate furniture.
In buildings 10 floors or more,
 consider a separate service elevator.

•

Passenger elevators should be located at the circulation core of the
building and be grouped into banks when this is necessary and
desirable.
The required umber of elevators is determined by:
Building type
Building height
Number of stops
Floor use
Passenger volume
A freight elevator, or goods lift, is an elevator designed to carry goods,
rather than passengers. Freight elevators are typically larger and
capable of carrying heavier loads than a passenger elevator, generally
from 2,300 to 4,500 kg. Freight elevators may have manually operated
doors, and often have rugged interior finishes to prevent damage while
loading and unloading. Although hydraulic freight elevators exist,
electric elevators are more energy efficient for the work of freight lifting.






Scenic elevators also called glass elevators are getting popular. They
loosen rigour of architecture and give passengers a visually stimulating ride
between floors.This type of elevators are suitable for luxurious buildings. It
increases the passenger sense of security.
If the technical components are to be hidden, the scenic elevator consist of
entrance area and a viewing area.The entrance area is surrounded by an
enclosed shaft that contains necessary elevator technology.The car is also
enclosed in this area.
The car walls must be constructed with laminated glass with EN
81.Depending on architecture , opaque sheet metal doors can be replaced
with transluscent glass doors in scenic elevators.








Dumbwaiter - Dumbwaiters are small freight elevators that are
intended to carry food rather than passengers. They often link
kitchens with rooms on other floors.
Paternoster -A special type of elevator is the paternoster, a
constantly moving chain of boxes. A similar concept, called
the manlift or humanlift, moves only a small platform, which the
rider mounts while using a handhold and was once seen in multistory industrial plants.
Scissor lift -The scissor lift is yet another type of lift. As most of
these lifts are self-contained, these lifts can be easily moved to
where they are needed.
Rack-and-pinion lift -The rack-and-pinion lift is another type of lift.
These lifts are powered by a motor driving a pinion gear. Because
they can be installed on a building or structure's exterior and there
is no machine room or hoistway required, they are the most used
type of lift for buildings under construction


ELEVATOR SHAFT – contain building components necessary for the
operation of elevator. Its dimension depends upon elevator model, door
design and type of drive. They must have ventilation and smoke
extracting openings. The cross section of these openings is generally
2.5% of the shaft floor area, with minimum cross section stipulated as
0.1m.sq.



SHAFT PIT – the bottom end of the shaft is called pit. The depth of the
pit is measured from the top edge of the finished floor at the lowest
elevator stop to the top edge of the finished floor of the pit floor. The
minimum depth of pit is determined by:
space required for construction
over run and safety space stipulated by regulations
The pit sits directly on the foundation. Shaft pits that are 1 to 2.5m deep
must be equipped with a removable access ladder. Pits with a depth
greater than 2.5m must have a secure access door to a building floor.


SHAFT HEAD – It is the upper
section of the
shaft, measured from the top
edge of the finished floor at
the uppermost stop to the
bottom edge of the shaft
ceiling.



SHAFT ACCESS – The size of
the shaft access points is
determined by the door
design, while their location is
defined by shaft symmetry.



MACHINE ROOM -

Depending upon the type of
drive machine room is located
either at the top above the
shaft or at the bottom next to
it.






In addition to doors, the size of
the elevator shaft is also largely
determined by dimensions of
elevator car.
All elevator cars must be well
lit, with grid independent safety
lights which are battery operated
Passenger and freight elevator
cars must be ventilated. Air intake
and exhaust openings must be
placed to ensure sufficient
diagonal and cross ventilation.






An escalator is a moving staircase – a conveyer transport
device for carrying people between floors of a building. The
device consists of a motor -driven chain of individual, linked
steps that move up or down on tracks, allowing the step
treads to remain horizontal.
Escalators are used around the world to move pedestrian
traffic in places where elevators would be impractical.
Principal areas of usage include department
stores, shopping malls, airports, transit
systems, hotels, arenas, stadiums and public buildings.
The benefits of escalators are many. They have the
capacity to move large numbers of people, and they can be
placed in the same physical space as one might install a
staircase. They can be used to guide people toward main
exits or special exhibits, and they may be weatherproofed
for outdoor use.





Generally designed on an incline of
27.3, 30, 35 degrees.
35 degree escalator is most effective
since it requires least amount of
space. This incline is applicable to a
total transportation height of 6m
If the height is more than 6m than
incline of 27.3 should be given








Most escalators are designed with 1000mm wide steps which allow
passengers to move comfortably when carrying luggage and shopping
bags.
600mm and 800mm wide steps are also available and generally used
in low traffic areas
Standard transportation speed ranges between 0.5 to 0.65m/s
For a speed of 0.5m/s the theoretical capacity is:
600mm step width -4500 persons per hour
800mm step width -6750 persons per hour
1000mm step width -9000 persons/hour
Whenever possible its best to install two or more parallel sets of
escalators.

•

Escalators have three typical configuration options:

Parallel -up and down escalators "side by side or
separated by a distance", seen often in metro stations
and multilevel motion picture theaters
•
Crisscross -minimizes structural space requirements
by "stacking" escalators that go in one direction,
frequently used in department stores or shopping
centers
•
Multiple parallel -two or more escalators together that
travel in one direction next to one or two escalators in
the same bank that travel in the other direction
Escalators are required to have moving handrails that
keep pace with the movement of the steps. The
direction of movement (up or down) can be permanently
the same, or be controlled by personnel according to
the time of day, or automatically.
Landing platforms -These two platforms house the
curved sections of the tracks, as well as the gears and
motors that drive the stairs. The top platform contains
the motor assembly and the main drive gear, while the
bottom holds the step return idler sprockets. These
sections also anchor the ends of the escalator truss. In
addition, the platforms contain a floor plate and a
comb plate. The floor plate provides a place for the
passengers to stand before they step onto the moving
stairs. This plate is flush with the finished floor and is
either hinged or removable to allow easy access to the
machinery below. The comb plate is the piece
"freestanding" escalator reveals its
between the stationary floor plate and the moving
inner components through the
step.
transparent truss
 Truss -The truss is a hollow metal structure that
bridges the lower and upper landings. It is composed
of two side sections joined together with cross braces
across the bottom and just below the top. The ends of
the truss are attached to the top and bottom landing
platforms via steel or concrete supports.





Tracks -The track system is built into the truss to guide the step
chain, which continuously pulls the steps from the bottom platform and
back to the top in an endless loop. There are actually two tracks: one for
the front wheels of the steps (called the step-wheel track) and one for the
back wheels of the steps (called the trailer-wheel track). The relative
positions of these tracks cause the steps to form a staircase as they
move out from under the comb plate.
Steps -The steps themselves are solid, one piece, die-cast aluminum or
steel. Yellow demarcation lines may be added to clearly indicate their
edges. The steps are linked by a continuous metal chain that forms a
closed loop. The front and back edges of the steps are each connected to
two wheels. The rear wheels are set further apart to fit into the back track
and the front wheels have shorter axles to fit into the narrower front track.
As described above, the position of the tracks controls the orientation of
the steps

View of escalator steps on
continuous chain


Handrail- The handrail provides a convenient handhold for passengers while
they are riding the escalator. In an escalator, the handrail is pulled along its
track by a chain that is connected to the main drive gear by a series of pulleys.
It is constructed of four distinct sections. At the center of the handrail is a
"slider", also known as a "glider ply", which is a layer of a cotton or synthetic
textile. The purpose of the slider layer is to allow the handrail to move smoothly
along its track. The next layer, known as the "tension member‖, consists of
either steel cable or flat steel tape, and provides the handrail with tensile
strength and flexibility. On top of tension member are the inner construction
components, which are made of chemically treated rubber designed to prevent
the layers from separating. Finally, the outer layer—the only part that
passengers. Escalator balustrades are usually made of laminated glass or as
steel structures covered in sheet metal.

An escalator equipped with a "bellows"
handrail.

Weitere ähnliche Inhalte

Was ist angesagt?

Lifts and escalators
Lifts and escalatorsLifts and escalators
Lifts and escalatorsShubham Arora
 
Lift.escalator & moving walk
Lift.escalator & moving walkLift.escalator & moving walk
Lift.escalator & moving walkshamal das
 
Provision for fire protection in high rise buildings
Provision for fire protection in high rise buildingsProvision for fire protection in high rise buildings
Provision for fire protection in high rise buildingsAarti Rani
 
Deisgn of Fire Escapes
Deisgn of Fire EscapesDeisgn of Fire Escapes
Deisgn of Fire EscapesIshan Garg
 
Fire safety in Office building Literature, net and live case study
Fire safety in Office building Literature, net and live case studyFire safety in Office building Literature, net and live case study
Fire safety in Office building Literature, net and live case studyIrene Devakirubai
 
vertical-transportation (mechanical)
vertical-transportation (mechanical)vertical-transportation (mechanical)
vertical-transportation (mechanical)AnsherinaDelMundo
 
Aluminum partition wall
Aluminum partition wallAluminum partition wall
Aluminum partition wallZuber Memon
 
Vertical transportation important
Vertical transportation importantVertical transportation important
Vertical transportation importantMuhammad Muhyuddin
 
Fire regulations for buildings
Fire regulations for buildingsFire regulations for buildings
Fire regulations for buildingsDeepak KUMAR
 
Auditorium design ppt
Auditorium design pptAuditorium design ppt
Auditorium design pptAlok Ranjan
 
building service - lift and escalators
building service - lift and escalatorsbuilding service - lift and escalators
building service - lift and escalatorsrajitk97
 

Was ist angesagt? (20)

Lifts & Escalators
Lifts & EscalatorsLifts & Escalators
Lifts & Escalators
 
Lift
LiftLift
Lift
 
Lifts and escalators
Lifts and escalatorsLifts and escalators
Lifts and escalators
 
Vertical Circulation and Services of Highrise
Vertical Circulation and Services of HighriseVertical Circulation and Services of Highrise
Vertical Circulation and Services of Highrise
 
Escalators
EscalatorsEscalators
Escalators
 
Lift.escalator & moving walk
Lift.escalator & moving walkLift.escalator & moving walk
Lift.escalator & moving walk
 
Presentation on building service
Presentation on building servicePresentation on building service
Presentation on building service
 
Provision for fire protection in high rise buildings
Provision for fire protection in high rise buildingsProvision for fire protection in high rise buildings
Provision for fire protection in high rise buildings
 
Deisgn of Fire Escapes
Deisgn of Fire EscapesDeisgn of Fire Escapes
Deisgn of Fire Escapes
 
Acoustic material
Acoustic materialAcoustic material
Acoustic material
 
Escalators
EscalatorsEscalators
Escalators
 
Fire safety in Office building Literature, net and live case study
Fire safety in Office building Literature, net and live case studyFire safety in Office building Literature, net and live case study
Fire safety in Office building Literature, net and live case study
 
Capsule lifts
Capsule lifts Capsule lifts
Capsule lifts
 
vertical-transportation (mechanical)
vertical-transportation (mechanical)vertical-transportation (mechanical)
vertical-transportation (mechanical)
 
Aluminum partition wall
Aluminum partition wallAluminum partition wall
Aluminum partition wall
 
Vertical transportation important
Vertical transportation importantVertical transportation important
Vertical transportation important
 
Fire regulations for buildings
Fire regulations for buildingsFire regulations for buildings
Fire regulations for buildings
 
Auditorium design ppt
Auditorium design pptAuditorium design ppt
Auditorium design ppt
 
building service - lift and escalators
building service - lift and escalatorsbuilding service - lift and escalators
building service - lift and escalators
 
Elevators and excelarators
Elevators and excelaratorsElevators and excelarators
Elevators and excelarators
 

Ähnlich wie Elevators & Escalators

Elevators notes 1.pptx
Elevators notes 1.pptxElevators notes 1.pptx
Elevators notes 1.pptxAnoHossey
 
advanced services.pptx
advanced services.pptxadvanced services.pptx
advanced services.pptxNaveena950017
 
Elevators Definitions, Types and Applications
Elevators Definitions, Types and ApplicationsElevators Definitions, Types and Applications
Elevators Definitions, Types and ApplicationsProfSHananeel
 
STAIRS AND LIFTS IN ARCHIETCTURE
STAIRS AND LIFTS IN ARCHIETCTURESTAIRS AND LIFTS IN ARCHIETCTURE
STAIRS AND LIFTS IN ARCHIETCTURESYED PASHA
 
BMC V - MODULE 02 - ELEVATORS (1).pptx
BMC V - MODULE 02 - ELEVATORS (1).pptxBMC V - MODULE 02 - ELEVATORS (1).pptx
BMC V - MODULE 02 - ELEVATORS (1).pptxAnoHossey
 
WEEK 15-16 BUILDING SERVICES (1).pptx
WEEK 15-16 BUILDING SERVICES (1).pptxWEEK 15-16 BUILDING SERVICES (1).pptx
WEEK 15-16 BUILDING SERVICES (1).pptxshamshaider10
 
lift and escalator.pdf
lift and escalator.pdflift and escalator.pdf
lift and escalator.pdfDeepika Verma
 
3340903- UEE- UNIT-3 ELEVATOR.pptx
3340903- UEE- UNIT-3 ELEVATOR.pptx3340903- UEE- UNIT-3 ELEVATOR.pptx
3340903- UEE- UNIT-3 ELEVATOR.pptxJigsPatel37
 
Building services and repairs mumbai university introduction
Building services and repairs mumbai university introductionBuilding services and repairs mumbai university introduction
Building services and repairs mumbai university introductionwasim shaikh
 
Vertical communication, lifts, escalators and moving walkways.pdf
Vertical communication, lifts, escalators and moving walkways.pdfVertical communication, lifts, escalators and moving walkways.pdf
Vertical communication, lifts, escalators and moving walkways.pdfAbdulwalimusemohamed
 
238291841-Lifts-Escalators.pptx
238291841-Lifts-Escalators.pptx238291841-Lifts-Escalators.pptx
238291841-Lifts-Escalators.pptxAriesRefugio
 
LIFTS AND ESCALATORS.pptx and its basic pricples
LIFTS AND ESCALATORS.pptx and its basic pricplesLIFTS AND ESCALATORS.pptx and its basic pricples
LIFTS AND ESCALATORS.pptx and its basic pricplesMichael Intia
 
lifts-150324053755-conversion-gate01 (1).pdf
lifts-150324053755-conversion-gate01 (1).pdflifts-150324053755-conversion-gate01 (1).pdf
lifts-150324053755-conversion-gate01 (1).pdfParth697370
 
dfnsf-170406142529.pdf
dfnsf-170406142529.pdfdfnsf-170406142529.pdf
dfnsf-170406142529.pdfRamazKanagala1
 
Service core
Service coreService core
Service coreaduiti
 

Ähnlich wie Elevators & Escalators (20)

Elevators notes 1.pptx
Elevators notes 1.pptxElevators notes 1.pptx
Elevators notes 1.pptx
 
advanced services.pptx
advanced services.pptxadvanced services.pptx
advanced services.pptx
 
LIFTS.pptx
LIFTS.pptxLIFTS.pptx
LIFTS.pptx
 
Elevators & Escalators
Elevators & EscalatorsElevators & Escalators
Elevators & Escalators
 
Elevators Definitions, Types and Applications
Elevators Definitions, Types and ApplicationsElevators Definitions, Types and Applications
Elevators Definitions, Types and Applications
 
STAIRS AND LIFTS IN ARCHIETCTURE
STAIRS AND LIFTS IN ARCHIETCTURESTAIRS AND LIFTS IN ARCHIETCTURE
STAIRS AND LIFTS IN ARCHIETCTURE
 
BMC V - MODULE 02 - ELEVATORS (1).pptx
BMC V - MODULE 02 - ELEVATORS (1).pptxBMC V - MODULE 02 - ELEVATORS (1).pptx
BMC V - MODULE 02 - ELEVATORS (1).pptx
 
WEEK 15-16 BUILDING SERVICES (1).pptx
WEEK 15-16 BUILDING SERVICES (1).pptxWEEK 15-16 BUILDING SERVICES (1).pptx
WEEK 15-16 BUILDING SERVICES (1).pptx
 
lift and escalator.pdf
lift and escalator.pdflift and escalator.pdf
lift and escalator.pdf
 
Elevators - Notes
Elevators - NotesElevators - Notes
Elevators - Notes
 
3340903- UEE- UNIT-3 ELEVATOR.pptx
3340903- UEE- UNIT-3 ELEVATOR.pptx3340903- UEE- UNIT-3 ELEVATOR.pptx
3340903- UEE- UNIT-3 ELEVATOR.pptx
 
Building services and repairs mumbai university introduction
Building services and repairs mumbai university introductionBuilding services and repairs mumbai university introduction
Building services and repairs mumbai university introduction
 
Vertical communication, lifts, escalators and moving walkways.pdf
Vertical communication, lifts, escalators and moving walkways.pdfVertical communication, lifts, escalators and moving walkways.pdf
Vertical communication, lifts, escalators and moving walkways.pdf
 
238291841-Lifts-Escalators.pptx
238291841-Lifts-Escalators.pptx238291841-Lifts-Escalators.pptx
238291841-Lifts-Escalators.pptx
 
LIFTS AND ESCALATORS.pptx and its basic pricples
LIFTS AND ESCALATORS.pptx and its basic pricplesLIFTS AND ESCALATORS.pptx and its basic pricples
LIFTS AND ESCALATORS.pptx and its basic pricples
 
lifts-150324053755-conversion-gate01 (1).pdf
lifts-150324053755-conversion-gate01 (1).pdflifts-150324053755-conversion-gate01 (1).pdf
lifts-150324053755-conversion-gate01 (1).pdf
 
Lifts & escalators
Lifts & escalators Lifts & escalators
Lifts & escalators
 
ELEVATORS
ELEVATORSELEVATORS
ELEVATORS
 
dfnsf-170406142529.pdf
dfnsf-170406142529.pdfdfnsf-170406142529.pdf
dfnsf-170406142529.pdf
 
Service core
Service coreService core
Service core
 

Kürzlich hochgeladen

Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesZilliz
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 

Kürzlich hochgeladen (20)

Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector Databases
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 

Elevators & Escalators

  • 1.
  • 2.        An elevator is a type of vertical transport equipment. Elevators are generally powered by electric motors that either drive traction cables or counterweight systems like a hoist, or pump hydraulic fluid to raise a cylindrical piston like a jack. Because of wheelchair access laws, elevators are often a legal requirement in new multistory buildings, especially where wheelchair ramps would be impractical. A modern day lift consists of a cab mounted on a platform within an enclosed space called a shaft or sometimes a ― hoistway ―. Hydraulic lifts use the principles of hydraulics to pressurize an above ground or in-ground piston to raise and lower the car. Roped hydraulics use a combination of both ropes and hydraulic power to raise and lower cars. Hydraulic lifts are cheaper, but installing cylinders greater than a certain length becomes impractical for very high lift hoistways. Hydraulic lifts are usually slower than traction lifts.
  • 3.   •      Machine room-less elevators are designed so that most of the components fit within the shaft containing the elevator car; and a small cabinet houses the elevator controller. Other than the machinery being in the hoistway, the equipment is similar to a normal traction elevator. Benefits creates more usable space use less energy (70-80% less than hydraulic elevators) uses no oil slightly lower cost than other elevators can operate at faster speeds than hydraulics but not normal traction Units.
  • 4.  1. • • There are at least four means of moving an elevator: Traction elevators Geared and gearless traction elevators Geared traction machines are driven by AC or DC electric motors. Geared machines use gears to control mechanical movement of elevator cars by "rolling" steel hoist ropes over a drive sheave which is attached to a gearbox driven by a high speed motor. These machines are generally the best option for basement or overhead traction use for speeds up to 500 ft/min (2.5 m/s). Gearless traction machines are low speed, high torque electric motors powered either by AC or DC. In this case, the drive sheave is directly attached to the end of the motor. Gearless traction elevators can reach speeds of up to 2,000 ft/min (10 m/s), or even higher. A brake is mounted between the motor and drive sheave to hold the elevator stationary at a floor.
  • 6. • Elevators with more than 100 ft (30 m) of travel have a system called compensation. This is a separate set of cables or a chain attached to the bottom of the counterweight and the bottom of the elevator cab. This makes it easier to control the elevator, as it compensates for the differing weight of cable between the hoist and the cab 2. Hydraulic elevators Conventional hydraulic elevators. They use an underground cylinder, are quite common for low level buildings with 2–5 floors (sometimes but seldom up to 6–8 floors), and have speeds of up to 200 feet/minute (1 meter/second). Holeless hydraulic elevators were developed in the 1970s, and use a pair of above ground cylinders, which makes it practical for environmentally or cost sensitive buildings with 2, 3, or 4 floors. Roped hydraulic elevators use both above ground cylinders and a rope system, allowing the elevator to travel further than the piston has to move.
  • 7. The low mechanical complexity of hydraulic elevators in comparison to traction elevators makes them ideal for low rise, low traffic installations. They are less energy efficient as the pump works against gravity to push the car and its passengers upwards; this energy is lost when the car descends on its own weight. The high current draw of the pump when starting up also places higher demands on a building’s electrical system. 3. Traction-Hydraulic Elevators The traction-hydraulic elevator has overhead traction cables and counterweight, but is driven by hydraulic power instead of an overhead traction motor. The weight of the car and its passengers, plus an advantageous roping ratio, reduces the demand from the pump to raise the counterweight, thereby reducing the size of the required machinery. 4. Climbing elevator A climbing elevator is a self-ascending elevator with its own propulsion. The propulsion can be done by an electric or a combustion engine. Climbing elevators are used in guyed masts or towers, in order to make easy access to parts of these constructions, such as flight safety lamps for maintenance.
  • 8. Concept Elevator air conditioning is fast becoming a popular concept around the world. The primary reason for installing an elevator air conditioner is the comfort that it provides while traveling in the elevator. It stabilizes the condition of the air inside the lift car. Health One of the benefits of installing an elevator air conditioner is the clean air it provides. Air was typically drawn from the elevator shaft or hoistway into the car using a motorized fan. This air could contain dust mites, germs and bacteria. With an elevator air conditioner, the air is much cleaner because it is recirculated within the car itself and is usually filtered to remove contaminants. A poorly maintained air-conditioning system may promote the growth and spread of microorganisms, but as long as the air conditioner is kept clean, these health hazards can be avoided.
  • 9. Drawbacks Heat generated from the cooling process is dissipated into the hoistway. The elevator cab (or car) is not airtight, and some of this heat will reenter the car and reduce the overall cooling effect, which may be less than ideal. Energy The air from the lobby constantly leaks into the elevator shaft due to elevator movements as well as elevator shaft ventilation requirements. Using this conditioned air in the elevator does not increase energy costs. However, by using an independent elevator air conditioner to achieve better temperature control inside the car, more energy will be used. Condensation Air conditioning poses a problem to elevators because of the condensation that occurs. The condensed water produced has to be disposed of; otherwise, it would create flooding in the elevator car and hoistway.
  • 10.  The following are suggested inside dimensions and rated capacities: • Office buildings: 6 feet 8 inches wide by 5 feet 5 inches deep; 3,500 pounds. • Apartment buildings: 6 feet 8 inches wide by 4 feet 3 inches deep; 2,500 pounds • Hotels/motels: 6 feet 8 inches wide by 5 feet 5 inches deep; 3,500 pounds. • Service elevators: 5 feet 4 inches wide by 8 feet 5 inches deep; 4,500 pounds. • Hospital passenger elevators: 6 feet 8 inches wide by 5 feet 5 inches deep; 3,500 pounds. • Hospital vehicle elevators: 5 feet 9 inches wide by 10 feet deep; 6,000 pounds. Office buildings:        1. One elevator is required for every 45,000 net usable square feet. The ratio of the number of floors to the number of elevators should be two to one or two and a half to one, depending on the occupancy of the building. The more dense the population, the more elevators needed. 2. The number of elevators in a single group should not exceed eight and no single group should serve more than 16 levels. 3. In buildings of four to eight floors, a separate service elevator should be considered. Over nine floors, a service elevator is virtually required.
  • 11. Hotels/motels: 1. Provide one elevator for every 75 rooms with a minimum of one elevator up to three floors. Do not exceed  150 feet from farthest room to elevator.  2. When room service is provided, allow for one separate service elevator for every two passenger elevators.  3. Special-functions, meeting rooms, or lobby areas above entry level can increase the number of elevators.  Apartment / Condominium/Dormitory 1. One elevator for every 90 units with a maximum distance of 150 feet from elevators to the most distant unit.  2. Urban locations or high-price units might require one elevator for every 60 units.  3. Make one elevator oversize (at least 3,500 pounds) to accommodate furniture. In buildings 10 floors or more,  consider a separate service elevator. 
  • 12. • Passenger elevators should be located at the circulation core of the building and be grouped into banks when this is necessary and desirable. The required umber of elevators is determined by: Building type Building height Number of stops Floor use Passenger volume
  • 13.
  • 14. A freight elevator, or goods lift, is an elevator designed to carry goods, rather than passengers. Freight elevators are typically larger and capable of carrying heavier loads than a passenger elevator, generally from 2,300 to 4,500 kg. Freight elevators may have manually operated doors, and often have rugged interior finishes to prevent damage while loading and unloading. Although hydraulic freight elevators exist, electric elevators are more energy efficient for the work of freight lifting.
  • 15.    Scenic elevators also called glass elevators are getting popular. They loosen rigour of architecture and give passengers a visually stimulating ride between floors.This type of elevators are suitable for luxurious buildings. It increases the passenger sense of security. If the technical components are to be hidden, the scenic elevator consist of entrance area and a viewing area.The entrance area is surrounded by an enclosed shaft that contains necessary elevator technology.The car is also enclosed in this area. The car walls must be constructed with laminated glass with EN 81.Depending on architecture , opaque sheet metal doors can be replaced with transluscent glass doors in scenic elevators.
  • 16.     Dumbwaiter - Dumbwaiters are small freight elevators that are intended to carry food rather than passengers. They often link kitchens with rooms on other floors. Paternoster -A special type of elevator is the paternoster, a constantly moving chain of boxes. A similar concept, called the manlift or humanlift, moves only a small platform, which the rider mounts while using a handhold and was once seen in multistory industrial plants. Scissor lift -The scissor lift is yet another type of lift. As most of these lifts are self-contained, these lifts can be easily moved to where they are needed. Rack-and-pinion lift -The rack-and-pinion lift is another type of lift. These lifts are powered by a motor driving a pinion gear. Because they can be installed on a building or structure's exterior and there is no machine room or hoistway required, they are the most used type of lift for buildings under construction
  • 17.  ELEVATOR SHAFT – contain building components necessary for the operation of elevator. Its dimension depends upon elevator model, door design and type of drive. They must have ventilation and smoke extracting openings. The cross section of these openings is generally 2.5% of the shaft floor area, with minimum cross section stipulated as 0.1m.sq.  SHAFT PIT – the bottom end of the shaft is called pit. The depth of the pit is measured from the top edge of the finished floor at the lowest elevator stop to the top edge of the finished floor of the pit floor. The minimum depth of pit is determined by: space required for construction over run and safety space stipulated by regulations The pit sits directly on the foundation. Shaft pits that are 1 to 2.5m deep must be equipped with a removable access ladder. Pits with a depth greater than 2.5m must have a secure access door to a building floor.
  • 18.  SHAFT HEAD – It is the upper section of the shaft, measured from the top edge of the finished floor at the uppermost stop to the bottom edge of the shaft ceiling.  SHAFT ACCESS – The size of the shaft access points is determined by the door design, while their location is defined by shaft symmetry.  MACHINE ROOM - Depending upon the type of drive machine room is located either at the top above the shaft or at the bottom next to it.
  • 19.    In addition to doors, the size of the elevator shaft is also largely determined by dimensions of elevator car. All elevator cars must be well lit, with grid independent safety lights which are battery operated Passenger and freight elevator cars must be ventilated. Air intake and exhaust openings must be placed to ensure sufficient diagonal and cross ventilation.
  • 20.    An escalator is a moving staircase – a conveyer transport device for carrying people between floors of a building. The device consists of a motor -driven chain of individual, linked steps that move up or down on tracks, allowing the step treads to remain horizontal. Escalators are used around the world to move pedestrian traffic in places where elevators would be impractical. Principal areas of usage include department stores, shopping malls, airports, transit systems, hotels, arenas, stadiums and public buildings. The benefits of escalators are many. They have the capacity to move large numbers of people, and they can be placed in the same physical space as one might install a staircase. They can be used to guide people toward main exits or special exhibits, and they may be weatherproofed for outdoor use.
  • 21.    Generally designed on an incline of 27.3, 30, 35 degrees. 35 degree escalator is most effective since it requires least amount of space. This incline is applicable to a total transportation height of 6m If the height is more than 6m than incline of 27.3 should be given
  • 22.      Most escalators are designed with 1000mm wide steps which allow passengers to move comfortably when carrying luggage and shopping bags. 600mm and 800mm wide steps are also available and generally used in low traffic areas Standard transportation speed ranges between 0.5 to 0.65m/s For a speed of 0.5m/s the theoretical capacity is: 600mm step width -4500 persons per hour 800mm step width -6750 persons per hour 1000mm step width -9000 persons/hour Whenever possible its best to install two or more parallel sets of escalators.
  • 23.  • Escalators have three typical configuration options: Parallel -up and down escalators "side by side or separated by a distance", seen often in metro stations and multilevel motion picture theaters • Crisscross -minimizes structural space requirements by "stacking" escalators that go in one direction, frequently used in department stores or shopping centers • Multiple parallel -two or more escalators together that travel in one direction next to one or two escalators in the same bank that travel in the other direction Escalators are required to have moving handrails that keep pace with the movement of the steps. The direction of movement (up or down) can be permanently the same, or be controlled by personnel according to the time of day, or automatically.
  • 24.
  • 25. Landing platforms -These two platforms house the curved sections of the tracks, as well as the gears and motors that drive the stairs. The top platform contains the motor assembly and the main drive gear, while the bottom holds the step return idler sprockets. These sections also anchor the ends of the escalator truss. In addition, the platforms contain a floor plate and a comb plate. The floor plate provides a place for the passengers to stand before they step onto the moving stairs. This plate is flush with the finished floor and is either hinged or removable to allow easy access to the machinery below. The comb plate is the piece "freestanding" escalator reveals its between the stationary floor plate and the moving inner components through the step. transparent truss  Truss -The truss is a hollow metal structure that bridges the lower and upper landings. It is composed of two side sections joined together with cross braces across the bottom and just below the top. The ends of the truss are attached to the top and bottom landing platforms via steel or concrete supports. 
  • 26.   Tracks -The track system is built into the truss to guide the step chain, which continuously pulls the steps from the bottom platform and back to the top in an endless loop. There are actually two tracks: one for the front wheels of the steps (called the step-wheel track) and one for the back wheels of the steps (called the trailer-wheel track). The relative positions of these tracks cause the steps to form a staircase as they move out from under the comb plate. Steps -The steps themselves are solid, one piece, die-cast aluminum or steel. Yellow demarcation lines may be added to clearly indicate their edges. The steps are linked by a continuous metal chain that forms a closed loop. The front and back edges of the steps are each connected to two wheels. The rear wheels are set further apart to fit into the back track and the front wheels have shorter axles to fit into the narrower front track. As described above, the position of the tracks controls the orientation of the steps View of escalator steps on continuous chain
  • 27.  Handrail- The handrail provides a convenient handhold for passengers while they are riding the escalator. In an escalator, the handrail is pulled along its track by a chain that is connected to the main drive gear by a series of pulleys. It is constructed of four distinct sections. At the center of the handrail is a "slider", also known as a "glider ply", which is a layer of a cotton or synthetic textile. The purpose of the slider layer is to allow the handrail to move smoothly along its track. The next layer, known as the "tension member‖, consists of either steel cable or flat steel tape, and provides the handrail with tensile strength and flexibility. On top of tension member are the inner construction components, which are made of chemically treated rubber designed to prevent the layers from separating. Finally, the outer layer—the only part that passengers. Escalator balustrades are usually made of laminated glass or as steel structures covered in sheet metal. An escalator equipped with a "bellows" handrail.