SlideShare ist ein Scribd-Unternehmen logo
1 von 19
7.4 Integration of
 Rational Functions
Rational function: ratio of polynomials.

Ex:                 +    +
                        +
7.4 Integration of
  Rational Functions
Rational function: ratio of polynomials.

Ex:                 +    +
                        +
Fact: A rational function can always be
decomposed to summation of terms like
                               +
polynomials or ( + ) or ( + + ) where
A, B, etc. are constants.

Ex:   −  + +
                = + +          +           −
       − − +               −       ( − )       +

                           Partial Fractions
First step: if the rational function is
improper (the degree of numerator is more
than or equal to the degree of dominator),
use long division to decompose it to a
polynomial plus a proper rational function.

       +
Ex:        =    + +     +
First step: if the rational function is
improper (the degree of numerator is more
than or equal to the degree of dominator),
use long division to decompose it to a
polynomial plus a proper rational function.

        +
Ex:            =       + +   +

As a result:

        +
                   =    +    +   +   |   |+
Second step: factor the dominator of the
proper rational function to be a product of
linear factors and/or irreducible quadratic
factors.


      +   +   is irreducible if             <   .


Ex:       +   = (    + )
          +          = (           )( + )
              +            +      =(   ) (      + )
Third step: decompose the proper rational
function to be a sum of partial fractions by
method of undetermined coefficients.

         +
Ex:
         +
Third step: decompose the proper rational
function to be a sum of partial fractions by
method of undetermined coefficients.

            +
Ex:
            +

We factor       +         = (       )( + )
Third step: decompose the proper rational
function to be a sum of partial fractions by
method of undetermined coefficients.

            +
Ex:
            +

We factor       +         = (       )( + )
                +
so assume                 =     +        +
                +                              +
Third step: decompose the proper rational
function to be a sum of partial fractions by
method of undetermined coefficients.

            +
Ex:
            +

We factor       +           = (           )( + )
                +
so assume                   =     +          +
                +                                  +
            (   +   +   )   +(        +       )
       =
                            +
Third step: decompose the proper rational
function to be a sum of partial fractions by
method of undetermined coefficients.

            +
Ex:
            +

We factor           +           = (           )( + )
                    +
so assume                       =     +          +
                    +                                  +
            (       +   +   )   +(        +       )
       =
                                +
thus   =        ,   =   ,   =
CASE I: the dominator is a product of
distinct linear factors.


CASE II: the dominator is a product of
linear factors, some of which are repeated.


CASE III: the dominator contains distinct
irreducible quadratic factors.


Case IV: the dominator contains repeated
irreducible quadratic factors.
+
Ex: find
           +
+
Ex: find
              +

We already knew that

    +
              =        +
    +                      (   )   ( + )
                                     C AS E I
+
Ex: find
                  +

We already knew that

     +
                  =    +
     +                     (       )    ( + )
           +                              C AS E I
so
           +

     =     | |+       |        |       | + |+
Ex: find
           +
Ex: find
                 +

We factor that       +   =(   ) ( + )
                                CAS E II
Ex: find
                         +

We factor that               +   =(       ) ( + )
                                              CAS E II
so we assume

                     =       +            +
                 +               (    )        +
Ex: find
                         +

We factor that               +   =(       ) ( + )
                                              CAS E II
so we assume

                     =       +            +
                 +               (    )        +
 and find      = ,   = ,     =
Ex: find
                             +

We factor that                     +   =(        ) ( + )
                                                     CAS E II
so we assume

                         =         +             +
                     +                 (     )        +
 and find      = ,           = ,   =

thus
                         +
           =     |       |                  | + |+

Weitere ähnliche Inhalte

Was ist angesagt?

Additional math 1999
Additional math   1999Additional math   1999
Additional math 1999MUSAKILAVE
 
Exponential and logrithmic functions
Exponential and logrithmic functionsExponential and logrithmic functions
Exponential and logrithmic functionsMalikahmad105
 
7.3 power functions and function operations
7.3 power functions and function operations7.3 power functions and function operations
7.3 power functions and function operationshisema01
 
Lesson 3 Nov 16 09
Lesson 3 Nov 16 09Lesson 3 Nov 16 09
Lesson 3 Nov 16 09ingroy
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculusgoldenratio618
 
5 4 function notation
5 4 function notation5 4 function notation
5 4 function notationhisema01
 
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.Isaac Yowetu
 
8.4 logarithmic functions
8.4 logarithmic functions8.4 logarithmic functions
8.4 logarithmic functionshisema01
 
Derivatives Lesson Oct 15
Derivatives Lesson  Oct 15Derivatives Lesson  Oct 15
Derivatives Lesson Oct 15ingroy
 
Lesson 5: Functions and surfaces
Lesson 5: Functions and surfacesLesson 5: Functions and surfaces
Lesson 5: Functions and surfacesMatthew Leingang
 
Module 2, topic 2
Module 2, topic 2Module 2, topic 2
Module 2, topic 2Annie cox
 
Lecture 10 section 4.1 and 4.2 exponential functions
Lecture 10   section 4.1 and 4.2  exponential functionsLecture 10   section 4.1 and 4.2  exponential functions
Lecture 10 section 4.1 and 4.2 exponential functionsnjit-ronbrown
 
Lecture 10 section 4.1 and 4.2 exponential functions
Lecture 10   section 4.1 and 4.2  exponential functionsLecture 10   section 4.1 and 4.2  exponential functions
Lecture 10 section 4.1 and 4.2 exponential functionsnjit-ronbrown
 

Was ist angesagt? (20)

Additional math 1999
Additional math   1999Additional math   1999
Additional math 1999
 
Exponential and logrithmic functions
Exponential and logrithmic functionsExponential and logrithmic functions
Exponential and logrithmic functions
 
7.3 power functions and function operations
7.3 power functions and function operations7.3 power functions and function operations
7.3 power functions and function operations
 
Aa3
Aa3Aa3
Aa3
 
Lesson 3 Nov 16 09
Lesson 3 Nov 16 09Lesson 3 Nov 16 09
Lesson 3 Nov 16 09
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
DQ
DQDQ
DQ
 
5 4 function notation
5 4 function notation5 4 function notation
5 4 function notation
 
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
 
8.4 logarithmic functions
8.4 logarithmic functions8.4 logarithmic functions
8.4 logarithmic functions
 
Exercise #11 notes
Exercise #11 notesExercise #11 notes
Exercise #11 notes
 
Polinômios 1
Polinômios 1Polinômios 1
Polinômios 1
 
Derivatives Lesson Oct 15
Derivatives Lesson  Oct 15Derivatives Lesson  Oct 15
Derivatives Lesson Oct 15
 
1203 ch 12 day 3
1203 ch 12 day 31203 ch 12 day 3
1203 ch 12 day 3
 
Lesson 5: Functions and surfaces
Lesson 5: Functions and surfacesLesson 5: Functions and surfaces
Lesson 5: Functions and surfaces
 
parent functons
parent functonsparent functons
parent functons
 
0911 ch 9 day 11
0911 ch 9 day 110911 ch 9 day 11
0911 ch 9 day 11
 
Module 2, topic 2
Module 2, topic 2Module 2, topic 2
Module 2, topic 2
 
Lecture 10 section 4.1 and 4.2 exponential functions
Lecture 10   section 4.1 and 4.2  exponential functionsLecture 10   section 4.1 and 4.2  exponential functions
Lecture 10 section 4.1 and 4.2 exponential functions
 
Lecture 10 section 4.1 and 4.2 exponential functions
Lecture 10   section 4.1 and 4.2  exponential functionsLecture 10   section 4.1 and 4.2  exponential functions
Lecture 10 section 4.1 and 4.2 exponential functions
 

Andere mochten auch

Andere mochten auch (7)

Calculus II - 23
Calculus II - 23Calculus II - 23
Calculus II - 23
 
Prac4
Prac4Prac4
Prac4
 
Calculus II - 32
Calculus II - 32Calculus II - 32
Calculus II - 32
 
Prac1
Prac1Prac1
Prac1
 
Calculus II - 25
Calculus II - 25Calculus II - 25
Calculus II - 25
 
Calculus II - 8
Calculus II - 8Calculus II - 8
Calculus II - 8
 
Calculus II - 30
Calculus II - 30Calculus II - 30
Calculus II - 30
 

Ähnlich wie Calculus II - 4

Calculus II - 6
Calculus II - 6Calculus II - 6
Calculus II - 6David Mao
 
Unit i trigonometry satyabama univesity
Unit i trigonometry satyabama univesityUnit i trigonometry satyabama univesity
Unit i trigonometry satyabama univesitySelvaraj John
 
Complex numbers
Complex numbersComplex numbers
Complex numbersmstf mstf
 
Real World Haskell: Lecture 5
Real World Haskell: Lecture 5Real World Haskell: Lecture 5
Real World Haskell: Lecture 5Bryan O'Sullivan
 
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
3.complex numbers  Further Mathematics Zimbabwe Zimsec Cambridge3.complex numbers  Further Mathematics Zimbabwe Zimsec Cambridge
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
Solved exercise boolean-algebra
Solved exercise boolean-algebraSolved exercise boolean-algebra
Solved exercise boolean-algebrashardapatel
 
Recursive Definitions in Discrete Mathmatcs.pptx
Recursive Definitions in Discrete Mathmatcs.pptxRecursive Definitions in Discrete Mathmatcs.pptx
Recursive Definitions in Discrete Mathmatcs.pptxgbikorno
 
Calculus II - 22
Calculus II - 22Calculus II - 22
Calculus II - 22David Mao
 
Real World Haskell: Lecture 6
Real World Haskell: Lecture 6Real World Haskell: Lecture 6
Real World Haskell: Lecture 6Bryan O'Sullivan
 
17 integrals of rational functions x
17 integrals of rational functions x17 integrals of rational functions x
17 integrals of rational functions xmath266
 
Calculus II - 14
Calculus II - 14Calculus II - 14
Calculus II - 14David Mao
 
phuong trinh vi phan d geometry part 2
phuong trinh vi phan d geometry part 2phuong trinh vi phan d geometry part 2
phuong trinh vi phan d geometry part 2Bui Loi
 
_lecture_06 F_minima_maxima_classification.pdf
_lecture_06 F_minima_maxima_classification.pdf_lecture_06 F_minima_maxima_classification.pdf
_lecture_06 F_minima_maxima_classification.pdfLeoIrsi
 

Ähnlich wie Calculus II - 4 (20)

Calculus II - 6
Calculus II - 6Calculus II - 6
Calculus II - 6
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Unit i trigonometry satyabama univesity
Unit i trigonometry satyabama univesityUnit i trigonometry satyabama univesity
Unit i trigonometry satyabama univesity
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Real World Haskell: Lecture 5
Real World Haskell: Lecture 5Real World Haskell: Lecture 5
Real World Haskell: Lecture 5
 
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
3.complex numbers  Further Mathematics Zimbabwe Zimsec Cambridge3.complex numbers  Further Mathematics Zimbabwe Zimsec Cambridge
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
 
FACTORISATION
FACTORISATIONFACTORISATION
FACTORISATION
 
Solved exercise boolean-algebra
Solved exercise boolean-algebraSolved exercise boolean-algebra
Solved exercise boolean-algebra
 
Recursive Definitions in Discrete Mathmatcs.pptx
Recursive Definitions in Discrete Mathmatcs.pptxRecursive Definitions in Discrete Mathmatcs.pptx
Recursive Definitions in Discrete Mathmatcs.pptx
 
Calculus II - 22
Calculus II - 22Calculus II - 22
Calculus II - 22
 
Math final blog
Math final blogMath final blog
Math final blog
 
Real World Haskell: Lecture 6
Real World Haskell: Lecture 6Real World Haskell: Lecture 6
Real World Haskell: Lecture 6
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
17 integrals of rational functions x
17 integrals of rational functions x17 integrals of rational functions x
17 integrals of rational functions x
 
Calculus II - 14
Calculus II - 14Calculus II - 14
Calculus II - 14
 
phuong trinh vi phan d geometry part 2
phuong trinh vi phan d geometry part 2phuong trinh vi phan d geometry part 2
phuong trinh vi phan d geometry part 2
 
Vector spaces
Vector spacesVector spaces
Vector spaces
 
_lecture_06 F_minima_maxima_classification.pdf
_lecture_06 F_minima_maxima_classification.pdf_lecture_06 F_minima_maxima_classification.pdf
_lecture_06 F_minima_maxima_classification.pdf
 
Chapter 2.pptx
Chapter 2.pptxChapter 2.pptx
Chapter 2.pptx
 
How to
How toHow to
How to
 

Mehr von David Mao

Calculus II - 36
Calculus II - 36Calculus II - 36
Calculus II - 36David Mao
 
Calculus II - 35
Calculus II - 35Calculus II - 35
Calculus II - 35David Mao
 
Caculus II - 37
Caculus II - 37Caculus II - 37
Caculus II - 37David Mao
 
Calculus II - 34
Calculus II - 34Calculus II - 34
Calculus II - 34David Mao
 
Calculus II - 33
Calculus II - 33Calculus II - 33
Calculus II - 33David Mao
 
Calculus II - 31
Calculus II - 31Calculus II - 31
Calculus II - 31David Mao
 
Calculus II - 29
Calculus II - 29Calculus II - 29
Calculus II - 29David Mao
 
Calculus II - 28
Calculus II - 28Calculus II - 28
Calculus II - 28David Mao
 
Calculus II - 27
Calculus II - 27Calculus II - 27
Calculus II - 27David Mao
 
Calculus II - 26
Calculus II - 26Calculus II - 26
Calculus II - 26David Mao
 
Calculus II - 24
Calculus II - 24Calculus II - 24
Calculus II - 24David Mao
 
Calculus II - 21
Calculus II - 21Calculus II - 21
Calculus II - 21David Mao
 
Calculus II - 20
Calculus II - 20Calculus II - 20
Calculus II - 20David Mao
 
Calculus II - 19
Calculus II - 19Calculus II - 19
Calculus II - 19David Mao
 
Calculus II - 18
Calculus II - 18Calculus II - 18
Calculus II - 18David Mao
 
Calculus II - 17
Calculus II - 17Calculus II - 17
Calculus II - 17David Mao
 
Calculus II - 16
Calculus II - 16Calculus II - 16
Calculus II - 16David Mao
 
Calculus II - 15
Calculus II - 15Calculus II - 15
Calculus II - 15David Mao
 
Calculus II - 13
Calculus II - 13Calculus II - 13
Calculus II - 13David Mao
 
Calculus II - 12
Calculus II - 12Calculus II - 12
Calculus II - 12David Mao
 

Mehr von David Mao (20)

Calculus II - 36
Calculus II - 36Calculus II - 36
Calculus II - 36
 
Calculus II - 35
Calculus II - 35Calculus II - 35
Calculus II - 35
 
Caculus II - 37
Caculus II - 37Caculus II - 37
Caculus II - 37
 
Calculus II - 34
Calculus II - 34Calculus II - 34
Calculus II - 34
 
Calculus II - 33
Calculus II - 33Calculus II - 33
Calculus II - 33
 
Calculus II - 31
Calculus II - 31Calculus II - 31
Calculus II - 31
 
Calculus II - 29
Calculus II - 29Calculus II - 29
Calculus II - 29
 
Calculus II - 28
Calculus II - 28Calculus II - 28
Calculus II - 28
 
Calculus II - 27
Calculus II - 27Calculus II - 27
Calculus II - 27
 
Calculus II - 26
Calculus II - 26Calculus II - 26
Calculus II - 26
 
Calculus II - 24
Calculus II - 24Calculus II - 24
Calculus II - 24
 
Calculus II - 21
Calculus II - 21Calculus II - 21
Calculus II - 21
 
Calculus II - 20
Calculus II - 20Calculus II - 20
Calculus II - 20
 
Calculus II - 19
Calculus II - 19Calculus II - 19
Calculus II - 19
 
Calculus II - 18
Calculus II - 18Calculus II - 18
Calculus II - 18
 
Calculus II - 17
Calculus II - 17Calculus II - 17
Calculus II - 17
 
Calculus II - 16
Calculus II - 16Calculus II - 16
Calculus II - 16
 
Calculus II - 15
Calculus II - 15Calculus II - 15
Calculus II - 15
 
Calculus II - 13
Calculus II - 13Calculus II - 13
Calculus II - 13
 
Calculus II - 12
Calculus II - 12Calculus II - 12
Calculus II - 12
 

Calculus II - 4

  • 1. 7.4 Integration of Rational Functions Rational function: ratio of polynomials. Ex: + + +
  • 2. 7.4 Integration of Rational Functions Rational function: ratio of polynomials. Ex: + + + Fact: A rational function can always be decomposed to summation of terms like + polynomials or ( + ) or ( + + ) where A, B, etc. are constants. Ex: − + + = + + + − − − + − ( − ) + Partial Fractions
  • 3. First step: if the rational function is improper (the degree of numerator is more than or equal to the degree of dominator), use long division to decompose it to a polynomial plus a proper rational function. + Ex: = + + +
  • 4. First step: if the rational function is improper (the degree of numerator is more than or equal to the degree of dominator), use long division to decompose it to a polynomial plus a proper rational function. + Ex: = + + + As a result: + = + + + | |+
  • 5. Second step: factor the dominator of the proper rational function to be a product of linear factors and/or irreducible quadratic factors. + + is irreducible if < . Ex: + = ( + ) + = ( )( + ) + + =( ) ( + )
  • 6. Third step: decompose the proper rational function to be a sum of partial fractions by method of undetermined coefficients. + Ex: +
  • 7. Third step: decompose the proper rational function to be a sum of partial fractions by method of undetermined coefficients. + Ex: + We factor + = ( )( + )
  • 8. Third step: decompose the proper rational function to be a sum of partial fractions by method of undetermined coefficients. + Ex: + We factor + = ( )( + ) + so assume = + + + +
  • 9. Third step: decompose the proper rational function to be a sum of partial fractions by method of undetermined coefficients. + Ex: + We factor + = ( )( + ) + so assume = + + + + ( + + ) +( + ) = +
  • 10. Third step: decompose the proper rational function to be a sum of partial fractions by method of undetermined coefficients. + Ex: + We factor + = ( )( + ) + so assume = + + + + ( + + ) +( + ) = + thus = , = , =
  • 11. CASE I: the dominator is a product of distinct linear factors. CASE II: the dominator is a product of linear factors, some of which are repeated. CASE III: the dominator contains distinct irreducible quadratic factors. Case IV: the dominator contains repeated irreducible quadratic factors.
  • 13. + Ex: find + We already knew that + = + + ( ) ( + ) C AS E I
  • 14. + Ex: find + We already knew that + = + + ( ) ( + ) + C AS E I so + = | |+ | | | + |+
  • 15. Ex: find +
  • 16. Ex: find + We factor that + =( ) ( + ) CAS E II
  • 17. Ex: find + We factor that + =( ) ( + ) CAS E II so we assume = + + + ( ) +
  • 18. Ex: find + We factor that + =( ) ( + ) CAS E II so we assume = + + + ( ) + and find = , = , =
  • 19. Ex: find + We factor that + =( ) ( + ) CAS E II so we assume = + + + ( ) + and find = , = , = thus + = | | | + |+

Hinweis der Redaktion

  1. \n
  2. \n
  3. \n
  4. \n
  5. \n
  6. \n
  7. \n
  8. \n
  9. \n
  10. \n
  11. \n
  12. \n
  13. \n
  14. \n
  15. \n
  16. \n
  17. \n
  18. \n
  19. \n
  20. \n
  21. \n
  22. \n
  23. \n
  24. \n
  25. \n
  26. \n
  27. \n
  28. \n
  29. \n
  30. \n
  31. \n
  32. \n
  33. \n