SlideShare ist ein Scribd-Unternehmen logo
1 von 3
Downloaden Sie, um offline zu lesen
Appendix of Downlink Coverage Probability in
Heterogeneous Cellular Networks on Nakagami-m
Fading Channel
Chao Li, Abbas Yongacoglu, and Claude D’Amours
School of Electrical Engineering and Computer Science
University of Ottawa
Ottawa, ON, K1N 6N5, CA
Email: {cli026, yongac, cdamours}@uottawa.ca
APPENDIX
A. Proof of Coverage Probability on General Fading
In [1] and [2], the following conclusion has been given. Here
give the more detailed derivation process for the reference.
P(Ir +
σ2
L0
≤ PkGk(rαk
Tk)
−1
)
= P(X ≤ Y )
(a)
=
+∞
−∞
ˆf(s)
¯ˆg(s) − 1
2πis
ds
(b)
=
+∞
−∞
Lx(2πis)
Ly(−2πis) − 1
2πis
ds
(c)
=
+∞
−∞
e−2πis σ2
L0 · LIr
(2πis)·
LG(−2πisPk(rαk
Tk)
−1
) − 1
2πis
ds
The detail explanation for the above equation in each
steps is as follows. In step (a), Refer to [3] (Corollary
12.2.2), in which let X represents the non-negative real
valued random variable Ir + σ2
L0
with a square integrable
density f(x), and Y represents the non-negative real valued
random variable PkGk(rαk
Tk)
−1
with a square integrable
density g(y). In step (b), ˆf(s) =
R
e−2iπxs
· f(x)dx is the
Fourier transform of f(x). Lx(θ) =
R
e−θx
· f(x)dx is
the Laplace transform of f(x). Hence ˆf(s) = Lx(2πis).
¯ˆg(s) is conjugate of ˆg(s) and
¯ˆg(s) = Ly(−2πis). In step
(c), Lx(θ) = LIr+ σ2
L0
(θ) =
R
e−θ(Ir+ σ2
L0
)
· fIr
(x)d(x).
Because σ2
L0
is one constant parameter, Lx(θ) = e−θ σ2
L0 LIr (θ)
and Lx(2πis) = e−2πis σ2
L0 LIr
(2πis). fIr
(x) is probability
density function (PDF) of the random variable of Ir. The same
idea is to LG.
The condition for the above conclusion is from [2], which
is:
+∞
−∞
| e−2πis σ2
L0 | · | LIr (2πis) | ·
|
LG(−2πisPk(rαk
Tk)
−1
) − 1
2πis
| · ds < ∞
Where, | ∗ | represents the abstract value of ∗.
B. Proof of Coverage Probability on Nakagami-m Fading of
m = 1
Pck(r, Tk)
=
+∞
−∞
e−2πis σ2
L0 LIr (2πis) ·
LG(−2πisPk(rαk
Tk)
−1
) − 1
2πis
ds
(a)
=
+∞
−∞
e−2πis σ2
L0 LIr (2πis) ·
Pk(rαk
Tk)
−1
1 − 2πisPk(rαk Tk)−1 ds
(b)
=
+∞
−∞
e−2πis σ2
L0 (
+∞
0
e−2πisx
fIr
(x)dx)
·
Pk(rαk
Tk)
−1
1 − 2πisPk(rαk Tk)−1 ds
(c)
=
+∞
0
(
+∞
−∞
e−2πis( σ2
L0
+x)
·
Pk(rαk
Tk)
−1
1 − 2πisPk(rαk Tk)−1 ds)fIr
(x)dx
=
+∞
0
(
+∞
−∞
e−2πis( σ2
L0
+x)
·
1
(P−1
k rαk Tk) − 2πis
ds)fIr
(x)dx
(d)
=
+∞
0
e−P −1
k rαk Tk( σ2
L0
+x)
fIr
(x)dx
= e−P −1
k rαk Tk
σ2
L0
+∞
0
e−P −1
k rαk Tkx
fIr (x)dx
(e)
= e−P −1
k rαk Tk
σ2
L0 LIr (P−1
k rαk
Tk)
The detail explanation for the above equation in each step
is as follows.
In step (a):
LG(s) = 1
1+s is from [4].
In step (b):
Laplace transform is LIr
(2πis) =
+∞
0
e−2πisx
· fIr
(x)dx.
In step (c):
due to Fubini’s theorem.
In step (d):
+∞
−∞
e−2πisf
· 1
|A|−2πis ds is Fourier transform of 1
|A|−2πis ,
it is e−|A|f
u(f), here u(x) is step function, where u(x) =
1 for x > 0, otherwise, u(x) = 0. A = P−1
k rαk
Tk and f =
σ2
L0
+ x.
In step (e):
LIr (θ) =
R
e−θ(x)
· fIr (x)d(x)
C. Proof of Laplace transform LIr of the total interference
LIrj
(s)
(a)
= exp(πλjdj
2
) · exp(−πλjdj
2
Ek(e−skdj
−αj
))·
exp(−πλjs
2
αj Ek(k
2
αj Γ(1 −
2
αj
)))·
exp(πλjs
2
αj Ek(k
2
αj Γ(1 −
2
αj
, skdj
−αj
)))
(b)
= exp(πλjdj
2
) · exp(−πλjdj
2
EG(e−sPj Gj dj
−αj
))·
exp(−πλjs
2
αj EG((PjGj)
2
αj Γ(1 −
2
αj
)))·
exp(πλjs
2
αj EG((PjGj)
2
αj Γ(1 −
2
αj
, sPjGjdj
−αj
)))
(c)
= exp(πλjdj
2
) · exp(−πλjdj
2
LG(sPjd
−αj
j )) · Mj(s)
The detail explanation for the above equation in each step
is as follows.
In Step(a):
[5] give the Laplace transform of the total interference
based on the decay power law impulse response function
f(k, r) = kr−α
, r ≥ 1. Ek(.) is the expectation over k.
Γ(t) =
∞
0
xt−1
e−x
dx is Gamma function.
In Step(b):
Update response function f(k, r) = kr−α
into f(G, r) =
PjGjr−α
.
In Step(c):
the key part of the derivation of LIr
is the calculation of
Mj(s).
Mj(s)
= exp(−πλjs
2
αj EG((PjGj)
2
αj Γ(1 −
2
αj
)))·
exp(πλjs
2
αj EG((PjGj)
2
αj Γ(1 −
2
αj
, sPjGjdj
−αj
)))
(a)
= exp(−πλjs
2
αj EG((PjGj)
2
αj ·
Γ(1 −
2
αj
)(sPjGjdj
−αj
)
1− 2
αj e−sPj Gj dj
−αj
·
∞
n=0
(sPjGjdj
−αj
)n
Γ(2 + n − 2
αj
)
))
= exp(−πλjΓ(1 −
2
αj
)dj
2
·
∞
n=0
(sPjdj
−αj
)n+1
EG(Gn+1
j · e−sPj Gj dj
−αj
)
Γ(2 + n − 2
αj
)
)
(b)
= exp(−πλjΓ(1 −
2
αj
)dj
2
·
∞
n=0
(sPjdj
−αj
)n+1 Γ(n + m + 1)
Γ(2 + n − 2
αj
) · Γ(m)
·
mm
(sPjdj
−αj
+ m)−n−m−1
)
= exp(−πλjΓ(1 −
2
αj
)dj
2
·
mm
Γ(m)
sPjdj
−αj
(sPjdj
−αj
+ m)m+1
·
∞
n=0
Γ(n + m + 1)
Γ(2 + n − 2
αj
)
· (
sPjdj
−αj
sPjdj
−αj
+ m
)n
)
(c)
= exp(−πλjΓ(1 −
2
αj
)dj
2
·
mm
Γ(m)
sPjdj
−αj
(sPjdj
−αj
+ m)m+1
·
Γ(m + 1)
Γ(2 − 2
αj
)
· 2F1(m + 1, 1, 2 −
2
αj
;
sPjdj
−αj
sPjdj
−αj
+ m
))
= exp(−πλjdj
2
mm+1
· (1 −
2
αj
)−1 sPjdj
−αj
(sPjdj
−αj
+ m)m+1
·
2F1(m + 1, 1, 2 −
2
αj
;
sPjdj
−αj
sPjdj
−αj
+ m
))
The detail explanation for the above equation in each step
is as follows.
In Step(a):
[6] and [7] give the gamma function property Γ(a, x) = Γ(a)−
Γ(a)xa
e−x ∞
n=0
xn
Γ(a+n+1) .
In Step(b):
the expectation item of Nakagami-m fading EG =
∞
0
Gn+1
e−sPj Gdj
−αj
fG(G)dG, fG(G) is pdf of channel
power gain G. fG(G) = 1
Γ(m) mm
Gm−1
e−mG
. So EG =
∞
0
Gn+1
e−sPj Gdj
−αj 1
Γ(m) mm
Gm−1
e−mG
dG. After simpli-
fication, EG = 1
Γ(m) mm
(sPjdj
−αj
+m)−n−m−1
Γ(n+m+1)
In Step(c):
according to [6], Γ(a)
Γ(c) ·2F1(a, 1, c : z) =
∞
n=0
Γ(a+n)
Γ(c+n) · zn
.
2F1(.) is the Gauss hypergeometric function.
Hence, Laplace transform of total interference in jth tier is
LIrj
(s) = exp(πλjdj
2
) · exp(−πλjdj
2
LG(Rj))·
exp(−πλjdj
2
mm+1
· (1 −
2
αj
)−1 Rj
(Rj + m)m+1
·
2F1(m + 1, 1, 2 −
2
αj
;
Rj
Rj + m
))
where Rj is sPjdj
−αj
. K is the total number of tiers. λj
is jth tier BS density. m is Nakagami-m fading parameter.
dj is (
Pj Cj
PkCk
)
1
αj r
αk
αj and it is the minimum distance from the
closest interfering BS in jth tier. The detailed proof about
this minimum distance please refer to [8]. 2F1(.) is Gauss
hypergeometric function. Cj is biased factor in jth tier. A
bias factor greater than unity enables the cells to have an
incrementally larger coverage area and higher load.
REFERENCES
[1] H. S. Dhillon, R. K. Ganti, and J. G. Andrews, “A tractable framework for
coverage and outage in heterogeneous cellular networks,” in Information
Theory and Applications Workshop (ITA), 2011. IEEE, 2011, pp. 1–6.
[2] F. Baccelli, B. Błaszczyszyn, and P. M¨uhlethaler, “Stochastic analysis of
spatial and opportunistic aloha,” Selected Areas in Communications, IEEE
Journal on, vol. 27, no. 7, pp. 1105–1119, 2009.
[3] F. Baccelli and B. Blaszczyszyn, Stochastic geometry and wireless
networks: Theory. Now Publishers Inc, 2009, vol. 1.
[4] A. Annamalai, C. Tellambura, and V. K. Bhargava, “A general method
for calculating error probabilities over fading channels,” Communications,
IEEE Transactions on, vol. 53, no. 5, pp. 841–852, 2005.
[5] J. Venkataraman, M. Haenggi, and O. Collins, “Shot noise models for
outage and throughput analyses in wireless ad hoc networks,” in Military
Communications Conference, 2006. MILCOM 2006. IEEE. IEEE, 2006,
pp. 1–7.
[6] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions:
with formulas, graphs, and mathematical tables. Courier Corporation,
1964, vol. 55.
[7] M. Di Renzo, A. Guidotti, and G. E. Corazza, “Average rate of downlink
heterogeneous cellular networks over generalized fading channels: A
stochastic geometry approach,” Communications, IEEE Transactions on,
vol. 61, no. 7, pp. 3050–3071, 2013.
[8] H.-S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Heterogeneous cellular
networks with flexible cell association: A comprehensive downlink sinr
analysis,” Wireless Communications, IEEE Transactions on, vol. 11,
no. 10, pp. 3484–3495, 2012.

Weitere ähnliche Inhalte

Was ist angesagt?

Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
Shane Nicklas
 
Logarithm Bases IA
Logarithm Bases IALogarithm Bases IA
Logarithm Bases IA
bank8787
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)
Lina Manriquez
 

Was ist angesagt? (20)

bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
 
Symbolic Regression on Network Properties
Symbolic Regression on Network PropertiesSymbolic Regression on Network Properties
Symbolic Regression on Network Properties
 
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
 
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
 
Further mathematics notes zimsec cambridge zimbabwe
Further mathematics notes zimsec cambridge zimbabweFurther mathematics notes zimsec cambridge zimbabwe
Further mathematics notes zimsec cambridge zimbabwe
 
Logarithm Bases IA
Logarithm Bases IALogarithm Bases IA
Logarithm Bases IA
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFULLADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
 
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Low-rank matrix approximations in Python by Christian Thurau PyData 2014Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
 
SIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithmsSIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithms
 
Radix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier TransformRadix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier Transform
 
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An Application
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
 
Multi nomial pdf
Multi nomial pdfMulti nomial pdf
Multi nomial pdf
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
Talk5
Talk5Talk5
Talk5
 

Ähnlich wie Appendix of downlink coverage probability in heterogeneous cellular networks on nakagami m fading channel

HSFC Physics formula sheet
HSFC Physics formula sheetHSFC Physics formula sheet
HSFC Physics formula sheet
oneill95
 
Analysis of multiple groove guide
Analysis of multiple groove guideAnalysis of multiple groove guide
Analysis of multiple groove guide
Yong Heui Cho
 
11.signal integrity analysis of modified coplanar waveguide structure using a...
11.signal integrity analysis of modified coplanar waveguide structure using a...11.signal integrity analysis of modified coplanar waveguide structure using a...
11.signal integrity analysis of modified coplanar waveguide structure using a...
Alexander Decker
 

Ähnlich wie Appendix of downlink coverage probability in heterogeneous cellular networks on nakagami m fading channel (20)

対応点を用いないローリングシャッタ歪み補正と映像安定化論文
対応点を用いないローリングシャッタ歪み補正と映像安定化論文対応点を用いないローリングシャッタ歪み補正と映像安定化論文
対応点を用いないローリングシャッタ歪み補正と映像安定化論文
 
Bc4103338340
Bc4103338340Bc4103338340
Bc4103338340
 
HSFC Physics formula sheet
HSFC Physics formula sheetHSFC Physics formula sheet
HSFC Physics formula sheet
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
Modeling of Redistribution of Infused Dopant in a Multilayer Structure Dopant...
Modeling of Redistribution of Infused Dopant in a Multilayer Structure Dopant...Modeling of Redistribution of Infused Dopant in a Multilayer Structure Dopant...
Modeling of Redistribution of Infused Dopant in a Multilayer Structure Dopant...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki Sato
 
Analysis of coupled inset dielectric guide structure
Analysis of coupled inset dielectric guide structureAnalysis of coupled inset dielectric guide structure
Analysis of coupled inset dielectric guide structure
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
 
Analysis of multiple groove guide
Analysis of multiple groove guideAnalysis of multiple groove guide
Analysis of multiple groove guide
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
4.[29 34]signal integrity analysis of modified coplanar waveguide structure u...
4.[29 34]signal integrity analysis of modified coplanar waveguide structure u...4.[29 34]signal integrity analysis of modified coplanar waveguide structure u...
4.[29 34]signal integrity analysis of modified coplanar waveguide structure u...
 
11.signal integrity analysis of modified coplanar waveguide structure using a...
11.signal integrity analysis of modified coplanar waveguide structure using a...11.signal integrity analysis of modified coplanar waveguide structure using a...
11.signal integrity analysis of modified coplanar waveguide structure using a...
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
 
無限インパルス応答システムによる拡張バイラテラルフィルタ論文
無限インパルス応答システムによる拡張バイラテラルフィルタ論文無限インパルス応答システムによる拡張バイラテラルフィルタ論文
無限インパルス応答システムによる拡張バイラテラルフィルタ論文
 
Sub1567
Sub1567Sub1567
Sub1567
 

Kürzlich hochgeladen

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 

Kürzlich hochgeladen (20)

Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 

Appendix of downlink coverage probability in heterogeneous cellular networks on nakagami m fading channel

  • 1. Appendix of Downlink Coverage Probability in Heterogeneous Cellular Networks on Nakagami-m Fading Channel Chao Li, Abbas Yongacoglu, and Claude D’Amours School of Electrical Engineering and Computer Science University of Ottawa Ottawa, ON, K1N 6N5, CA Email: {cli026, yongac, cdamours}@uottawa.ca APPENDIX A. Proof of Coverage Probability on General Fading In [1] and [2], the following conclusion has been given. Here give the more detailed derivation process for the reference. P(Ir + σ2 L0 ≤ PkGk(rαk Tk) −1 ) = P(X ≤ Y ) (a) = +∞ −∞ ˆf(s) ¯ˆg(s) − 1 2πis ds (b) = +∞ −∞ Lx(2πis) Ly(−2πis) − 1 2πis ds (c) = +∞ −∞ e−2πis σ2 L0 · LIr (2πis)· LG(−2πisPk(rαk Tk) −1 ) − 1 2πis ds The detail explanation for the above equation in each steps is as follows. In step (a), Refer to [3] (Corollary 12.2.2), in which let X represents the non-negative real valued random variable Ir + σ2 L0 with a square integrable density f(x), and Y represents the non-negative real valued random variable PkGk(rαk Tk) −1 with a square integrable density g(y). In step (b), ˆf(s) = R e−2iπxs · f(x)dx is the Fourier transform of f(x). Lx(θ) = R e−θx · f(x)dx is the Laplace transform of f(x). Hence ˆf(s) = Lx(2πis). ¯ˆg(s) is conjugate of ˆg(s) and ¯ˆg(s) = Ly(−2πis). In step (c), Lx(θ) = LIr+ σ2 L0 (θ) = R e−θ(Ir+ σ2 L0 ) · fIr (x)d(x). Because σ2 L0 is one constant parameter, Lx(θ) = e−θ σ2 L0 LIr (θ) and Lx(2πis) = e−2πis σ2 L0 LIr (2πis). fIr (x) is probability density function (PDF) of the random variable of Ir. The same idea is to LG. The condition for the above conclusion is from [2], which is: +∞ −∞ | e−2πis σ2 L0 | · | LIr (2πis) | · | LG(−2πisPk(rαk Tk) −1 ) − 1 2πis | · ds < ∞ Where, | ∗ | represents the abstract value of ∗. B. Proof of Coverage Probability on Nakagami-m Fading of m = 1 Pck(r, Tk) = +∞ −∞ e−2πis σ2 L0 LIr (2πis) · LG(−2πisPk(rαk Tk) −1 ) − 1 2πis ds (a) = +∞ −∞ e−2πis σ2 L0 LIr (2πis) · Pk(rαk Tk) −1 1 − 2πisPk(rαk Tk)−1 ds (b) = +∞ −∞ e−2πis σ2 L0 ( +∞ 0 e−2πisx fIr (x)dx) · Pk(rαk Tk) −1 1 − 2πisPk(rαk Tk)−1 ds (c) = +∞ 0 ( +∞ −∞ e−2πis( σ2 L0 +x) · Pk(rαk Tk) −1 1 − 2πisPk(rαk Tk)−1 ds)fIr (x)dx = +∞ 0 ( +∞ −∞ e−2πis( σ2 L0 +x) · 1 (P−1 k rαk Tk) − 2πis ds)fIr (x)dx (d) = +∞ 0 e−P −1 k rαk Tk( σ2 L0 +x) fIr (x)dx = e−P −1 k rαk Tk σ2 L0 +∞ 0 e−P −1 k rαk Tkx fIr (x)dx (e) = e−P −1 k rαk Tk σ2 L0 LIr (P−1 k rαk Tk)
  • 2. The detail explanation for the above equation in each step is as follows. In step (a): LG(s) = 1 1+s is from [4]. In step (b): Laplace transform is LIr (2πis) = +∞ 0 e−2πisx · fIr (x)dx. In step (c): due to Fubini’s theorem. In step (d): +∞ −∞ e−2πisf · 1 |A|−2πis ds is Fourier transform of 1 |A|−2πis , it is e−|A|f u(f), here u(x) is step function, where u(x) = 1 for x > 0, otherwise, u(x) = 0. A = P−1 k rαk Tk and f = σ2 L0 + x. In step (e): LIr (θ) = R e−θ(x) · fIr (x)d(x) C. Proof of Laplace transform LIr of the total interference LIrj (s) (a) = exp(πλjdj 2 ) · exp(−πλjdj 2 Ek(e−skdj −αj ))· exp(−πλjs 2 αj Ek(k 2 αj Γ(1 − 2 αj )))· exp(πλjs 2 αj Ek(k 2 αj Γ(1 − 2 αj , skdj −αj ))) (b) = exp(πλjdj 2 ) · exp(−πλjdj 2 EG(e−sPj Gj dj −αj ))· exp(−πλjs 2 αj EG((PjGj) 2 αj Γ(1 − 2 αj )))· exp(πλjs 2 αj EG((PjGj) 2 αj Γ(1 − 2 αj , sPjGjdj −αj ))) (c) = exp(πλjdj 2 ) · exp(−πλjdj 2 LG(sPjd −αj j )) · Mj(s) The detail explanation for the above equation in each step is as follows. In Step(a): [5] give the Laplace transform of the total interference based on the decay power law impulse response function f(k, r) = kr−α , r ≥ 1. Ek(.) is the expectation over k. Γ(t) = ∞ 0 xt−1 e−x dx is Gamma function. In Step(b): Update response function f(k, r) = kr−α into f(G, r) = PjGjr−α . In Step(c): the key part of the derivation of LIr is the calculation of Mj(s). Mj(s) = exp(−πλjs 2 αj EG((PjGj) 2 αj Γ(1 − 2 αj )))· exp(πλjs 2 αj EG((PjGj) 2 αj Γ(1 − 2 αj , sPjGjdj −αj ))) (a) = exp(−πλjs 2 αj EG((PjGj) 2 αj · Γ(1 − 2 αj )(sPjGjdj −αj ) 1− 2 αj e−sPj Gj dj −αj · ∞ n=0 (sPjGjdj −αj )n Γ(2 + n − 2 αj ) )) = exp(−πλjΓ(1 − 2 αj )dj 2 · ∞ n=0 (sPjdj −αj )n+1 EG(Gn+1 j · e−sPj Gj dj −αj ) Γ(2 + n − 2 αj ) ) (b) = exp(−πλjΓ(1 − 2 αj )dj 2 · ∞ n=0 (sPjdj −αj )n+1 Γ(n + m + 1) Γ(2 + n − 2 αj ) · Γ(m) · mm (sPjdj −αj + m)−n−m−1 ) = exp(−πλjΓ(1 − 2 αj )dj 2 · mm Γ(m) sPjdj −αj (sPjdj −αj + m)m+1 · ∞ n=0 Γ(n + m + 1) Γ(2 + n − 2 αj ) · ( sPjdj −αj sPjdj −αj + m )n ) (c) = exp(−πλjΓ(1 − 2 αj )dj 2 · mm Γ(m) sPjdj −αj (sPjdj −αj + m)m+1 · Γ(m + 1) Γ(2 − 2 αj ) · 2F1(m + 1, 1, 2 − 2 αj ; sPjdj −αj sPjdj −αj + m )) = exp(−πλjdj 2 mm+1 · (1 − 2 αj )−1 sPjdj −αj (sPjdj −αj + m)m+1 · 2F1(m + 1, 1, 2 − 2 αj ; sPjdj −αj sPjdj −αj + m )) The detail explanation for the above equation in each step is as follows. In Step(a): [6] and [7] give the gamma function property Γ(a, x) = Γ(a)− Γ(a)xa e−x ∞ n=0 xn Γ(a+n+1) . In Step(b): the expectation item of Nakagami-m fading EG = ∞ 0 Gn+1 e−sPj Gdj −αj fG(G)dG, fG(G) is pdf of channel power gain G. fG(G) = 1 Γ(m) mm Gm−1 e−mG . So EG = ∞ 0 Gn+1 e−sPj Gdj −αj 1 Γ(m) mm Gm−1 e−mG dG. After simpli- fication, EG = 1 Γ(m) mm (sPjdj −αj +m)−n−m−1 Γ(n+m+1) In Step(c): according to [6], Γ(a) Γ(c) ·2F1(a, 1, c : z) = ∞ n=0 Γ(a+n) Γ(c+n) · zn . 2F1(.) is the Gauss hypergeometric function.
  • 3. Hence, Laplace transform of total interference in jth tier is LIrj (s) = exp(πλjdj 2 ) · exp(−πλjdj 2 LG(Rj))· exp(−πλjdj 2 mm+1 · (1 − 2 αj )−1 Rj (Rj + m)m+1 · 2F1(m + 1, 1, 2 − 2 αj ; Rj Rj + m )) where Rj is sPjdj −αj . K is the total number of tiers. λj is jth tier BS density. m is Nakagami-m fading parameter. dj is ( Pj Cj PkCk ) 1 αj r αk αj and it is the minimum distance from the closest interfering BS in jth tier. The detailed proof about this minimum distance please refer to [8]. 2F1(.) is Gauss hypergeometric function. Cj is biased factor in jth tier. A bias factor greater than unity enables the cells to have an incrementally larger coverage area and higher load. REFERENCES [1] H. S. Dhillon, R. K. Ganti, and J. G. Andrews, “A tractable framework for coverage and outage in heterogeneous cellular networks,” in Information Theory and Applications Workshop (ITA), 2011. IEEE, 2011, pp. 1–6. [2] F. Baccelli, B. Błaszczyszyn, and P. M¨uhlethaler, “Stochastic analysis of spatial and opportunistic aloha,” Selected Areas in Communications, IEEE Journal on, vol. 27, no. 7, pp. 1105–1119, 2009. [3] F. Baccelli and B. Blaszczyszyn, Stochastic geometry and wireless networks: Theory. Now Publishers Inc, 2009, vol. 1. [4] A. Annamalai, C. Tellambura, and V. K. Bhargava, “A general method for calculating error probabilities over fading channels,” Communications, IEEE Transactions on, vol. 53, no. 5, pp. 841–852, 2005. [5] J. Venkataraman, M. Haenggi, and O. Collins, “Shot noise models for outage and throughput analyses in wireless ad hoc networks,” in Military Communications Conference, 2006. MILCOM 2006. IEEE. IEEE, 2006, pp. 1–7. [6] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, 1964, vol. 55. [7] M. Di Renzo, A. Guidotti, and G. E. Corazza, “Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach,” Communications, IEEE Transactions on, vol. 61, no. 7, pp. 3050–3071, 2013. [8] H.-S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Heterogeneous cellular networks with flexible cell association: A comprehensive downlink sinr analysis,” Wireless Communications, IEEE Transactions on, vol. 11, no. 10, pp. 3484–3495, 2012.