SlideShare ist ein Scribd-Unternehmen logo
1 von 19
Non-dimensional Analysis of Heat Exchangers
P M V Subbarao
Professor
Mechanical Engineering Department
I I T Delhi
The culmination of Innovation …..
The Concept of Space in Mathematics
• Global Mathematical Space: The infinite extension of the
three-dimensional region in which all concepts (matter)
exists.
• Particular Mathematical Space: A set of elements or points
satisfying specified geometric postulates.
• Euclidian Space: The basic vector space of real numbers.
• A Hilbert space is an abstract vector space possessing the
structure of an inner product that allows length and angle
to be measured.
• A Sobolev space is a space of functions with sufficiently
many derivatives for some application domain.
• Development of a geometrical model for Hx in A compact
Sobolev space helps in creating new and valid ideas.
The Compact Sobolev Space for HXs
• A model for hx is developed in terms of positive real
parameters.
• High population of these parameters lie in 0  p  .
• The most compact space is the one where all the
parameters defining the model lie in 0  p  .
History of Gas Turbines
• 1791: A patent was given to John Barber, an Englishman,
for the first true gas turbine.
• His invention had most of the elements present in the
modern day gas turbines.
• The turbine was designed to power a horseless carriage.
• 1872: The first true gas turbine engine was designed by Dr
Franz Stikze, but the engine never ran under its own
power.
• 1903: A Norwegian, Ægidius Elling, was able to build the
first gas turbine that was able to produce more power than
needed to run its own components, which was considered
an achievement in a time when knowledge about
aerodynamics was limited.
0
0.2
0.4
0.6
0.8
0 10 20 30
Pressure ratio
1872, Dr Franz Stikze’s Paradox
cycle

nd
net
W ,
First turbojet-powered aircraft – Ohain’s engine on He 178
The world’s first aircraft to fly purely on turbojet power, the Heinkel
He 178.
Its first true flight was on 27 August, 1939.
 
c
h
tot
h
tot
h
p
hot
c
tot
c
p
cold
T
T
A
dA
dT
UA
c
m
dT
UA
c
m





,
,


Capacity of An infinitesimal Size HX
 
c
h
tot
h
p
hot
tot
h
c
p
cold
tot
c
T
T
A
dA
c
m
UA
dT
c
m
UA
dT



,
,


 
c
h
tot
h
tot
h
p
hot
c
tot
c
p
cold
T
T
A
dA
dT
UA
c
m
dT
UA
c
m



,
,


Define a Non Dimensional number N
 
c
h
tot
hot
h
cold
c
T
T
A
dA
N
dT
N
dT



Maximum Possible Heat Transfer ?!?!?!?
Let hot
cold N
N 
Then h
c dT
dT 
Cold fluid would experience a large temperature change.
For an infinitely long counter flow HX.
i
h
e
c T
T ,
, 
 
i
c
i
h
c
p
c T
T
c
m
Q ,
,
,
max 

 

Counter Flow HX
   
i
c
i
h
p T
T
c
m
Q ,
,
min
max 

 

 min
min
max
p
cap
c
m
UA
N
NTU


 
Maximum Number of Transfer Units
Number of transfer units for hot fluid:
h
p
hot
hot
c
m
UA
NTU
,


Number of transfer units for cold fluid:
c
p
cold
cold
c
m
UA
NTU
,


For an infinitely long Co flow HX. e
h
e
c T
T ,
, 
Let
Then
h
c dT
dT 
 
i
c
e
h
c
p
c
p T
T
c
m
Q ,
,
,
max, 

 

hot
cold N
N 
Co Flow HX
For A given combination of fluids, there exist two ideal extreme
designs of heat exchangers.
High Performance HX: Infinitely long counter flow HX.
Low Performance HX: Infinitely long co flow HX.
 
i
c
i
h
c
p
c
per
high T
T
c
m
Q ,
,
, 

 


 
i
c
o
h
c
p
c
per
low T
T
c
m
Q ,
,
, 

 


If hot
cold N
N 
First law for Heat Exchangers !!!!
For A given combination of fluids, there exist two ideal extreme
designs of heat exchangers.
High Performance HX: Infinitely long counter flow HX.
Low Performance HX: Infinitely long co flow HX.
 
i
c
i
h
h
p
h
per
high T
T
c
m
Q ,
,
, 

 


 
o
c
i
h
h
p
h
per
low T
T
c
m
Q ,
,
, 

 


If cold
hot N
N 
First law for Heat Exchangers !!!!
Second Law for HXs
•It is impossible to construct an
infinitely long counter flow HX.
•What is the maximum possible?
Effectiveness of A HX
• Ratio of the actual heat transfer rate to maximum available
heat transfer rate.
max
Q
Qact




• Maximum available temperature difference of minimum
thermal capacity fluid.
i
c
i
h
fluid T
T
T ,
,
max, 


• Actual heat transfer rate:
LMTD
act T
UA
Q 


   
i
c
i
h
p
LMTD
T
T
c
m
T
UA
,
,
min





 
i
c
i
h
LMTD
T
T
T
NTU
,
,
max




 
 
i
c
i
h
comm
comm
comm
comm
T
T
T
T
T
T
NTU
,
,
1
,
2
,
1
,
2
,
max
ln














    





















max
min
1
,
2
, 1
1
exp
p
p
comm
comm
c
m
c
m
UA
T
T


 
 
  





















max
min
min
1
,
2
,
1
exp
p
p
p
comm
comm
c
m
c
m
c
m
UA
T
T



 
  





















max
min
max
1
,
2
,
1
exp
p
p
comm
comm
c
m
c
m
NTU
T
T


 
  





















max
min
max
1
,
2
,
1
exp
p
p
comm
comm
c
m
c
m
NTU
T
T


 
 
i
c
i
h
comm
comm
comm
comm
T
T
T
T
T
T
NTU
,
,
1
,
2
,
1
,
2
,
max
ln














Counter Flow Heat Ex















 1
exp
max
min
,
,
C
C
NTU
T
T in
comm
out
comm
Tci
Tce
Thi
The
 

















 1
exp
max
min
C
C
NTU
T
T
T
T ci
he
ce
hi

Weitere ähnliche Inhalte

Ähnlich wie Analysis of Heat Exchangers (7)

CFD PPT.ppt
CFD PPT.pptCFD PPT.ppt
CFD PPT.ppt
 
Evolution of 1st combustion engine
Evolution of 1st combustion engineEvolution of 1st combustion engine
Evolution of 1st combustion engine
 
History of the internal combustion engine
History of the internal combustion engineHistory of the internal combustion engine
History of the internal combustion engine
 
Gaz türbinli motorların tarihçesi ve sınıflandırılması
Gaz türbinli motorların tarihçesi ve sınıflandırılmasıGaz türbinli motorların tarihçesi ve sınıflandırılması
Gaz türbinli motorların tarihçesi ve sınıflandırılması
 
mel705-pracs.ppt
mel705-pracs.pptmel705-pracs.ppt
mel705-pracs.ppt
 
mel705-pracs.ppt
mel705-pracs.pptmel705-pracs.ppt
mel705-pracs.ppt
 
engineering history engineering history..
engineering history engineering history..engineering history engineering history..
engineering history engineering history..
 

Kürzlich hochgeladen

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
rknatarajan
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 

Kürzlich hochgeladen (20)

UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 

Analysis of Heat Exchangers

  • 1. Non-dimensional Analysis of Heat Exchangers P M V Subbarao Professor Mechanical Engineering Department I I T Delhi The culmination of Innovation …..
  • 2. The Concept of Space in Mathematics • Global Mathematical Space: The infinite extension of the three-dimensional region in which all concepts (matter) exists. • Particular Mathematical Space: A set of elements or points satisfying specified geometric postulates. • Euclidian Space: The basic vector space of real numbers. • A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. • A Sobolev space is a space of functions with sufficiently many derivatives for some application domain. • Development of a geometrical model for Hx in A compact Sobolev space helps in creating new and valid ideas.
  • 3. The Compact Sobolev Space for HXs • A model for hx is developed in terms of positive real parameters. • High population of these parameters lie in 0  p  . • The most compact space is the one where all the parameters defining the model lie in 0  p  .
  • 4. History of Gas Turbines • 1791: A patent was given to John Barber, an Englishman, for the first true gas turbine. • His invention had most of the elements present in the modern day gas turbines. • The turbine was designed to power a horseless carriage. • 1872: The first true gas turbine engine was designed by Dr Franz Stikze, but the engine never ran under its own power. • 1903: A Norwegian, Ægidius Elling, was able to build the first gas turbine that was able to produce more power than needed to run its own components, which was considered an achievement in a time when knowledge about aerodynamics was limited.
  • 5. 0 0.2 0.4 0.6 0.8 0 10 20 30 Pressure ratio 1872, Dr Franz Stikze’s Paradox cycle  nd net W ,
  • 6. First turbojet-powered aircraft – Ohain’s engine on He 178 The world’s first aircraft to fly purely on turbojet power, the Heinkel He 178. Its first true flight was on 27 August, 1939.
  • 7.   c h tot h tot h p hot c tot c p cold T T A dA dT UA c m dT UA c m      , ,   Capacity of An infinitesimal Size HX   c h tot h p hot tot h c p cold tot c T T A dA c m UA dT c m UA dT    , ,     c h tot h tot h p hot c tot c p cold T T A dA dT UA c m dT UA c m    , ,  
  • 8. Define a Non Dimensional number N   c h tot hot h cold c T T A dA N dT N dT    Maximum Possible Heat Transfer ?!?!?!? Let hot cold N N  Then h c dT dT  Cold fluid would experience a large temperature change.
  • 9. For an infinitely long counter flow HX. i h e c T T , ,    i c i h c p c T T c m Q , , , max      Counter Flow HX     i c i h p T T c m Q , , min max       min min max p cap c m UA N NTU     Maximum Number of Transfer Units
  • 10. Number of transfer units for hot fluid: h p hot hot c m UA NTU ,   Number of transfer units for cold fluid: c p cold cold c m UA NTU ,  
  • 11. For an infinitely long Co flow HX. e h e c T T , ,  Let Then h c dT dT    i c e h c p c p T T c m Q , , , max,      hot cold N N  Co Flow HX
  • 12. For A given combination of fluids, there exist two ideal extreme designs of heat exchangers. High Performance HX: Infinitely long counter flow HX. Low Performance HX: Infinitely long co flow HX.   i c i h c p c per high T T c m Q , , ,         i c o h c p c per low T T c m Q , , ,       If hot cold N N  First law for Heat Exchangers !!!!
  • 13. For A given combination of fluids, there exist two ideal extreme designs of heat exchangers. High Performance HX: Infinitely long counter flow HX. Low Performance HX: Infinitely long co flow HX.   i c i h h p h per high T T c m Q , , ,         o c i h h p h per low T T c m Q , , ,       If cold hot N N  First law for Heat Exchangers !!!!
  • 14. Second Law for HXs •It is impossible to construct an infinitely long counter flow HX. •What is the maximum possible?
  • 15. Effectiveness of A HX • Ratio of the actual heat transfer rate to maximum available heat transfer rate. max Q Qact     • Maximum available temperature difference of minimum thermal capacity fluid. i c i h fluid T T T , , max,    • Actual heat transfer rate: LMTD act T UA Q   
  • 16.     i c i h p LMTD T T c m T UA , , min        i c i h LMTD T T T NTU , , max         i c i h comm comm comm comm T T T T T T NTU , , 1 , 2 , 1 , 2 , max ln              
  • 17.                           max min 1 , 2 , 1 1 exp p p comm comm c m c m UA T T                               max min min 1 , 2 , 1 exp p p p comm comm c m c m c m UA T T                              max min max 1 , 2 , 1 exp p p comm comm c m c m NTU T T  
  • 18.                           max min max 1 , 2 , 1 exp p p comm comm c m c m NTU T T       i c i h comm comm comm comm T T T T T T NTU , , 1 , 2 , 1 , 2 , max ln              
  • 19. Counter Flow Heat Ex                 1 exp max min , , C C NTU T T in comm out comm Tci Tce Thi The                     1 exp max min C C NTU T T T T ci he ce hi