SlideShare ist ein Scribd-Unternehmen logo
1 von 81
Downloaden Sie, um offline zu lesen
www.ChemicalEngineeringGuy.com
1. Multicomponent VLE
 Calculation of Bubble & Dew Points
 K-Values for Hydrocarbon Systems (dePriester)
2. Multicomponent Flash Distillation
 Methodology: Rachford-Rice
 Multicomponent Flashing Exercises
 Multicomponent Flashing Simulations
www.ChemicalEngineeringGuy.com
 Multicomponent VLE Theory
 Calculation of Bubble & Dew Points
 K-Values for Hydrocarbon Systems (dePriester)
www.ChemicalEngineeringGuy.com
 We have been studying binary systems, that is two species
 For this case, the Phase Rule stated:
 If given:
 F as the number of degrees of freedom
 C as the number of components
 P as the number of phases
 Then this is true:
 F = C-P+2
 For a Ternary (3 species in equilibrium) System, then we get:
 F = C-P+2 = 3-2+2 = 3
 For a Quaternary system… and so on..
 F = C-P+2 = 4-2+2 = 4…
www.ChemicalEngineeringGuy.com
 In this section, we will cover only multiple-alkane systems
www.ChemicalEngineeringGuy.com
 Recall that K-Value is a relationship between liquid and vapor phases:
 Ki = yi/xi
 According to chemistry, the hydrocarbons’ boiling point depends on their size, as
they will have mostly van der waal forces, i.e. the greater the size of the HC the
greater its boling point.
 It is safe to assume that:
 The larger (heavier) the HC, the greater its BP, i.e. the least volatile
 If this is true:
 Low boiling point HC have HIGH K-values
 High boiling point HC have LOW K-values
 It will now be convenient for us to work with K-Values in multicomponent systems
www.ChemicalEngineeringGuy.com
 Verify K-Values of several Hydrocarbons
 Pressure – Temperature Relationship
http://demonstrations.wolfram.com/KValueOfSeveralHydrocarbonsVersusTemperatureAndPressure/
www.ChemicalEngineeringGuy.com
 For light hydrocarbons, the value of Ki of each species can be obtained from the
graph (called the “K chart”) prepared by DePriester
 The temperature and pressure of the system must specified
 Note that each plot/graph of each hydrocarbons can be written in the form of
equation:
 X values vary from substance to substance and the units being used
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Input variables:
 Set a Temperature
 Set a Pressure
 Set a component
 Output variable
 K-Value
 As you will see, if T/P are fixed, then, for pure substances:
 There is only a SINGLE line that describes these characteristic
www.ChemicalEngineeringGuy.com
www.ChemicalEngineeringGuy.com
 If we set T/P:
 There is a unique
condition for a PURE
substance
 See Lines:
 Orange (high P– Low T)
 Yellow (high P– high T)
 Blue (low P– Low T)
 Red (Low P– high T)
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Use the animation to verify certain conditions.
 Methane
 Propane
 Octane
http://demonstrations.wolfram.com/DePriesterChartForHydrocarbons/
www.ChemicalEngineeringGuy.com
 For multicomponent, we are interested on calculating dew and bubble points
www.ChemicalEngineeringGuy.com
 If the specifications that you are given for your single-stage equilibrium separations
process are not T and P alone but say:
 V/F = 0 and T or P
 (which is a bubble point temperature or pressure, respectively)
 or V/F = 0 and T or P
 (which is a dew point temperature or pressure, respectively)
 Do NOT use Rachford-Rice Equation!
 In this case, we will have something between 0 < V/F <1
www.ChemicalEngineeringGuy.com
 Let us first consider bubble point calculations
 In this case the liquid-phase composition xi is given
 it corresponds to the case where V is very small and
 Recall:
 The bubble point of a liquid is the point where the liquid just starts to evaporate (boil),
that is, when the first vapor bubble is formed.
 If the temperature is given:
 then we must lower the pressure until the first bubble is formed.
 If the pressure is given:
 then we must increase the temperature until the first bubble is formed.
0V 
i ix z
1i iK x 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 NOTE:In both cases, this corresponds to adjusting T or p until the computed sum of
vapor fractions is just 1, that is,
 Since:
 Then 
1iy 
i
i i i i
i
y
K y K x
x
  
1i iK x 
www.ChemicalEngineeringGuy.com
 At bubble point, V/F = 0, by definition in equilibrium
 From the equation: 
 Step 1: Guess any Bubble Point Temperature
 Step 2: Determine K-values from the Chart/Equation/Table/Plot
 Step 3: If the function ( ) then Bubble Point is correct
 Step 4: If the function is not 1 change Bubble point accordingly:
 function >1  reduce T
 function < 1  increase T
 Step 5: Repeat Iteration until % error is met
Tip:
Best Educated Guess is 
1i iK x  1i iK z 
i ix z
1i iK z 
old
new
i i
K
K
K z

www.ChemicalEngineeringGuy.com
 Bubble point at given temperature T.
 A liquid mixture contains 50% pentane (1), 30% hexane (2) and 20% cyclohexane (3)
(all in mol-%), i.e.,
 At T = 400 K, the pressure is gradually decreased.
 What is the bubble pressure and composition of the first vapor that is formed?
 Assume ideal liquid mixture and ideal gas (Raoult’s law).
1 2 30.5; 0.3; 0.2x x x  
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Solution.
 The task is to find a Pressure that satisfies 
 Since T is given, this is trivial (not required)
 We can simply calculate P from the previous equation
 We start by computing the vapor pressures for the three components at T = 400K.
 Using the Antoine data, we get:
 At the bubble point, the liquid phase composition is given, so the partial pressure of
each component is
( )i ix P T p 
1
2
3
( 400 ) 10.248
( 400 ) 4.647
( 400 ) 3.358
P T K bar
P T K bar
P T K bar
  
  
  
1 1 1
2 2 2
3 3 3
(0.5)(10.248 ) 5.124
(0.3)(4.647 ) 1.394
(0.2)(3.358 ) 0.672bar
p x P bar bar
p x P bar bar
p x P bar
   
   
   
www.ChemicalEngineeringGuy.com
 Thus, from the equation of the bubble pressure we get:
 Finally, the vapor composition (composition of the first vapor bubble) is
1 2 3 7.189p p p p bar   
1
1
2
2
3
3
5.124
0.713
7.189
1.394
0.194
7.189
0.672
0.093
7.189
p bar
y
p bar
p bar
y
p bar
p bar
y
p bar
  
  
  
www.ChemicalEngineeringGuy.com
 A hydrocarbon liquid mix with
 Composition (10,20,30,40% mol of; nC3, nC4, nC5, nC6)
 Find the temperature at which we will get the first bubble formation.
 Do NOT Assume ideal solution/gas
/ 0, 700V F P kPa 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Solution:
 Step 1. Guess any T:
 ; nearest to nC63 6C nCT T T 
200 392
700 101
T C F
P kPa psi
   
 
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
390
nC
nC
nC
nC
K
K
K
K
T F





Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
9.8
5.7
3.1
1.8
390
nC
nC
nC
nC
K
K
K
K
T F





www.ChemicalEngineeringGuy.com
 Step 3. Use f(x) function
 Step 4. K-value is Not what we expected
 Guess new T… Recommended is to: Normalize (divide by K function value)
 Do this for the smallest (MVC)  Propane
 Repeat Iteration!
( ) 3.69i iF x K Z 
3 3 4 4 5 5 6 6
3 4 5 6
(0.10) (0.20) (0.30) (0.40)
(9.8)(0.10) (5.7)(0.20) (3.1)(0.30) (1.8)(0.40)
3.70
i i nC nC nC nC nC nC nC nC
i i nC nC nC nC
i i
i i
K Z K Z K Z K Z K Z
K Z K K K K
K Z
K Z
   
   
   





9.8
2.66
3.7
K  
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
2.66
?
?
?
?
nC
nC
nC
nC
K
K
K
K
T





www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
2.66
0.80
0.30
0.12
128
nC
nC
nC
nC
K
K
K
K
T F




 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 3. Use f(x) function
 Step 4. K-value is Not what we expected
 Normalize (divide by K function value)
 Do this for the smallest (MVC)  Propane
 Repeat Iteration!
( ) 0.61i iF x K Z 
3 3 4 4 5 5 6 6
3 4 5 6
(0.10) (0.20) (0.30) (0.40)
(2.66)(0.10) (0.80)(0.20) (0.3)(0.30) (0.12)(0.40)
0.61
i i nC nC nC nC nC nC nC nC
i i nC nC nC nC
i i
i i
K Z K Z K Z K Z K Z
K Z K K K K
K Z
K Z
   
   
   





2.66
4.36
0.61
K  
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
4.36
1.80
0.85
0.36
200
nC
nC
nC
nC
K
K
K
K
T F




 
www.ChemicalEngineeringGuy.com
 Step 3. Use f(x) function
 Step 4. K-value is Not what we expected
 Normalize (divide by K function value)
 Do this for the smallest (MVC)  Propane
 Repeat Iteration!
( ) 1.18i iF x K Z 
3 3 4 4 5 5 6 6
3 4 5 6
(0.10) (0.20) (0.30) (0.40)
(4.36)(0.10) (1.80)(0.20) (0.85)(0.30) (0.36)(0.40)
1.18
i i nC nC nC nC nC nC nC nC
i i nC nC nC nC
i i
i i
K Z K Z K Z K Z K Z
K Z K K K K
K Z
K Z
   
   
   





4.36
3.70
1.20
K  
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
3.70
0.78
0.65
0.28
180
nC
nC
nC
nC
K
K
K
K
T F




 
www.ChemicalEngineeringGuy.com
 Step 3. Use f(x) function
 Step 4. K-value is Not what we expected
 Normalize (divide by K function value)
 Do this for the smallest (MVC)  Propane
 Repeat Iteration!
( ) 0.93i iF x K Z 
3.68
3.94
0.93
K  
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
3.94
1.40
0.60
0.27
188
nC
nC
nC
nC
K
K
K
K
T F




 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 At this point, K = 1 approx.
 Accept T = 188°F or 190°F
 Note that Real Value of mix is  T = 87°C  188.6°F
www.ChemicalEngineeringGuy.com
 Let us next consider dew point calculations.
 In this case the vapor-phase composition yi is given
 (it corresponds to the case where L is very small ( ) and
 The dew point of a vapor (gas) is the point where the vapor just begins to condense,
that is, when the first liquid drop is formed.
 If the temperature is given
 then we must increase the pressure until the first liquid is formed.
 If the pressure is given
 then we must decrease the temperature until the first liquid is formed.
0L  i iy z
www.ChemicalEngineeringGuy.com
 In both cases, this corresponds to adjusting T or p until
 Or, more conveniently:
1ix 
1i
i
y
K

Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 At the dew point, by definition, and from f(1) = 0, we can find:
 If this is true, then, when P and T are given:
 Must be changed since T is too large… The steps are as follows:
 Step 1. Guess any Dew Point Temperature
 Step 2: Determine the K-values based on that
 Step 3. Calculate . If function is not near 1, then:
 Increase T when Function is less than 1.
 Decrease T when Function is greater than 1.
 Step 4. Recalculate New K-values based on normalization of K-old
 Step 5. Repeat Iteration until acceptable % error value.
1i
i
Z
K

1i
i
Z
K

/ 1V F 
1i
i
Z
K

www.ChemicalEngineeringGuy.com
 Calculate the Dew point at given Temperature T.
 A vapor mixture contains:
 50% pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%), i.e.,
 At T = 400 K, the pressure is gradually increased.
 What is the dew point pressure and the composition of the first liquid that is
formed?
 Assume ideal liquid mixture and ideal gas (Raoult’s law).
1 2 30.5; 0.3; 0.2y y y  
www.ChemicalEngineeringGuy.com
 Solution.
 The task is to find the value of p that satisfies
 Since T is given, this is trivial; we can simply calculate 1/p from (7.48).
 From previous experiments and data, we got the following regression:
 and we find
 The liquid phase composition is:
 Then, we find
1
( )
i
i
y
P T p



11 0.5 0.3 0.2
0.1729
10.248 4.647 3.358
bar
p

   
5.75p bar 1
( )
i
i
i
y
x
P T p
 

 
1 2 3
0.5 5.78 0.3 5.78 0.2 5.78
0.282; 0.373; 0.345
10.248 4.647 3.749
x x x
x x x     
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 For the previous mixture of Bubble Point:
 Calculate its Dew Point
 That is, assume it is a vapor
 You are looking for condensation point
www.ChemicalEngineeringGuy.com
 Component / Molar flow
 C1 20
 C2 15
 C3 12
 C4 15
 IC4 12
 NC5 15
 IC5 10
 C6 5
 C7 3
• A) Get Dew point @ T= ? P = 50bar
• B) Get Bubble point @ T= 220°C, P = 10bar
• C) What phase do we have at 25/25
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Component / Molar flow
 B 0.25
 T 0.25
 O-X 0.25
 P-X 0.25
• A) Get Dew point @ T= 150°C, P = 50bar
• B) Get Dew point @ T= 220°C, P = 10bar
• C) What is the Critical Point & Meaning?
www.ChemicalEngineeringGuy.com
 Rachford-Rice Equation
 Derivation
 Procedure – Newton’s Method
 Worked Example
 Multicomponent Flash Distillation:
 Exercises
 Simulations
www.ChemicalEngineeringGuy.com
 Next, consider a flash where a feed F (with composition zi) is split into
 A vapor product V (with composition yi)
 A liquid product (with composition xi)
 For each of the Nc components, we can write a material balance:
 In addition, the vapor and liquid is assumed to be in equilibrium,
i i iFz Lx Vy 
i i iy K x
www.ChemicalEngineeringGuy.com
 The K-values:

 Must be computed from the VLE model.
 In addition, we have the two relationships:
 With a given feed (F, zi), we then have:
 3Nc + 2 equations
 3Nc + 4 unknowns (xi , yi , Ki , L, V, T, p).
 Thus, we need two additional specifications, and with these the equation set should
be solvable
, ,( ),i i i iK K T P x y
1
1
1
i
i
i i
x
y
x y
 
 
   
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 The simplest flash is usually to specify p and T (pT-flash)
 because Ki depends mainly on p and T .
 Let us show one common approach for solving the resulting equations, which has
good numerical properties.
 Substituting into the mass balance:
 Gives
 Solving with respect to xi gives:
 Simplify via  L = F − L (total mass balance) to derive
i i iFz Lx Vy 
i i iy K x
(K )i i i iFz Lx V x 
( )
( ) (1)
( ) 1 ( 1)
1 ( 1)
i i i
i i
i V
Fi i
V
F
i
i
i
Fz x L VK
L F z z
x
L V K K
z
x
K
 

 
  
 

  
www.ChemicalEngineeringGuy.com
 Here, we cannot directly calculate xi because the vapor split V /F is not known.
 To find V /F we may use:
 the relationship
 alternatively
 OR the addition of both…
 However, it has been found that the combination Σi(yi−xi) = 0
 It results in an equation with good numerical properties
 This is the so-called Rachford-Rice Flash Equation
1
1
1
i
i
i i
x
y
x y
 
 
   
 isat
i
p T
K
p

( 1)
0
1 ( 1)
i i
i
z K
K


  

www.ChemicalEngineeringGuy.com
 Rachford-Rice Equation:
 Is a monotonic function in V/F
 It is easy to solve numerically.
 A physical solution must satisfy 0 ≤ V /F ≤ 1.
 If we assume that Raoult’s holds, then Ki depends on p and T only.
 Then, with T and p specified, we know Ki and the Rachford-Rice equation can be
solved for V /F.
 For non-ideal cases, Ki depends also on xi and yi
 One approach is add an outer iteration loop on Ki .
 isat
i
p T
K
p

www.ChemicalEngineeringGuy.com
 This will be the typical procedure for the RRE
 Note that this is based on a numerical method
 Newton-Raphson Method
 Uses the original function, f(phi)
 It also requires the derivative of the function, f’(phi)
( 1)
( )
1 ( 1)
i i
i
z K
f
K

 
  

0.50
V
F
  
2
2
(1 )
'( )
[1 ( 1)]
i i
i
z K
f
K

 
  

( , , , ... )i j k zF z z z z
(V,y ,y ,y ...y )i j k z
(L,x ,x ,x ...x )i j k z
( , )T P
( , , ... )i j k zK K K K
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
1. Given  F, zi, T and P
2. Get Ki for species (either graph, equations or experimental values)
 Antoine Equation (ideal)
 K-Values from DePriester Chart
3. Assume a phi value (vaporized material in the feed) (hint  good start is 0.5)
4. Get the Numerical Value of Rachford Rice Equation
 Example:
 BTX ( Benzene, Toluene, Xylene) System:
( 1)
0
1 ( 1)
i i
i
z K
K


  

0.50
V
F
  
(1 )(1 ) (1 )
( )
1 ( 1) 1 ( 1) 1 ( 1)
xylene xylenebenzene benzene toluene toluene
benzene toluene xylene
z Kz K z K
f
K K K
 
   
        
www.ChemicalEngineeringGuy.com
5. Get the Numerical Value of the Derivative of Rachford Rice Equation
 Example:
 BTX ( Benzene, Toluene, Xylene) System:
V
F
 
22 2
2 2 2
(1 )(1 ) (1 )
'( )
[1 ( 1)] [1 ( 1)] [1 ( 1)]
xylene xylenebenzene benzene toluene toluene
benzene toluene xylenei
z Kz K z K
f
K K K
 
   
        
2
2
(1 )
'( )
[1 ( 1)]
i i
i
z K
f
K

 
  

www.ChemicalEngineeringGuy.com
6. Recalculate phi (Newton Raphson Method)
7. Verify Rel. Error, if < 0.0001, this is ok, otherwise go to step 3 (repeat iteration)
V
F
 
( )
'( )
old
new old
old
f
f

   

% .error 100%new old
old
rel abs x
   
  
 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
8. Get V, L, xi, and yi (see equations)
 Note that in all cases:
 You will need K and phi
V V F
L L F V
  
  
1 ( 1)
1 ( 1)
i i
i
i
i
i
i
K z
y
K
z
x
K

  

  
V
F
 
www.ChemicalEngineeringGuy.com
 Given a Flash with the following data:
 Composition (zi)
 (BTX, 0.60, 0.25, 0.15)
 VLE (Antoine Constant) Data:
 A) Get the compositions, flow rates of Vapor & Liquid streams
i A B C
B 6.879 1196.700 219.160
T 6.950 1342.000 219.190
X 7.000 1476.390 213.870
1 , 100
100
&
kmol
h
P atm T C
F
V L unknown
  


www.ChemicalEngineeringGuy.com
 Step 1 – Get the given Data:
1 , 100 , 100
0.6; 0.25, 0.15
kmol
h
benzene toluene xylene
P atm T C F
Z Z Z
   
  
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 2 Get Ki-values
 Via Raoult’s Law
 Via DePriester Diagrams (not available for BTX)
 If we use Raoult’s Law & Antoine’s Equation:
1.7756
0.7322
0.2611
benzene
toluene
xylene
K
K
K



www.ChemicalEngineeringGuy.com
 Step 3. Assume phi
 Recommended is:
 WHY?
0.5 
www.ChemicalEngineeringGuy.com
 Step 4. Calculate The Value of the Rachford-Rice Equaiton (RRE)
0.5
(1 )
( )
1 ( 1)
(1 )(1 ) (1 )
( )
1 ( 1) 1 ( 1) 1 ( 1)
0.60(1 1.7756) 0.25(1 0.7322)
( )
1 0.50(1.7756 1) 1 0.50(0.732
i i
i
xylene xylenebenzene benzene toluene toluene
benzene toluene xylenei
z K
f
K
z Kz K z K
f
K K K
f
 

 
  
 
   
        
 
  
  

0.15(1 0.2611)
2 1) 1 0.50(0.2611 1)
( ) 0.0823f


  
  
www.ChemicalEngineeringGuy.com
 Step 5. Calculate The Value of the derivative of RRE
2
2
22 2
2 2 2
2
2
0.5
(1 )
'( )
[1 ( 1)]
(1 )(1 ) (1 )
'( )
[1 ( 1)] [1 ( 1)] [1 ( 1)]
0.60(1 1.7756) 0.25
'( )
1 0.50(1.7756 1)]
i i
i
xylene xylenebenzene benzene toluene toluene
benzene toluene xylenei
z K
f
K
z Kz K z K
f
K K K
f
 

 
  
 
   
        

  
 

2 2
2 2
(1 0.7322) 0.15(1 0.2611)
1 0.50(0.7322 1)] 1 0.50(0.2611 1)]
'( ) 0.4172f
 

   
 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 6. Calculate the new “phi”
( )
'( )
0.0823
0.50
0.4172
0.6972
old
new old
old
new
new
f
f

   


  
 
www.ChemicalEngineeringGuy.com
 Step 7. Verify phi value (error)
 Error is too large, repeat from step 3
% . 100%
0.6972
% . 100%
0.5000
% . 139%
new
old
rel error x
rel error x
rel error





www.ChemicalEngineeringGuy.com
 The most convenient way to do this is via a Spreadsheet… as we will need to iterate
 Step 7. Verify phi value (error)
 Best Case  phi = 0.6806; error is acceptable
Trial phi f(1) f(2) f(3) f(phi) f'(1) f'(2) f'(3) f'(phi) New Phi %error
1 0.5 -0.33532 0.0773 0.175775 -0.08225 0.187402 0.023901 0.205979 0.417282 0.6971 39.42
2 0.6971 -0.30205 0.08232 0.228567 0.008834 0.152057 0.027105 0.348286 0.527447 0.6804 2.40
3 0.6804 -0.30462 0.08187 0.222879 0.000126 0.154654 0.026808 0.026808 0.20827 0.6797 0.09
4 0.6797 -0.30471 0.08185 0.222679 -0.00018 0.154749 0.026797 0.026797 0.208344 0.6806 0.13
5 0.6806 -0.30458 0.08187 0.222971 0.000269 0.154611 0.026813 0.026813 0.208236 0.6793 0.19
6 0.6793 -0.30478 0.08184 0.222544 -0.00039 0.154813 0.02679 0.02679 0.208394 0.6812 0.28
7 0.6812 -0.30448 0.08189 0.223167 0.000572 0.154518 0.026823 0.026823 0.208164 0.6785 0.40
2
2
22 2
2 2 2
2
2
0.5
(1 )
'( )
[1 ( 1)]
(1 )(1 ) (1 )
'( )
[1 ( 1)] [1 ( 1)] [1 ( 1)]
0.60(1 1.7756) 0.25
'( )
1 0.50(1.7756 1)]
i i
i
xylene xylenebenzene benzene toluene toluene
benzene toluene xylenei
z K
f
K
z Kz K z K
f
K K K
f
 

 
  
 
   
        

  
 

2 2
2 2
(1 0.7322) 0.15(1 0.2611)
1 0.50(0.7322 1)] 1 0.50(0.2611 1)]
'( ) 0.4172f
 

   
 
f’(1) f’(2) f’(3)
0.5
(1 )
( )
1 ( 1)
(1 )(1 ) (1 )
( )
1 ( 1) 1 ( 1) 1 ( 1)
0.60(1 1.7756) 0.25(1 0.7322)
( )
1 0.50(1.7756 1) 1 0.50(0.732
i i
i
xylene xylenebenzene benzene toluene toluene
benzene toluene xylenei
z K
f
K
z Kz K z K
f
K K K
f
 

 
  
 
   
        
 
  
  

0.15(1 0.2611)
2 1) 1 0.50(0.2611 1)
( ) 0.0823f


  
  
f(1) f(2) f(3)
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 8. Calculate all other Values
 For compositions, use Spreadsheet
(0.6803)(100) 68.03 /
100 68.03 31.97 /
V V F V kmol h
L L F V kmol h
     
     
1 ( 1)
1 ( 1)
i i
i
i
i
i
i
K z
y
K
z
x
K

  

  
www.ChemicalEngineeringGuy.com
 Step 8. Calculate all other Values
1 ( 1)
1 ( 1)
i i
i
i
i
i
i
K z
y
K
z
x
K

  

  
Species i Ki zi phi yi xi
Benzene 1 1.78 0.60 0.6806 0.69728 0.392703
Toluene 2 0.73 0.25 0.6806 0.22385 0.305722
Xylene 3 0.26 0.15 0.6806 0.07879 0.301747
www.ChemicalEngineeringGuy.com
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 A feed:
 (1) 20 mol % ethane
 (2) 20 mol % isobutane
 (3) 20 mol % n-pentane
 (4) 40 mol % n-hexane
 Flash Operation is at T = 100°c, P = 600kPa
 A) What mole fraction of the feed is vaporized?
 B) Composition of vapor?
www.ChemicalEngineeringGuy.com
 Step 1: Calculate K Values
 F = must be assumed, 100
 Z = given, 0.2,0.20,0.20,0.40
 Given, 100°C (212F), 600kPa (87 psi)
 Step 2. Calculate K Values
 Use DePriester Chart.
 Ethane  12.5
 isobutane  2.80
 n-pentane  0.95
 n-hexane  0.45
www.ChemicalEngineeringGuy.com
 Step 3. Assume phi-values
0.50 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 4. Calculate RRE
 Step 5. Calculate Derivative of RRE:
Ethane  12.5
isobutane  2.80
n-pentane  0.95
n-hexane  0.45
Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error
1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71
2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68
3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04
4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00
5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00
6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00
7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00
www.ChemicalEngineeringGuy.com
 Step 7. Verify if error is acceptable.
 V/F = 0.7597
 A) Percentage of Vapor = 75.97%
Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error
1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71
2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68
3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04
4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00
5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00
6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00
7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 B) Composition of vapor?
Species i Ki zi phi yi xi
Ethane 1 12.5 0.20 0.7597 0.256764 0.020541
i-Butane 2 2.8 0.2 0.7597 0.23654 0.084479
n-Pentane 3 0.95 0.2 0.7597 0.197502 0.207897
n-Hexane 4 0.45 0.4 0.7597 0.309191 0.68709
0.999998 1.000007
(0.7597)(100) 75.97 /
100 75.97 24.03 /
V V F V mol h
L L F V kmol h
     
     
1 ( 1)
1 ( 1)
i i
i
i
i
i
i
K z
y
K
z
x
K

  

  
www.ChemicalEngineeringGuy.com
 For a mix at T= 95°C and P = 700kPa
 The composition of 40, 30, 20, 10 mol percent:
 propane (1)
 n-butane (2)
 n-pentane (3)
 n-hexane (4)
 A) What percentage of the feed enters as liquid?
www.ChemicalEngineeringGuy.com
 Step 1. Get data
 F, T, P, zi are given!
 T= 95°C = 203°F
 P = 700kPa = 101 psi
 Step 2. Get Ki
 From K-chart:
 4.20
 1.75
 0.74
 0.34
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 3: Assume a phi value
 Phi = 0.5
 Step 4&5: Get RRE and its derivative
www.ChemicalEngineeringGuy.com
 Step 6: Verify, iterate
 NOTE 
 If The Value of RRE < 0, this is above the bubble point… WHY?
 If the Value of RRE derivative > RRE, this is ABOVE the dew point…
 Trick question… This is all VAPOR!
phi 0.5
i zi Ki f(phi) f'(phi)
1 0.4 4.2 -1.28 4.096
2 0.3 1.75 -0.225 0.16875
3 0.2 0.74 0.052 0.01352
4 0.1 0.34 0.066 0.04356
Sum = -1.387 4.32183
www.ChemicalEngineeringGuy.com
 In the following animation:
 Change the Flash Pressure
 See the Effect of Q in temperature
 Compare the volatility of species:
 Butane vs. heptane
https://demonstrations.wolfram.com/FlashDistillationOfAMixtureOfFourHydrocarbons/
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Use Aspen Plus Software to Simulate Ex 1. Rachford-Rice Flashing
 A) Verify Composition & Streams
 B) Use Physical Property Analysis:
 PV-Curve
 Mixture Properties
 C) Use Sensitivity Analysis for:
 Effect of Temperature in Vapor
 Tmin? WHY
 Tmax? WHY
www.ChemicalEngineeringGuy.com
 Phi = 0.7597
Species i Ki zi phi yi xi
Ethane 1 12.5 0.20 0.7597 0.256764 0.020541
i-Butane 2 2.8 0.2 0.7597 0.23654 0.084479
n-Pentane 3 0.95 0.2 0.7597 0.197502 0.207897
n-Hexane 4 0.45 0.4 0.7597 0.309191 0.68709
0.999998 1.000007
(0.7597)(100) 75.97 /
100 75.97 24.03 /
V V F V mol h
L L F V kmol h
     
     
Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error
1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71
2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68
3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04
4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00
5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00
6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00
7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
1. Introduction
2. Review of Mass Transfer
3. Flash Distillation Concepts
4. Multicomponent Flashing
5. Conclusion
www.ChemicalEngineeringGuy.com
1. Introduction
1. Why Flash Distillation?
2. Objectives & Goals
3. Resources & Downloads
4. Additional Notes
2. Review of Mass Transfer
1. Ideal Solution & Gas, Equilibrium, Vapor & Partial Pressures, VLE
2. Volatility / Relative Volatility
3. Phase Diagrams (Txy, Pxy, XY)
4. Ideal Solution – Ideal Gas: Raoult’s Law (Vapor-Liquid)
5. Deviations: Azeotropes
3. Flash Distillation Concepts
1. Process Technology Overview
2. Equipment
3. Operation Line
4. Flash Cascades
4. Multiple Components
1. Introduction
2. Rachford-Rice
3. Alkane System
5. Conclusion
www.ChemicalEngineeringGuy.com
 More Engineering Courses
 Process Design & Simulation
 Aspen Plus
 Aspen HYSYS
 Unit Operations
 Gas Absorption & Stripping
 Flash Distillation
 Binary Distillation
 Oil & Gas
 Petrochemical Industries
 Petroleum Refining
https://courses.chemicalengineeringguy.com/courses

Weitere ähnliche Inhalte

Was ist angesagt?

Lab cstr in series
Lab cstr in seriesLab cstr in series
Lab cstr in seriesAzlan Skool
 
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)Chemical Engineering Guy
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)Chemical Engineering Guy
 
Design of-absorption-column
Design of-absorption-columnDesign of-absorption-column
Design of-absorption-columnAli Hassan
 
Design of packed columns
Design of packed columnsDesign of packed columns
Design of packed columnsalsyourih
 
BE Chemical Engineering Design Project Production Of Propylene Oxide
BE Chemical Engineering Design Project   Production Of Propylene OxideBE Chemical Engineering Design Project   Production Of Propylene Oxide
BE Chemical Engineering Design Project Production Of Propylene Oxidepatrickconneran
 
Heat transfer in packed bed
Heat transfer in packed bedHeat transfer in packed bed
Heat transfer in packed bedPreeti Birwal
 
Distillation Column Design.pdf
Distillation  Column Design.pdfDistillation  Column Design.pdf
Distillation Column Design.pdfKAhmedRehman
 
Lecture-III Basics of Pinch Analysis.pdf
Lecture-III Basics of Pinch Analysis.pdfLecture-III Basics of Pinch Analysis.pdf
Lecture-III Basics of Pinch Analysis.pdfHaileGetachew2
 
Chapter 7 capital cost estimation
Chapter 7 capital cost estimationChapter 7 capital cost estimation
Chapter 7 capital cost estimationjose2424
 
Flooding of a distillation column
Flooding of a distillation columnFlooding of a distillation column
Flooding of a distillation columnKarnav Rana
 
Feed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and refluxFeed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and refluxIhsan Wassan
 
Plate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 ReportPlate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 ReportNicely Jane Eleccion
 

Was ist angesagt? (20)

Lab cstr in series
Lab cstr in seriesLab cstr in series
Lab cstr in series
 
Che 412 cre 1 notes
Che 412 cre 1 notesChe 412 cre 1 notes
Che 412 cre 1 notes
 
FR MULTIPLE EFFECT EVAPORATION
FR MULTIPLE EFFECT EVAPORATIONFR MULTIPLE EFFECT EVAPORATION
FR MULTIPLE EFFECT EVAPORATION
 
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
 
Design of-absorption-column
Design of-absorption-columnDesign of-absorption-column
Design of-absorption-column
 
CRE Numericals
CRE NumericalsCRE Numericals
CRE Numericals
 
Design of packed columns
Design of packed columnsDesign of packed columns
Design of packed columns
 
2.2 McCabe-Thiele method
2.2 McCabe-Thiele method2.2 McCabe-Thiele method
2.2 McCabe-Thiele method
 
BE Chemical Engineering Design Project Production Of Propylene Oxide
BE Chemical Engineering Design Project   Production Of Propylene OxideBE Chemical Engineering Design Project   Production Of Propylene Oxide
BE Chemical Engineering Design Project Production Of Propylene Oxide
 
1.1 Vapor Liquid Equilibrium
1.1 Vapor Liquid Equilibrium1.1 Vapor Liquid Equilibrium
1.1 Vapor Liquid Equilibrium
 
Heat transfer in packed bed
Heat transfer in packed bedHeat transfer in packed bed
Heat transfer in packed bed
 
Distillation Column Design.pdf
Distillation  Column Design.pdfDistillation  Column Design.pdf
Distillation Column Design.pdf
 
gas absorption
gas absorptiongas absorption
gas absorption
 
Lecture-III Basics of Pinch Analysis.pdf
Lecture-III Basics of Pinch Analysis.pdfLecture-III Basics of Pinch Analysis.pdf
Lecture-III Basics of Pinch Analysis.pdf
 
Chapter 7 capital cost estimation
Chapter 7 capital cost estimationChapter 7 capital cost estimation
Chapter 7 capital cost estimation
 
Flooding of a distillation column
Flooding of a distillation columnFlooding of a distillation column
Flooding of a distillation column
 
Reflux ratio
Reflux ratioReflux ratio
Reflux ratio
 
Feed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and refluxFeed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and reflux
 
Plate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 ReportPlate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 Report
 

Ähnlich wie Flash Distillation in Chemical and Process Engineering (Part 3 of 3)

Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)Chemical Engineering Guy
 
Nuclear Engineering Exam Help
Nuclear Engineering Exam HelpNuclear Engineering Exam Help
Nuclear Engineering Exam HelpLive Exam Helper
 
Marcet boiler
Marcet boiler Marcet boiler
Marcet boiler sarkawtn
 
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docxBC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docxrosemaryralphs52525
 
Syllabus of engineering thermodynamics
Syllabus of engineering thermodynamicsSyllabus of engineering thermodynamics
Syllabus of engineering thermodynamicsVicky Singh
 
Algorithm of problem solving with example.pdf
Algorithm of problem solving with example.pdfAlgorithm of problem solving with example.pdf
Algorithm of problem solving with example.pdfselememg
 
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal AnnulusNatural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal AnnulusPMOHANSAHU
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)Chemical Engineering Guy
 
The Energy and the Work of Engine
The Energy and the Work of EngineThe Energy and the Work of Engine
The Energy and the Work of Engineinventionjournals
 
The Energy and the Work of Engine
The Energy and the Work of EngineThe Energy and the Work of Engine
The Energy and the Work of Engineinventionjournals
 
4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum process4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum processnazir1988
 
Advanced Chemical Engineering Thermodynamics-31-July-2016
Advanced Chemical Engineering Thermodynamics-31-July-2016Advanced Chemical Engineering Thermodynamics-31-July-2016
Advanced Chemical Engineering Thermodynamics-31-July-2016Muhammad Rashid Usman
 
The Energy and The Work Of Engine
The Energy and The Work Of EngineThe Energy and The Work Of Engine
The Energy and The Work Of EngineQUESTJOURNAL
 

Ähnlich wie Flash Distillation in Chemical and Process Engineering (Part 3 of 3) (20)

Ideal gases (leacture 3)
Ideal gases (leacture 3)Ideal gases (leacture 3)
Ideal gases (leacture 3)
 
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
 
CHEM 213 Distillation.ppt
CHEM 213 Distillation.pptCHEM 213 Distillation.ppt
CHEM 213 Distillation.ppt
 
Chemistry homework help
Chemistry homework helpChemistry homework help
Chemistry homework help
 
09 Chapter 6-C
09 Chapter 6-C09 Chapter 6-C
09 Chapter 6-C
 
Nuclear Engineering Exam Help
Nuclear Engineering Exam HelpNuclear Engineering Exam Help
Nuclear Engineering Exam Help
 
Marcet boiler
Marcet boiler Marcet boiler
Marcet boiler
 
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docxBC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
 
Syllabus of engineering thermodynamics
Syllabus of engineering thermodynamicsSyllabus of engineering thermodynamics
Syllabus of engineering thermodynamics
 
Algorithm of problem solving with example.pdf
Algorithm of problem solving with example.pdfAlgorithm of problem solving with example.pdf
Algorithm of problem solving with example.pdf
 
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal AnnulusNatural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
 
Gases
GasesGases
Gases
 
The Energy and the Work of Engine
The Energy and the Work of EngineThe Energy and the Work of Engine
The Energy and the Work of Engine
 
The Energy and the Work of Engine
The Energy and the Work of EngineThe Energy and the Work of Engine
The Energy and the Work of Engine
 
4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum process4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum process
 
Advanced Chemical Engineering Thermodynamics-31-July-2016
Advanced Chemical Engineering Thermodynamics-31-July-2016Advanced Chemical Engineering Thermodynamics-31-July-2016
Advanced Chemical Engineering Thermodynamics-31-July-2016
 
Gas lawschem
Gas lawschemGas lawschem
Gas lawschem
 
The Energy and The Work Of Engine
The Energy and The Work Of EngineThe Energy and The Work Of Engine
The Energy and The Work Of Engine
 
ch3.pdf
ch3.pdfch3.pdf
ch3.pdf
 

Mehr von Chemical Engineering Guy

Introduction to Mass Transfer Operations (4 of 5)
Introduction to Mass Transfer Operations (4 of 5)Introduction to Mass Transfer Operations (4 of 5)
Introduction to Mass Transfer Operations (4 of 5)Chemical Engineering Guy
 
Introduction to Mass Transfer Operations (3 of 5)
Introduction to Mass Transfer Operations (3 of 5)Introduction to Mass Transfer Operations (3 of 5)
Introduction to Mass Transfer Operations (3 of 5)Chemical Engineering Guy
 
Introduction to Mass Transfer Operations (2 of 5)
Introduction to Mass Transfer Operations (2 of 5)Introduction to Mass Transfer Operations (2 of 5)
Introduction to Mass Transfer Operations (2 of 5)Chemical Engineering Guy
 
Introduction to Mass Transfer Operations (5 of 5)
Introduction to Mass Transfer Operations (5 of 5)Introduction to Mass Transfer Operations (5 of 5)
Introduction to Mass Transfer Operations (5 of 5)Chemical Engineering Guy
 
Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)Chemical Engineering Guy
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)Chemical Engineering Guy
 
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)Chemical Engineering Guy
 
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)Chemical Engineering Guy
 
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)Chemical Engineering Guy
 
Applied Fluid Mechanics - Course Overview (AFD0)
Applied Fluid Mechanics -  Course Overview  (AFD0)Applied Fluid Mechanics -  Course Overview  (AFD0)
Applied Fluid Mechanics - Course Overview (AFD0)Chemical Engineering Guy
 

Mehr von Chemical Engineering Guy (20)

Introduction to Mass Transfer Operations (4 of 5)
Introduction to Mass Transfer Operations (4 of 5)Introduction to Mass Transfer Operations (4 of 5)
Introduction to Mass Transfer Operations (4 of 5)
 
Introduction to Mass Transfer Operations (3 of 5)
Introduction to Mass Transfer Operations (3 of 5)Introduction to Mass Transfer Operations (3 of 5)
Introduction to Mass Transfer Operations (3 of 5)
 
Introduction to Mass Transfer Operations (2 of 5)
Introduction to Mass Transfer Operations (2 of 5)Introduction to Mass Transfer Operations (2 of 5)
Introduction to Mass Transfer Operations (2 of 5)
 
Introduction to Mass Transfer Operations (5 of 5)
Introduction to Mass Transfer Operations (5 of 5)Introduction to Mass Transfer Operations (5 of 5)
Introduction to Mass Transfer Operations (5 of 5)
 
Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
 
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
 
Petroleum refining (3 of 3)
Petroleum refining (3 of 3)Petroleum refining (3 of 3)
Petroleum refining (3 of 3)
 
Petroleum refining (1 of 3)
Petroleum refining (1 of 3)Petroleum refining (1 of 3)
Petroleum refining (1 of 3)
 
Petrochemicals an Overview (1 of 3)
Petrochemicals an Overview (1 of 3)Petrochemicals an Overview (1 of 3)
Petrochemicals an Overview (1 of 3)
 
Petrochemicals an Overview (2 of 3)
Petrochemicals an Overview (2 of 3)Petrochemicals an Overview (2 of 3)
Petrochemicals an Overview (2 of 3)
 
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
 
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
 
Aspen HYSYS - Basic Course (SS)
Aspen HYSYS - Basic Course (SS)Aspen HYSYS - Basic Course (SS)
Aspen HYSYS - Basic Course (SS)
 
Chemical Engineering Syllabus Explained
Chemical Engineering Syllabus ExplainedChemical Engineering Syllabus Explained
Chemical Engineering Syllabus Explained
 
Aspen Plus - Basic Course (Slideshare)
Aspen Plus - Basic Course (Slideshare)Aspen Plus - Basic Course (Slideshare)
Aspen Plus - Basic Course (Slideshare)
 
Applied Fluid Mechanics - Course Overview (AFD0)
Applied Fluid Mechanics -  Course Overview  (AFD0)Applied Fluid Mechanics -  Course Overview  (AFD0)
Applied Fluid Mechanics - Course Overview (AFD0)
 
AFD5 Pumps
AFD5 PumpsAFD5 Pumps
AFD5 Pumps
 
AFD Incompressible Flow - Conclusion
AFD Incompressible Flow - ConclusionAFD Incompressible Flow - Conclusion
AFD Incompressible Flow - Conclusion
 
AFD7 Agitation and Mixing
AFD7 Agitation and MixingAFD7 Agitation and Mixing
AFD7 Agitation and Mixing
 

Kürzlich hochgeladen

Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 

Kürzlich hochgeladen (20)

Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 

Flash Distillation in Chemical and Process Engineering (Part 3 of 3)

  • 1. www.ChemicalEngineeringGuy.com 1. Multicomponent VLE  Calculation of Bubble & Dew Points  K-Values for Hydrocarbon Systems (dePriester) 2. Multicomponent Flash Distillation  Methodology: Rachford-Rice  Multicomponent Flashing Exercises  Multicomponent Flashing Simulations
  • 2. www.ChemicalEngineeringGuy.com  Multicomponent VLE Theory  Calculation of Bubble & Dew Points  K-Values for Hydrocarbon Systems (dePriester)
  • 3. www.ChemicalEngineeringGuy.com  We have been studying binary systems, that is two species  For this case, the Phase Rule stated:  If given:  F as the number of degrees of freedom  C as the number of components  P as the number of phases  Then this is true:  F = C-P+2  For a Ternary (3 species in equilibrium) System, then we get:  F = C-P+2 = 3-2+2 = 3  For a Quaternary system… and so on..  F = C-P+2 = 4-2+2 = 4…
  • 4. www.ChemicalEngineeringGuy.com  In this section, we will cover only multiple-alkane systems
  • 5. www.ChemicalEngineeringGuy.com  Recall that K-Value is a relationship between liquid and vapor phases:  Ki = yi/xi  According to chemistry, the hydrocarbons’ boiling point depends on their size, as they will have mostly van der waal forces, i.e. the greater the size of the HC the greater its boling point.  It is safe to assume that:  The larger (heavier) the HC, the greater its BP, i.e. the least volatile  If this is true:  Low boiling point HC have HIGH K-values  High boiling point HC have LOW K-values  It will now be convenient for us to work with K-Values in multicomponent systems
  • 6. www.ChemicalEngineeringGuy.com  Verify K-Values of several Hydrocarbons  Pressure – Temperature Relationship http://demonstrations.wolfram.com/KValueOfSeveralHydrocarbonsVersusTemperatureAndPressure/
  • 7. www.ChemicalEngineeringGuy.com  For light hydrocarbons, the value of Ki of each species can be obtained from the graph (called the “K chart”) prepared by DePriester  The temperature and pressure of the system must specified  Note that each plot/graph of each hydrocarbons can be written in the form of equation:  X values vary from substance to substance and the units being used Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 8. www.ChemicalEngineeringGuy.com  Input variables:  Set a Temperature  Set a Pressure  Set a component  Output variable  K-Value  As you will see, if T/P are fixed, then, for pure substances:  There is only a SINGLE line that describes these characteristic
  • 10. www.ChemicalEngineeringGuy.com  If we set T/P:  There is a unique condition for a PURE substance  See Lines:  Orange (high P– Low T)  Yellow (high P– high T)  Blue (low P– Low T)  Red (Low P– high T) Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 11. www.ChemicalEngineeringGuy.com  Use the animation to verify certain conditions.  Methane  Propane  Octane http://demonstrations.wolfram.com/DePriesterChartForHydrocarbons/
  • 12. www.ChemicalEngineeringGuy.com  For multicomponent, we are interested on calculating dew and bubble points
  • 13. www.ChemicalEngineeringGuy.com  If the specifications that you are given for your single-stage equilibrium separations process are not T and P alone but say:  V/F = 0 and T or P  (which is a bubble point temperature or pressure, respectively)  or V/F = 0 and T or P  (which is a dew point temperature or pressure, respectively)  Do NOT use Rachford-Rice Equation!  In this case, we will have something between 0 < V/F <1
  • 14. www.ChemicalEngineeringGuy.com  Let us first consider bubble point calculations  In this case the liquid-phase composition xi is given  it corresponds to the case where V is very small and  Recall:  The bubble point of a liquid is the point where the liquid just starts to evaporate (boil), that is, when the first vapor bubble is formed.  If the temperature is given:  then we must lower the pressure until the first bubble is formed.  If the pressure is given:  then we must increase the temperature until the first bubble is formed. 0V  i ix z 1i iK x  Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 15. www.ChemicalEngineeringGuy.com  NOTE:In both cases, this corresponds to adjusting T or p until the computed sum of vapor fractions is just 1, that is,  Since:  Then  1iy  i i i i i i y K y K x x    1i iK x 
  • 16. www.ChemicalEngineeringGuy.com  At bubble point, V/F = 0, by definition in equilibrium  From the equation:   Step 1: Guess any Bubble Point Temperature  Step 2: Determine K-values from the Chart/Equation/Table/Plot  Step 3: If the function ( ) then Bubble Point is correct  Step 4: If the function is not 1 change Bubble point accordingly:  function >1  reduce T  function < 1  increase T  Step 5: Repeat Iteration until % error is met Tip: Best Educated Guess is  1i iK x  1i iK z  i ix z 1i iK z  old new i i K K K z 
  • 17. www.ChemicalEngineeringGuy.com  Bubble point at given temperature T.  A liquid mixture contains 50% pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%), i.e.,  At T = 400 K, the pressure is gradually decreased.  What is the bubble pressure and composition of the first vapor that is formed?  Assume ideal liquid mixture and ideal gas (Raoult’s law). 1 2 30.5; 0.3; 0.2x x x   Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 18. www.ChemicalEngineeringGuy.com  Solution.  The task is to find a Pressure that satisfies   Since T is given, this is trivial (not required)  We can simply calculate P from the previous equation  We start by computing the vapor pressures for the three components at T = 400K.  Using the Antoine data, we get:  At the bubble point, the liquid phase composition is given, so the partial pressure of each component is ( )i ix P T p  1 2 3 ( 400 ) 10.248 ( 400 ) 4.647 ( 400 ) 3.358 P T K bar P T K bar P T K bar          1 1 1 2 2 2 3 3 3 (0.5)(10.248 ) 5.124 (0.3)(4.647 ) 1.394 (0.2)(3.358 ) 0.672bar p x P bar bar p x P bar bar p x P bar            
  • 19. www.ChemicalEngineeringGuy.com  Thus, from the equation of the bubble pressure we get:  Finally, the vapor composition (composition of the first vapor bubble) is 1 2 3 7.189p p p p bar    1 1 2 2 3 3 5.124 0.713 7.189 1.394 0.194 7.189 0.672 0.093 7.189 p bar y p bar p bar y p bar p bar y p bar         
  • 20. www.ChemicalEngineeringGuy.com  A hydrocarbon liquid mix with  Composition (10,20,30,40% mol of; nC3, nC4, nC5, nC6)  Find the temperature at which we will get the first bubble formation.  Do NOT Assume ideal solution/gas / 0, 700V F P kPa  Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 21. www.ChemicalEngineeringGuy.com  Solution:  Step 1. Guess any T:  ; nearest to nC63 6C nCT T T  200 392 700 101 T C F P kPa psi      
  • 23. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 390 nC nC nC nC K K K K T F      Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 24. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 9.8 5.7 3.1 1.8 390 nC nC nC nC K K K K T F     
  • 25. www.ChemicalEngineeringGuy.com  Step 3. Use f(x) function  Step 4. K-value is Not what we expected  Guess new T… Recommended is to: Normalize (divide by K function value)  Do this for the smallest (MVC)  Propane  Repeat Iteration! ( ) 3.69i iF x K Z  3 3 4 4 5 5 6 6 3 4 5 6 (0.10) (0.20) (0.30) (0.40) (9.8)(0.10) (5.7)(0.20) (3.1)(0.30) (1.8)(0.40) 3.70 i i nC nC nC nC nC nC nC nC i i nC nC nC nC i i i i K Z K Z K Z K Z K Z K Z K K K K K Z K Z                  9.8 2.66 3.7 K  
  • 26. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 2.66 ? ? ? ? nC nC nC nC K K K K T     
  • 27. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 2.66 0.80 0.30 0.12 128 nC nC nC nC K K K K T F       Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 28. www.ChemicalEngineeringGuy.com  Step 3. Use f(x) function  Step 4. K-value is Not what we expected  Normalize (divide by K function value)  Do this for the smallest (MVC)  Propane  Repeat Iteration! ( ) 0.61i iF x K Z  3 3 4 4 5 5 6 6 3 4 5 6 (0.10) (0.20) (0.30) (0.40) (2.66)(0.10) (0.80)(0.20) (0.3)(0.30) (0.12)(0.40) 0.61 i i nC nC nC nC nC nC nC nC i i nC nC nC nC i i i i K Z K Z K Z K Z K Z K Z K K K K K Z K Z                  2.66 4.36 0.61 K  
  • 29. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 4.36 1.80 0.85 0.36 200 nC nC nC nC K K K K T F      
  • 30. www.ChemicalEngineeringGuy.com  Step 3. Use f(x) function  Step 4. K-value is Not what we expected  Normalize (divide by K function value)  Do this for the smallest (MVC)  Propane  Repeat Iteration! ( ) 1.18i iF x K Z  3 3 4 4 5 5 6 6 3 4 5 6 (0.10) (0.20) (0.30) (0.40) (4.36)(0.10) (1.80)(0.20) (0.85)(0.30) (0.36)(0.40) 1.18 i i nC nC nC nC nC nC nC nC i i nC nC nC nC i i i i K Z K Z K Z K Z K Z K Z K K K K K Z K Z                  4.36 3.70 1.20 K   Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 31. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 3.70 0.78 0.65 0.28 180 nC nC nC nC K K K K T F      
  • 32. www.ChemicalEngineeringGuy.com  Step 3. Use f(x) function  Step 4. K-value is Not what we expected  Normalize (divide by K function value)  Do this for the smallest (MVC)  Propane  Repeat Iteration! ( ) 0.93i iF x K Z  3.68 3.94 0.93 K  
  • 33. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 3.94 1.40 0.60 0.27 188 nC nC nC nC K K K K T F       Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 34. www.ChemicalEngineeringGuy.com  At this point, K = 1 approx.  Accept T = 188°F or 190°F  Note that Real Value of mix is  T = 87°C  188.6°F
  • 35. www.ChemicalEngineeringGuy.com  Let us next consider dew point calculations.  In this case the vapor-phase composition yi is given  (it corresponds to the case where L is very small ( ) and  The dew point of a vapor (gas) is the point where the vapor just begins to condense, that is, when the first liquid drop is formed.  If the temperature is given  then we must increase the pressure until the first liquid is formed.  If the pressure is given  then we must decrease the temperature until the first liquid is formed. 0L  i iy z
  • 36. www.ChemicalEngineeringGuy.com  In both cases, this corresponds to adjusting T or p until  Or, more conveniently: 1ix  1i i y K  Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 37. www.ChemicalEngineeringGuy.com  At the dew point, by definition, and from f(1) = 0, we can find:  If this is true, then, when P and T are given:  Must be changed since T is too large… The steps are as follows:  Step 1. Guess any Dew Point Temperature  Step 2: Determine the K-values based on that  Step 3. Calculate . If function is not near 1, then:  Increase T when Function is less than 1.  Decrease T when Function is greater than 1.  Step 4. Recalculate New K-values based on normalization of K-old  Step 5. Repeat Iteration until acceptable % error value. 1i i Z K  1i i Z K  / 1V F  1i i Z K 
  • 38. www.ChemicalEngineeringGuy.com  Calculate the Dew point at given Temperature T.  A vapor mixture contains:  50% pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%), i.e.,  At T = 400 K, the pressure is gradually increased.  What is the dew point pressure and the composition of the first liquid that is formed?  Assume ideal liquid mixture and ideal gas (Raoult’s law). 1 2 30.5; 0.3; 0.2y y y  
  • 39. www.ChemicalEngineeringGuy.com  Solution.  The task is to find the value of p that satisfies  Since T is given, this is trivial; we can simply calculate 1/p from (7.48).  From previous experiments and data, we got the following regression:  and we find  The liquid phase composition is:  Then, we find 1 ( ) i i y P T p    11 0.5 0.3 0.2 0.1729 10.248 4.647 3.358 bar p      5.75p bar 1 ( ) i i i y x P T p      1 2 3 0.5 5.78 0.3 5.78 0.2 5.78 0.282; 0.373; 0.345 10.248 4.647 3.749 x x x x x x      Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 40. www.ChemicalEngineeringGuy.com  For the previous mixture of Bubble Point:  Calculate its Dew Point  That is, assume it is a vapor  You are looking for condensation point
  • 41. www.ChemicalEngineeringGuy.com  Component / Molar flow  C1 20  C2 15  C3 12  C4 15  IC4 12  NC5 15  IC5 10  C6 5  C7 3 • A) Get Dew point @ T= ? P = 50bar • B) Get Bubble point @ T= 220°C, P = 10bar • C) What phase do we have at 25/25 Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 42. www.ChemicalEngineeringGuy.com  Component / Molar flow  B 0.25  T 0.25  O-X 0.25  P-X 0.25 • A) Get Dew point @ T= 150°C, P = 50bar • B) Get Dew point @ T= 220°C, P = 10bar • C) What is the Critical Point & Meaning?
  • 43. www.ChemicalEngineeringGuy.com  Rachford-Rice Equation  Derivation  Procedure – Newton’s Method  Worked Example  Multicomponent Flash Distillation:  Exercises  Simulations
  • 44. www.ChemicalEngineeringGuy.com  Next, consider a flash where a feed F (with composition zi) is split into  A vapor product V (with composition yi)  A liquid product (with composition xi)  For each of the Nc components, we can write a material balance:  In addition, the vapor and liquid is assumed to be in equilibrium, i i iFz Lx Vy  i i iy K x
  • 45. www.ChemicalEngineeringGuy.com  The K-values:   Must be computed from the VLE model.  In addition, we have the two relationships:  With a given feed (F, zi), we then have:  3Nc + 2 equations  3Nc + 4 unknowns (xi , yi , Ki , L, V, T, p).  Thus, we need two additional specifications, and with these the equation set should be solvable , ,( ),i i i iK K T P x y 1 1 1 i i i i x y x y         Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 46. www.ChemicalEngineeringGuy.com  The simplest flash is usually to specify p and T (pT-flash)  because Ki depends mainly on p and T .  Let us show one common approach for solving the resulting equations, which has good numerical properties.  Substituting into the mass balance:  Gives  Solving with respect to xi gives:  Simplify via  L = F − L (total mass balance) to derive i i iFz Lx Vy  i i iy K x (K )i i i iFz Lx V x  ( ) ( ) (1) ( ) 1 ( 1) 1 ( 1) i i i i i i V Fi i V F i i i Fz x L VK L F z z x L V K K z x K              
  • 47. www.ChemicalEngineeringGuy.com  Here, we cannot directly calculate xi because the vapor split V /F is not known.  To find V /F we may use:  the relationship  alternatively  OR the addition of both…  However, it has been found that the combination Σi(yi−xi) = 0  It results in an equation with good numerical properties  This is the so-called Rachford-Rice Flash Equation 1 1 1 i i i i x y x y          isat i p T K p  ( 1) 0 1 ( 1) i i i z K K      
  • 48. www.ChemicalEngineeringGuy.com  Rachford-Rice Equation:  Is a monotonic function in V/F  It is easy to solve numerically.  A physical solution must satisfy 0 ≤ V /F ≤ 1.  If we assume that Raoult’s holds, then Ki depends on p and T only.  Then, with T and p specified, we know Ki and the Rachford-Rice equation can be solved for V /F.  For non-ideal cases, Ki depends also on xi and yi  One approach is add an outer iteration loop on Ki .  isat i p T K p 
  • 49. www.ChemicalEngineeringGuy.com  This will be the typical procedure for the RRE  Note that this is based on a numerical method  Newton-Raphson Method  Uses the original function, f(phi)  It also requires the derivative of the function, f’(phi) ( 1) ( ) 1 ( 1) i i i z K f K        0.50 V F    2 2 (1 ) '( ) [1 ( 1)] i i i z K f K        ( , , , ... )i j k zF z z z z (V,y ,y ,y ...y )i j k z (L,x ,x ,x ...x )i j k z ( , )T P ( , , ... )i j k zK K K K Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 50. www.ChemicalEngineeringGuy.com 1. Given  F, zi, T and P 2. Get Ki for species (either graph, equations or experimental values)  Antoine Equation (ideal)  K-Values from DePriester Chart 3. Assume a phi value (vaporized material in the feed) (hint  good start is 0.5) 4. Get the Numerical Value of Rachford Rice Equation  Example:  BTX ( Benzene, Toluene, Xylene) System: ( 1) 0 1 ( 1) i i i z K K       0.50 V F    (1 )(1 ) (1 ) ( ) 1 ( 1) 1 ( 1) 1 ( 1) xylene xylenebenzene benzene toluene toluene benzene toluene xylene z Kz K z K f K K K               
  • 51. www.ChemicalEngineeringGuy.com 5. Get the Numerical Value of the Derivative of Rachford Rice Equation  Example:  BTX ( Benzene, Toluene, Xylene) System: V F   22 2 2 2 2 (1 )(1 ) (1 ) '( ) [1 ( 1)] [1 ( 1)] [1 ( 1)] xylene xylenebenzene benzene toluene toluene benzene toluene xylenei z Kz K z K f K K K                2 2 (1 ) '( ) [1 ( 1)] i i i z K f K       
  • 52. www.ChemicalEngineeringGuy.com 6. Recalculate phi (Newton Raphson Method) 7. Verify Rel. Error, if < 0.0001, this is ok, otherwise go to step 3 (repeat iteration) V F   ( ) '( ) old new old old f f       % .error 100%new old old rel abs x          Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 53. www.ChemicalEngineeringGuy.com 8. Get V, L, xi, and yi (see equations)  Note that in all cases:  You will need K and phi V V F L L F V       1 ( 1) 1 ( 1) i i i i i i i K z y K z x K         V F  
  • 54. www.ChemicalEngineeringGuy.com  Given a Flash with the following data:  Composition (zi)  (BTX, 0.60, 0.25, 0.15)  VLE (Antoine Constant) Data:  A) Get the compositions, flow rates of Vapor & Liquid streams i A B C B 6.879 1196.700 219.160 T 6.950 1342.000 219.190 X 7.000 1476.390 213.870 1 , 100 100 & kmol h P atm T C F V L unknown     
  • 55. www.ChemicalEngineeringGuy.com  Step 1 – Get the given Data: 1 , 100 , 100 0.6; 0.25, 0.15 kmol h benzene toluene xylene P atm T C F Z Z Z        Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 56. www.ChemicalEngineeringGuy.com  Step 2 Get Ki-values  Via Raoult’s Law  Via DePriester Diagrams (not available for BTX)  If we use Raoult’s Law & Antoine’s Equation: 1.7756 0.7322 0.2611 benzene toluene xylene K K K   
  • 57. www.ChemicalEngineeringGuy.com  Step 3. Assume phi  Recommended is:  WHY? 0.5 
  • 58. www.ChemicalEngineeringGuy.com  Step 4. Calculate The Value of the Rachford-Rice Equaiton (RRE) 0.5 (1 ) ( ) 1 ( 1) (1 )(1 ) (1 ) ( ) 1 ( 1) 1 ( 1) 1 ( 1) 0.60(1 1.7756) 0.25(1 0.7322) ( ) 1 0.50(1.7756 1) 1 0.50(0.732 i i i xylene xylenebenzene benzene toluene toluene benzene toluene xylenei z K f K z Kz K z K f K K K f                                 0.15(1 0.2611) 2 1) 1 0.50(0.2611 1) ( ) 0.0823f        
  • 59. www.ChemicalEngineeringGuy.com  Step 5. Calculate The Value of the derivative of RRE 2 2 22 2 2 2 2 2 2 0.5 (1 ) '( ) [1 ( 1)] (1 )(1 ) (1 ) '( ) [1 ( 1)] [1 ( 1)] [1 ( 1)] 0.60(1 1.7756) 0.25 '( ) 1 0.50(1.7756 1)] i i i xylene xylenebenzene benzene toluene toluene benzene toluene xylenei z K f K z Kz K z K f K K K f                               2 2 2 2 (1 0.7322) 0.15(1 0.2611) 1 0.50(0.7322 1)] 1 0.50(0.2611 1)] '( ) 0.4172f          Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 60. www.ChemicalEngineeringGuy.com  Step 6. Calculate the new “phi” ( ) '( ) 0.0823 0.50 0.4172 0.6972 old new old old new new f f            
  • 61. www.ChemicalEngineeringGuy.com  Step 7. Verify phi value (error)  Error is too large, repeat from step 3 % . 100% 0.6972 % . 100% 0.5000 % . 139% new old rel error x rel error x rel error     
  • 62. www.ChemicalEngineeringGuy.com  The most convenient way to do this is via a Spreadsheet… as we will need to iterate  Step 7. Verify phi value (error)  Best Case  phi = 0.6806; error is acceptable Trial phi f(1) f(2) f(3) f(phi) f'(1) f'(2) f'(3) f'(phi) New Phi %error 1 0.5 -0.33532 0.0773 0.175775 -0.08225 0.187402 0.023901 0.205979 0.417282 0.6971 39.42 2 0.6971 -0.30205 0.08232 0.228567 0.008834 0.152057 0.027105 0.348286 0.527447 0.6804 2.40 3 0.6804 -0.30462 0.08187 0.222879 0.000126 0.154654 0.026808 0.026808 0.20827 0.6797 0.09 4 0.6797 -0.30471 0.08185 0.222679 -0.00018 0.154749 0.026797 0.026797 0.208344 0.6806 0.13 5 0.6806 -0.30458 0.08187 0.222971 0.000269 0.154611 0.026813 0.026813 0.208236 0.6793 0.19 6 0.6793 -0.30478 0.08184 0.222544 -0.00039 0.154813 0.02679 0.02679 0.208394 0.6812 0.28 7 0.6812 -0.30448 0.08189 0.223167 0.000572 0.154518 0.026823 0.026823 0.208164 0.6785 0.40 2 2 22 2 2 2 2 2 2 0.5 (1 ) '( ) [1 ( 1)] (1 )(1 ) (1 ) '( ) [1 ( 1)] [1 ( 1)] [1 ( 1)] 0.60(1 1.7756) 0.25 '( ) 1 0.50(1.7756 1)] i i i xylene xylenebenzene benzene toluene toluene benzene toluene xylenei z K f K z Kz K z K f K K K f                               2 2 2 2 (1 0.7322) 0.15(1 0.2611) 1 0.50(0.7322 1)] 1 0.50(0.2611 1)] '( ) 0.4172f          f’(1) f’(2) f’(3) 0.5 (1 ) ( ) 1 ( 1) (1 )(1 ) (1 ) ( ) 1 ( 1) 1 ( 1) 1 ( 1) 0.60(1 1.7756) 0.25(1 0.7322) ( ) 1 0.50(1.7756 1) 1 0.50(0.732 i i i xylene xylenebenzene benzene toluene toluene benzene toluene xylenei z K f K z Kz K z K f K K K f                                 0.15(1 0.2611) 2 1) 1 0.50(0.2611 1) ( ) 0.0823f         f(1) f(2) f(3) Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 63. www.ChemicalEngineeringGuy.com  Step 8. Calculate all other Values  For compositions, use Spreadsheet (0.6803)(100) 68.03 / 100 68.03 31.97 / V V F V kmol h L L F V kmol h             1 ( 1) 1 ( 1) i i i i i i i K z y K z x K        
  • 64. www.ChemicalEngineeringGuy.com  Step 8. Calculate all other Values 1 ( 1) 1 ( 1) i i i i i i i K z y K z x K         Species i Ki zi phi yi xi Benzene 1 1.78 0.60 0.6806 0.69728 0.392703 Toluene 2 0.73 0.25 0.6806 0.22385 0.305722 Xylene 3 0.26 0.15 0.6806 0.07879 0.301747
  • 65. www.ChemicalEngineeringGuy.com Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 66. www.ChemicalEngineeringGuy.com  A feed:  (1) 20 mol % ethane  (2) 20 mol % isobutane  (3) 20 mol % n-pentane  (4) 40 mol % n-hexane  Flash Operation is at T = 100°c, P = 600kPa  A) What mole fraction of the feed is vaporized?  B) Composition of vapor?
  • 67. www.ChemicalEngineeringGuy.com  Step 1: Calculate K Values  F = must be assumed, 100  Z = given, 0.2,0.20,0.20,0.40  Given, 100°C (212F), 600kPa (87 psi)  Step 2. Calculate K Values  Use DePriester Chart.  Ethane  12.5  isobutane  2.80  n-pentane  0.95  n-hexane  0.45
  • 68. www.ChemicalEngineeringGuy.com  Step 3. Assume phi-values 0.50  Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 69. www.ChemicalEngineeringGuy.com  Step 4. Calculate RRE  Step 5. Calculate Derivative of RRE: Ethane  12.5 isobutane  2.80 n-pentane  0.95 n-hexane  0.45 Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error 1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71 2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68 3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04 4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00 5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00 6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00 7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00
  • 70. www.ChemicalEngineeringGuy.com  Step 7. Verify if error is acceptable.  V/F = 0.7597  A) Percentage of Vapor = 75.97% Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error 1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71 2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68 3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04 4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00 5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00 6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00 7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00 Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 71. www.ChemicalEngineeringGuy.com  B) Composition of vapor? Species i Ki zi phi yi xi Ethane 1 12.5 0.20 0.7597 0.256764 0.020541 i-Butane 2 2.8 0.2 0.7597 0.23654 0.084479 n-Pentane 3 0.95 0.2 0.7597 0.197502 0.207897 n-Hexane 4 0.45 0.4 0.7597 0.309191 0.68709 0.999998 1.000007 (0.7597)(100) 75.97 / 100 75.97 24.03 / V V F V mol h L L F V kmol h             1 ( 1) 1 ( 1) i i i i i i i K z y K z x K        
  • 72. www.ChemicalEngineeringGuy.com  For a mix at T= 95°C and P = 700kPa  The composition of 40, 30, 20, 10 mol percent:  propane (1)  n-butane (2)  n-pentane (3)  n-hexane (4)  A) What percentage of the feed enters as liquid?
  • 73. www.ChemicalEngineeringGuy.com  Step 1. Get data  F, T, P, zi are given!  T= 95°C = 203°F  P = 700kPa = 101 psi  Step 2. Get Ki  From K-chart:  4.20  1.75  0.74  0.34 Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 74. www.ChemicalEngineeringGuy.com  Step 3: Assume a phi value  Phi = 0.5  Step 4&5: Get RRE and its derivative
  • 75. www.ChemicalEngineeringGuy.com  Step 6: Verify, iterate  NOTE   If The Value of RRE < 0, this is above the bubble point… WHY?  If the Value of RRE derivative > RRE, this is ABOVE the dew point…  Trick question… This is all VAPOR! phi 0.5 i zi Ki f(phi) f'(phi) 1 0.4 4.2 -1.28 4.096 2 0.3 1.75 -0.225 0.16875 3 0.2 0.74 0.052 0.01352 4 0.1 0.34 0.066 0.04356 Sum = -1.387 4.32183
  • 76. www.ChemicalEngineeringGuy.com  In the following animation:  Change the Flash Pressure  See the Effect of Q in temperature  Compare the volatility of species:  Butane vs. heptane https://demonstrations.wolfram.com/FlashDistillationOfAMixtureOfFourHydrocarbons/ Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 77. www.ChemicalEngineeringGuy.com  Use Aspen Plus Software to Simulate Ex 1. Rachford-Rice Flashing  A) Verify Composition & Streams  B) Use Physical Property Analysis:  PV-Curve  Mixture Properties  C) Use Sensitivity Analysis for:  Effect of Temperature in Vapor  Tmin? WHY  Tmax? WHY
  • 78. www.ChemicalEngineeringGuy.com  Phi = 0.7597 Species i Ki zi phi yi xi Ethane 1 12.5 0.20 0.7597 0.256764 0.020541 i-Butane 2 2.8 0.2 0.7597 0.23654 0.084479 n-Pentane 3 0.95 0.2 0.7597 0.197502 0.207897 n-Hexane 4 0.45 0.4 0.7597 0.309191 0.68709 0.999998 1.000007 (0.7597)(100) 75.97 / 100 75.97 24.03 / V V F V mol h L L F V kmol h             Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error 1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71 2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68 3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04 4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00 5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00 6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00 7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00 Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 79. www.ChemicalEngineeringGuy.com 1. Introduction 2. Review of Mass Transfer 3. Flash Distillation Concepts 4. Multicomponent Flashing 5. Conclusion
  • 80. www.ChemicalEngineeringGuy.com 1. Introduction 1. Why Flash Distillation? 2. Objectives & Goals 3. Resources & Downloads 4. Additional Notes 2. Review of Mass Transfer 1. Ideal Solution & Gas, Equilibrium, Vapor & Partial Pressures, VLE 2. Volatility / Relative Volatility 3. Phase Diagrams (Txy, Pxy, XY) 4. Ideal Solution – Ideal Gas: Raoult’s Law (Vapor-Liquid) 5. Deviations: Azeotropes 3. Flash Distillation Concepts 1. Process Technology Overview 2. Equipment 3. Operation Line 4. Flash Cascades 4. Multiple Components 1. Introduction 2. Rachford-Rice 3. Alkane System 5. Conclusion
  • 81. www.ChemicalEngineeringGuy.com  More Engineering Courses  Process Design & Simulation  Aspen Plus  Aspen HYSYS  Unit Operations  Gas Absorption & Stripping  Flash Distillation  Binary Distillation  Oil & Gas  Petrochemical Industries  Petroleum Refining https://courses.chemicalengineeringguy.com/courses